
Sponge-based	PRNGs
A	Provable	Security	Perspective

Stefano	Tessaro
UCSB

wr0ng
Paris,	April	30,	2017

Base	on	joint	work	with	Peter	Gaži (IST	Austria)

π
0

0
π π

M1 M2 ML

The Sponge Construction [BDPVA08]

M∈ {0,1}*

H(M)

(invertible) permutation n → n bits

r

c	=	n	- r

r-bit	blocks:

truncate to	r bits

The	Sponge	Paradigm	– Beyond	hashing

The	sponge	paradigm	has	been	used	to	build:

• Authenticated	encryption	schemes

• Message-authentication	codes	/	PRFs	

• PRNGs

Pseudorandom	Number	Generators

entropy	poolweak	
randomne

ss

pseudorandom	
bits

• Few	PRNGs	come	with	security	proofs.
[Barak-Halevi,	CCS’15],	[Dodis-Pointcheval-Ruhault-Vergnaud-Wichs,	
CCS’13],	[Shrimpton-Tarashima,	EC’15],	[Dodis-Shamir-Stephens-
Davidovitz-Wichs,	C’15]

• Real-world	PRNGs	rarely	designed	with	
provable	security	in	mind!	

PRNG	with	
input!

This	talk,	in	a	nutshell

Discuss	state	of	the	art	on	sponge-based	PRNGs,	and	
challenges	in	their	provable	security!	

Talk	based	on:	Peter	Gaži and	Stefano	Tessaro.	Provably	Robust	
Sponge-Based	PRNGs	and	KDFs. EUROCRYPT	‘16

Main	take-home	messages:	
1. Sponge-based	PRNGs	are	elegant	designs.

2. Proper	analysis	of	sponge-based	PRNGs	
presents	several	technical	challenges.

3. This	will	bring	up	some	food-for-thought.	

Roadmap	of	this	talk

1. PRNGs:	Sponge-based	Instantiations

2. Provably-robust	sponge-based	PRNGs

3. Conclusions	and	open	questions

PRNGs	with	Input	[DPRVW13]

next

state

outputnew	
state

seed

seedstate

new	
state

input

refreshsetup

refresh𝑆" refresh next refresh next

seedseed seedseed seed

Desiderata	– Pseudorandomness

Pseudorandomness:	Output	bits	of	next are	
indistinguishable	from	truly	random	bits,	
provided	enough	entropy	is	injected.

refresh refresh next refresh next

seedseed seedseed seed

Random! Random!

Desiderata	– Forward	secrecy

Forward	secrecy:	Even	if	the	attacker	
compromises	the	state,	it	cannot	distinguish	
previous outputs	from	random!

refresh refresh next refresh next

seedseed seedseed seed

Random!
Possibly	not	
random!

Desiderata	– Backward	secrecy

Backward	secrecy:	Even	if	the	attacker	
compromises	the	state,	future	bits	are	
pseudorandom	after	enough	entropy	is	injected.

refresh refresh next refresh next

seedseed seedseed seed

Random!
Possibly	not	
random!

π
0

0
π π

M1 M2 ML

The Sponge Construction [BDPVA08]

M∈ {0,1}*

H(M)

(invertible) permutation n → n bits

r

c	=	n	- r

r-bit	blocks:

truncate to	r bits

π

refresh

π π

Sponge-based	PRNGs:	Existing	Proposal	[BDPvA10]

next

• simple	and	elegant
• analysis	in	simple	model
• implemented,	e.g.,	on	

microcontrollers		[vHV14]

refresh

π

refresh

π

next

Three main	issues	with	
design	+	analysis	we	are	
aiming	two	resolve!

Problem	1:	No	Forward	Secrecy

• recognized	in	[BDPVA10]
• proposed	patch:	zeroing	upper	bits	after	next
– not	analyzed

π

refresh

π π

nextrefresh

π

refresh

π

next

𝑇

Can	easily	compute	
𝜋%&(𝑇) and	distinguish!

Problem	2:	No	Seed

Pseudorandomness:	If	inputs	have	sufficient	
entropy,	then	output	should	be	uniform!

π

refresh

π π

nextrefresh

𝐼& 𝐼* 𝑍 𝐼&, 𝐼* uniformly	
distributed	such	that	
first	bit	of	𝑍 equals	
0.

Clearly,	𝑍 is	not	
pseudorandom!

Yet,	 𝐼&, 𝐼* has	
almost	max	entropy!	
(only	one	bit	loss)

[BDPVA10]	did	not	have	this	issue,	due	to	technical
reasons	in	their	proof	…	coming	next	...

Problem	3:	Modeling	the	Permutation

Proofs	for	sponge-based	construction	rely	on	the	random	
permutation	model!	I.e.,	𝜋 is	random	+	adversary	has	
access	to	𝜋 /	𝜋%&

π

refresh

π π

nextrefresh

π

refresh

π

next

Previous	attack: Input	distribution	depends	on	𝜋!!!
Existing	proofs: Distribution	is	independent	of	𝜋!!!

Permutation-dependence and	the	seed:	Why	care?

Typical	argument:	Real-world	
distributions	behave	nicely!	

Possible,	but	…	it	is	not	easy	to	characterize	
what	“real-world	distribution”	means...

Roadmap	of	this	talk

1. PRNGs:	Sponge-based	Instantiations

2. Provably-robust	sponge-based	PRNGs

3. Conclusions	and	open	questions

Our	goals

Goal:	Find	a	sponge-based	PRNG	with:
• Forward	secrecy	+	backward	secrecy.
• Pseudorandomness for	all high-entropy	
sources
– including	those	that	may	depend	on	the	permutation.

π π

input

output

refresh next

seed

π
0

- setup: sample seed
- refresh: input whitening using seed
- next: upper-state zeroing, additional π-call

SPRG:	Our	Proposal	for	Sponge-based	PRNGs

How	to	model	security?
Robustness notion	[DPRVW13]	adapted	to	the	
random	permutation	model.	

Main	ideas:	
• The	source	of	weak	randomness	is	also	adversarial.
• Incorporates	both	forward	and	backward	security	
within	same	security	game!

Distribution samplerD
- generates inputs to PRNG
- legitimate: provides truthful

entropy lower bounds
- does not know seed!

AttackerA
- knows the seed
- can compromise state

- can trigger refresh
- can ask for a real-or-random

challenge

Robust	PRNGs	[DPRVW13]

refresh refresh next refresh next
seedseed seedseed seed

D D D

A A A A Aseed

𝐼& 𝐼* 𝐼-

𝑌& 𝑌*

𝑧&, 𝛾& 𝑧*, 𝛾* 𝑧-, 𝛾-

Legitimate	sampler:	
𝐇2 𝐼3 𝐼453, 𝑧&, 𝑧*, . . , 𝑧7 ≥ 𝛾3

Here:	𝐇2 𝑋 𝑌 = min
>
𝐇2(𝑋|𝑌 = 𝑦)

Robust	PRNGs	[DPRVW13]

get-state: returns	current	state

set-state:	sets	current	state

get-challenge:
𝑅0	 ← 	𝐧𝐞𝐱𝐭(𝑠𝑒𝑒𝑑);	𝑅1	 ← 	$
if (∑𝛾4 ≥ 𝛾∗ since	last	compromise)	

return 𝑅𝑏
else return 𝑅0

init:
- 𝑠𝑒𝑒𝑑	 ← 	𝐬𝐞𝐭𝐮𝐩()
- inital state	←	IV
- 𝑏	 ← 	 {0,1}

b’

𝑠𝑒𝑒𝑑

A

AdvZ[\]
^∗%_`a 𝐴, 𝐷 = 2 ⋅ Pr 𝑏 = 𝑏h − 1

Compromise!

refresh:
𝐼3, 𝛾3, 𝑧3 ← 𝐷; 	𝐫𝐞𝐟𝐫𝐞𝐬𝐡 𝑠𝑒𝑒𝑑, 𝐼3
return (𝑧3, 𝛾3)	

Extension	to	the	Random	Permutation	Model

Basic	idea:	Add	permutation	access	for	everyone!
[Yes,	even	for	D!]

get-state: returns	current	state

set-state:	sets	current	state

get-challenge:
𝑅0	 ← 	𝐧𝐞𝐱𝐭𝝅(𝑠𝑒𝑒𝑑);	𝑅1	 ← 	$
if (∑𝛾4 ≥ 𝛾∗ since	last	compromise)	

return 𝑅𝑏
else return 𝑅0

init:
- 𝑠𝑒𝑒𝑑	 ← 	𝐬𝐞𝐭𝐮𝐩𝝅()
- initial	state	←	IV
- 𝑏	 ← 	 {0,1}

b’

𝑠𝑒𝑒𝑑

𝐴𝝅

Compromise!

refresh:
𝐼3, 𝛾3, 𝑧3 ← 𝐷𝝅; 	𝐫𝐞𝐟𝐫𝐞𝐬𝐡𝝅 𝑠𝑒𝑒𝑑, 𝐼3
return (𝑧3, 𝛾3)	

RPM	Legitimate	Samplers

Catch:	What	does	𝐇2 𝐼3 𝐼453, 𝑧&, 𝑧*, . . , 𝑧7 ≥ 𝛾3
mean	in	the	RPM?
– 𝐼3 may	be	unpredictable	only	for	attackers	with	
bounded	queries	to	𝝅

– Example:	𝐼3 = 𝝅7(0o)

Current	definition	of	legitimate	
sampler:	A	somewhat-unsatisfactory	
monster!	

Legitimate	samplers

𝐇2 𝐼3 𝐼453, 𝑧&, 𝑧*, . . , 𝑧7 ≥ 𝛾3

“No	adversary	making	𝑞q queries	to	𝜋 should	
be	able	to	guess	𝐼3 with	prob.	better	than	2%^r,	
even	given	all	𝐼4 for	𝑗 ≠ 𝑖,	𝑧&, … , 𝑧7,	and	all	
permutations	queries		made	by	𝐷,	except	those	
needed	to	compute	𝐼3”	

“𝑞q-legitimate	sampler”

π π

input

output

refresh next

seed

π
0

Main	Theorem	– Robustness	

Theorem.	[Informal]	∀𝐷, 𝐴	making	≤ 𝑞q queries,	and	𝐴making	
≤ 𝑞y real-or-random	queries:

AdvZ[\]
^∗%_`a 𝐴, 𝐷 ≤ 𝑞y×(something	small)

As	long	as:	𝑞q ≤ min{2^∗, 2
�
�, 2_}

𝑟 bits

𝑐 bits

𝑛 = 𝑟 + 𝑐

e.g.,	𝑛 = 1600,	𝑐 ≥ 1024	

Proof	overview	– Two	Steps

𝜸∗-recovering	security

preserving	security

refresh refresh next
seedseed

seed

seed

A

𝐼&
𝑌

𝐼*
vs

refresh refresh next

D D

𝐼& 𝐼*

refresh

D

𝐼7

𝑆"

If	initialized	with	“good	
state”,	output	of	next is	
pseudorandom	for	
adversarially chosen	
𝐼&, 𝐼*, …

𝛾&, 𝑧& 𝛾*, 𝑧* 𝛾7, 𝑧7

seedseed seed seed

𝑌 vsseed A

∑𝛾4 ≥ 𝛾∗

“good	state”

π

seed

IV π

seed

source	material

o
u
t

Two	key	lemmas

Analysis	of	next

“Sponge	extraction
lemma”

𝑍

π

next

πS

0_

𝑆 𝑇

Key	Lemma– Sponge	Extraction

Key	question:	Can	sponges	act	as	good	randomness	
extractors?

π

seed

IV π

seed

o
u
t

E.g.	 𝑠𝑒𝑒𝑑, 𝑜𝑢𝑡 ≈ (𝑠𝑒𝑒𝑑, $) if	𝐇2 𝐼& … 𝐼7 ≥ 𝛾∗

𝐼& 𝐼7

It	depends:	One-round	case

π

seed

IV

𝐼

𝑌

e.g.,	imagine	source	samples

𝐼 = 0||𝑊

where	W	is	a	uniform	 𝑟 − 1 -
bit	string.

The	attack	was	possible	because we	have	been	able	
to	query	𝜋%& 𝑌 …	so	what	if	we	can’t?

Distinguisher 𝐷 𝑠𝑒𝑒𝑑, 𝑌 :

𝑇 ← 𝜋%&(𝑌)

if 𝑇 1 ⊕ 𝐼𝑉 1 ⊕ 𝑠𝑒𝑒𝑑 1 = 0 then

return	1

else	return	𝟎

It	depends:	One-round	case

π

seed

IV

𝐼

𝑌

Intuition: If 𝐷 𝑠𝑒𝑒𝑑, 𝑌
cannot	query	𝜋%&(𝑌),	then	
needs	to	query	𝜋(𝐼𝑉 ⊕
𝑠𝑒𝑒𝑑 ⊕ 𝐼) on	all	possible	𝐼’s!	

Work	needed	to	distinguish:	
2𝐇�(�) = 2_%& queries	to	𝜋!

Main	observation:	Restriction	that	𝜋%&(𝑌) is	never	
queried	is	valid	in	applications	where	𝑌 is	used	as	a	
secret	key!

Sponge-Extraction	Lemma

D D

𝐼& 𝐼*

D

(𝐼7, 𝛾7)

𝑆"

𝑧&, 𝛾& 𝑧*, 𝛾* 𝑧7, 𝛾7

𝑌

seed A

∑𝛾4 ≥ 𝛾∗
π

seed

π

seed

π

seed

Lemma	1.	Output	𝑌 is	pseudorandom,	provided:

1. 𝑞q ≤ min{2^∗, 2
�
� , 2_}

here,	𝑞q is	#	queries	by	𝐴 and	𝐷 combined!
2. 𝐴 never	queries	𝜋%&(𝑌)

Lemma 2. 𝑌, 𝑇 ≈ (𝑈_, 0_||𝑈�) for any distinguisher
that makes 𝑞𝝅 ≪ min{2𝐇� � , 2_, 2�/*} queries to 𝝅.

𝑌

Key	Lemma– Analysis	of	next

π

next

πS

0_

𝑆 𝑇

Only	assume	
lower	bound	on	
𝐇2(𝑆)

Next	– Remarks	
General	distribution	on	𝑆 is	necessary,	as	we	may	call	
nextmultiple	times!

𝑌

π

next

π
0_

𝑌

π

next

π
0_

𝑆

≈ 0_||𝑈�

Next	– Remarks	(cont’d)

Extra	permutation	call	is	necessary!

𝑌

π

next

0_

𝑇𝑆

0 Attacker	just	checks	
whether	𝜋%&(𝑌| 𝑇 is	
in	the	range	of	𝑆

Note:	Extra	cost	of	additional	permutation	call	can	
be	mitigated	by	outputting	multiple	𝑌’s.

Alternative	– Open	question
Following	variant	does	not	fit	into	our	proof	framework,	but	may	be	fine	
overall.

𝑆

𝑌

π

next

π
0_

This	would	prevent	a	double	
permutation	call	when	
transitioning	refresh	->	next!

π π π 0
π π 0 πvs

[Hutchinson,	SAC	’16]	proposes	another	approach	to	next,	requires	modification	of	lower	
bits!

Further	application	– Sponge-based	KDF

π

seed1

IV π

seed(imod	s)

π π π

source	material

context	variable output

We	show	it	is	a	good	KDF,	even	when	source	material	is	
permutation	dependent!

Proof	combines	sponge	extraction	lemma	+	PRF	analyses	
for	keyed	sponges	[ADMvA15,GPT15,MRV15]

Roadmap	of	this	talk

1. PRNGs:	Sponge-based	Instantiations

2. Provably-robust	sponge-based	PRNGs

3. Conclusions	and	open	questions

Permutation-dependence and	the	seed:	Why	care?

Typical	argument:	Real-world	
distributions	behave	nicely!	

Possible,	but	…	it	is	not	easy	to	characterize	
what	“real-world	distribution”	means...

Personal	take:	If	you	can	add	security	for	cheap,	
then	why	not	enable	it	as	an	option?

Our	seeding	is	entirely	black	box	– input	whitening!

Open	Problems

• Better	security
– Premature	next?	More	general	class	of	samplers?

• Concrete	bounds
– No	issue	for	large-stage	(𝑛 = 1600 bits)

• Small	state
– What	if	state	is	very	small	(e.g.,	128	bits)	and	
randomness	is	injected	at	low	rate

– Incorrect	proposal	in	our	paper	L
• Assumptions
– Random	permutation	should	make	things	easier,	
except	it	does	not!

?

Open	Problems	– Assumptions

Random-permutation	assumption	problematic
• Possible	way	out:	Public-seed	PRPs	[Soni-T,	
EC’17]
– Standard-model	assumption	for	(seeded)	
permutations

• Caveat: Permutation	itself	requires	a	seed!
– See	Pratik’s	talk	on	Wednesday [not	about	PRNGs]

Thank	you!

