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2008: The Debian OpenSSL entropy disaster

August 2008: Discovered by Luciano Bello

Keys dependent only on pid and machine architecture:
294,912 keys per key size.

[Yilek, Rescorla, Shacham, Enright, Savage 2009]



Debian OpenSSL weak keys in 2013

31,111 (0.34%) of RSA SSH hosts

[Durumeric Wustrow Halderman 2013]



[Heninger Durumeric Wustrow Halderman 2012], [Lenstra, Hughes, Augier, Bos,

Kleinjung, Wachter 2012]

Motivating question:

What does cryptography look like on a broad scale?

Methodology:

1. Collect cryptographic data (keys, signatures...)

2. Look for interesting things.

Results:

Stumble upon random number generation flaws in the wild.



Public-key cryptography in practice.

End host cipher preference November 2016
(censys.io and custom Zmap scans)

Key exchange Signatures

Hosts RSA DH ECDH RSA DSA ECDSA

HTTPS 39M 39% 10% 51% 99% ≈ 0 1%
SSH 17M ≈ 0 52% 48% 93% 7% 0.3%
IKEv1 1.1M - 97% 3% - - -
IKEv2 1.2M - 98% 2% - - -

(* Preferences depend on client ordering.)



Cryptography relies on good randomness.

If you use bad randomness, an attacker might be
able to guess your private key.

End of story?



What could go wrong: Repeated keys

RSA Public Keys

N = pq modulus

e encryption exponent

I Two hosts share e: not a problem.

I Two hosts share N: → both know private key of the other.

Hosts share the same public and private keys, and can decrypt and
sign for each other.
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What happens if we look for repeated moduli?

> 60% of HTTPS and SSH hosts served non-unique public
keys.

HTTPS:
default certificates/keys:
670,000 hosts (5%)

low-entropy repeated keys:
40,000 hosts (0.3%)

SSH:
default or low-entropy keys:
1,000,000 hosts (10%)
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Subjects of most repeated TLS Certificates

C=TW, ST=HsinChu, L=HuKou, O=DrayTek Corp., OU=DrayTek Support, CN=Vigor Router

C=UA, ST=Califonia, L=Irvine, O=Broadcom, OU=Broadband, CN=Daniel/emailAddress=kiding@broadcom.com

C=US, ST=AL, L=Huntsville, O=ADTRAN, Inc., CN=NetVanta/emailAddress=tech.support@adtran.com

C=CA, ST=Quebec, L=Gatineau, O=Axentraserver Default Certificate 863B4AB, CN=localdomain/emailAddress=support@axentra.com

C=US, ST=California, L=Santa Clara, O=NETGEAR Inc., OU=Netgear Prosafe, CN=NetGear/emailAddress=support@netgear.com

C=--, ST=SomeState, L=SomeCity, O=SomeOrganization, OU=SomeOrganizationalUnit, CN=localhost.localdomain/emailAddress=root@localhost.localdomain

C=US, ST=Texas, L=Round Rock, O=Dell Inc., OU=Remote Access Group, CN=iDRAC6 default certificate

C=--, ST=SomeState, L=SomeCity, O=SomeOrganization, OU=SomeOrganizationalUnit, CN=localhost.localdomain/emailAddress=root@localhost.localdomain

C=IN, ST=WA, L=WA, O=lxlabs, OU=web, CN=*.lxlabs.com/emailAddress=sslsign@lxlabs.com

C=TW, ST=none, L=Taipei, O=NetKlass Techonoloy Inc, OU=NetKlass, CN=localhost

C=--, ST=SomeState, L=SomeCity, O=SomeOrganization, OU=SomeOrganizationalUnit, CN=localhost.localdomain/emailAddress=root@localhost.localdomain

C=US, CN=ORname_Jungo: OpenRG Products Group

C=--, ST=SomeState, L=SomeCity, O=SomeOrganization, OU=SomeOrganizationalUnit, CN=localhost.localdomain/emailAddress=root@localhost.localdomain

C=LT, L=Kaunas, O=Ubiquiti Networks Inc., OU=devint, CN=ubnt/emailAddress=support@ubnt.com

C=PL, ST=Some-State, O=Mini Webservice Ltd

C=US, ST=Texas, L=Round Rock, O=Dell Inc., OU=Remote Access Group, CN=DRAC5 default certificate

C=AU, ST=Some-State, O=Internet Widgits Pty Ltd, CN=TS Series NAS

C=DE, ST=NRW, L=Wuerselen, O=LANCOM Systems, OU=Engineering, CN=www.lancom systems.de/emailAddress=info@lancom-systems.de



x509 Subject Alt Name of Repeated Trusted TLS
Certificates

DNS:*.opentransfer.com, DNS:opentransfer.com

DNS:*.home.pl, DNS:home.pl

DNS:a248.e.akamai.net, DNS:*.akamaihd.net, DNS:*.akamaihd-staging.net

DNS:*.c11.hesecure.com, DNS:c11.hesecure.com

DNS:*.pair.com, DNS:pair.com

DNS:*.c12.hesecure.com, DNS:c12.hesecure.com

DNS:*.c10.hostexcellence.com, DNS:c10.hostexcellence.com

DNS:*.securesitehosting.net, DNS:securesitehosting.net

DNS:*.sslcert19.com, DNS:sslcert19.com

DNS:*.c11.ixsecure.com, DNS:c11.ixsecure.com

DNS:*.c9.hostexcellence.com, DNS:c9.hostexcellence.com

DNS:*.naviservers.net, DNS:naviservers.net

DNS:*.c10.ixwebhosting.com, DNS:c10.ixwebhosting.com

DNS:*.google.com, DNS:google.com, DNS:*.atggl.com, DNS:*.youtube.com, DNS:youtube.com, DNS:*.youtube-nocookie.com, DNS:youtu.be, DNS:*.ytimg.com, DNS:*.google.com.br, DNS:*.google.co.in, DNS:*.google.es, DNS:*.google.co.uk, DNS:*.google.ca, DNS:*.google.fr, DNS:*.google.pt, DNS:*.google.it, DNS:*.google.de, DNS:*.google.cl, DNS:*.google.pl, DNS:*.google.nl, DNS:*.google.com.au, DNS:*.google.co.jp, DNS:*.google.hu, DNS:*.google.com.mx, DNS:*.google.com.ar, DNS:*.google.com.co, DNS:*.google.com.vn, DNS:*.google.com.tr, DNS:*.android.com, DNS:*.googlecommerce.com

DNS:*.hospedagem.terra.com.br

DNS:*.c8.ixwebhosting.com, DNS:c8.ixwebhosting.com

DNS:www.control.tierra.net, DNS:control.tierra.net



Classifying repeated SSH host keys
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What could go wrong: Shared factors

If two RSA moduli share a common factor,

N1 = pq1 N2 = pq2

gcd(N1,N2) = p

You can factor both keys with GCD algorithm.

Time to factor
768-bit RSA modulus:
2.5 calendar years
[Kleinjung et al. 2010]

Time to calculate GCD
for 1024-bit RSA moduli:
15µs
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Should we expect to find key collisions in the wild?

Experiment: Compute GCD of each pair of M RSA moduli
randomly chosen from P primes.

What should happen? Nothing.

Prime Number Theorem:
∼ 10150 512-bit primes

Birthday bound:
Pr[nontrivial gcd] ≈ 1− e−2M2/P
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How to efficiently compute pairwise GCDs

Computing pairwise gcd(Ni ,Nj) the naive way on all of the unique
RSA keys in a single set of scans would take

15µs×
(

14× 106

2

)
pairs ≈ 1100 years

of computation time.

Algorithm from (Bernstein 2004)
A few hours for 10M keys.

Implementation available at

https://factorable.net.
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What happens if we compute GCDs of some RSA moduli?

What did happen when we GCDed all the keys in
2012?

Computed private keys for

I 64,081 HTTPS servers (0.50%).

I 2,459 SSH servers (0.03%).

I 2 PGP users (and a few hundred invalid keys).
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... only two of the factored https certificates were signed by a CA,
and both were expired. The web pages weren’t active.

Subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024

CN=self-signed, CN=system generated, CN=0162092009003221

CN=self-signed, CN=system generated, CN=0162122008001051

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddress=service@mail.com

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072011000074

CN=self-signed, CN=system generated, CN=0162122009008149

CN=self-signed, CN=system generated, CN=0162122009000432

CN=self-signed, CN=system generated, CN=0162052010005821

CN=self-signed, CN=system generated, CN=0162072008005267

C=US, O=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication

CN=self-signed, CN=system generated, CN=0162082009008123

CN=self-signed, CN=system generated, CN=0162072008005385

CN=self-signed, CN=system generated, CN=0162082008000317

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072008005597

CN=self-signed, CN=system generated, CN=0162072010002630

CN=self-signed, CN=system generated, CN=0162032010008958

CN=109.235.129.114

CN=self-signed, CN=system generated, CN=0162072011004982

CN=217.92.30.85

CN=self-signed, CN=system generated, CN=0162112011000190

CN=self-signed, CN=system generated, CN=0162062008001934

CN=self-signed, CN=system generated, CN=0162112011004312

CN=self-signed, CN=system generated, CN=0162072011000946

C=US, ST=Oregon, L=Wilsonville, CN=141.213.19.107, O=Xerox Corporation, OU=Xerox Office Business Group,

CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)

CN=self-signed, CN=system generated, CN=0162102011001174

CN=self-signed, CN=system generated, CN=0168112011001015

CN=self-signed, CN=system generated, CN=0162012011000446

CN=self-signed, CN=system generated, CN=0162112011004041

CN=self-signed, CN=system generated, CN=0162112011000617

CN=self-signed, CN=system generated, CN=0162042011006791

CN=self-signed, CN=system generated, CN=0162072011005063

CN=self-signed, CN=system generated, CN=0162122008003402

CN=self-signed, CN=system generated, CN=0162072011005032

CN=self-signed, CN=system generated, CN=0162042011005343

CN=self-signed, CN=system generated, CN=0162012008002101

CN=self-signed, CN=system generated, CN=0162072008005492

CN=self-signed, CN=system generated, CN=0162092008000776

CN=self-signed, CN=system generated, CN=0162092008000852

CN=self-signed, CN=system generated, CN=0162112008000044



... only two of the factored https certificates were signed by a CA,
and both were expired. The web pages weren’t active.

Subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024

CN=self-signed, CN=system generated, CN=0162092009003221

CN=self-signed, CN=system generated, CN=0162122008001051

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddress=service@mail.com

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072011000074

CN=self-signed, CN=system generated, CN=0162122009008149

CN=self-signed, CN=system generated, CN=0162122009000432

CN=self-signed, CN=system generated, CN=0162052010005821

CN=self-signed, CN=system generated, CN=0162072008005267

C=US, O=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication

CN=self-signed, CN=system generated, CN=0162082009008123

CN=self-signed, CN=system generated, CN=0162072008005385

CN=self-signed, CN=system generated, CN=0162082008000317

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072008005597

CN=self-signed, CN=system generated, CN=0162072010002630

CN=self-signed, CN=system generated, CN=0162032010008958

CN=109.235.129.114

CN=self-signed, CN=system generated, CN=0162072011004982

CN=217.92.30.85

CN=self-signed, CN=system generated, CN=0162112011000190

CN=self-signed, CN=system generated, CN=0162062008001934

CN=self-signed, CN=system generated, CN=0162112011004312

CN=self-signed, CN=system generated, CN=0162072011000946

C=US, ST=Oregon, L=Wilsonville, CN=141.213.19.107, O=Xerox Corporation, OU=Xerox Office Business Group,

CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)

CN=self-signed, CN=system generated, CN=0162102011001174

CN=self-signed, CN=system generated, CN=0168112011001015

CN=self-signed, CN=system generated, CN=0162012011000446

CN=self-signed, CN=system generated, CN=0162112011004041

CN=self-signed, CN=system generated, CN=0162112011000617

CN=self-signed, CN=system generated, CN=0162042011006791

CN=self-signed, CN=system generated, CN=0162072011005063

CN=self-signed, CN=system generated, CN=0162122008003402

CN=self-signed, CN=system generated, CN=0162072011005032

CN=self-signed, CN=system generated, CN=0162042011005343

CN=self-signed, CN=system generated, CN=0162012008002101

CN=self-signed, CN=system generated, CN=0162072008005492

CN=self-signed, CN=system generated, CN=0162092008000776

CN=self-signed, CN=system generated, CN=0162092008000852

CN=self-signed, CN=system generated, CN=0162112008000044



Attributing SSL and SSH vulnerabilities to implementations

Evidence strongly suggested widespread implementation problems.

Clue #1: Vast majority of weak keys generated by network
devices:

I Juniper network security devices

I Cisco routers

I IBM server management cards

I Intel server management cards

I Innominate industrial-grade firewalls

I . . .

Identified devices from > 50 manufacturers



Attributing SSL and SSH vulnerabilities to implementations

Evidence strongly suggested widespread implementation problems.

Clue #2: Very different behavior for different devices. Different
companies, implementations, underlying software, distributions of
prime factors.



Distribution of prime factors
IBM Remote Supervisor Adapter II and Bladecenter Management Module
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Hypothesis: Devices automatically
generate crypto keys on first boot.

I OS random number generator may
not have incorporated any entropy
when queried by software.

I Headless or embedded devices may
lack these entropy sources.
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Linux boot-time entropy hole

Experiment: Instrument Linux kernel to track entropy estimates.

Ubuntu Server 10.04
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Patched since July 2012.



Generating vulnerable RSA keys in software

I Insufficiently random seeds for pseudorandom number
generator =⇒ we should see repeated keys.

prng.seed()

p = prng.random_prime()

q = prng.random_prime()

N = p*q

I We do:
I > 60% of hosts share keys
I At least 0.3% due to bad randomness.

I Repeated keys may be a sign that implementation is
vulnerable to a targeted attack.

But why do we see factorable keys?



Generating factorable RSA keys in software

prng.seed()

p = prng.random_prime()

prng.add_randomness()

q = prng.random_prime()

N = p*q

OpenSSL adds time in seconds

Insufficient randomness can lead to factorable keys.

8F 2B C1 13 EA F1 AA

8F 2B C1 13 EA 92 41

device 1

device 2

time=0 time=1

← generating p → ← generating q →

Experimentally verified OpenSSL generates factorable keys in this
situation.



GCDing RSA keys is surprisingly fruitful...

2013 Factored 103 Taiwanese citizen smart card keys.
[Bernstein, Chang, Cheng, Chou, Heninger, Lange, van

Someren 2013]

2015 Factored 90 export-grade HTTPS keys.
[Albrecht, Papini, Paterson, Villanueva-Polanco 2015]

2017 Factored 3,337 Tor relay RSA keys.
[Kadianakis, Roberts, Roberts, Winter 2017]



Were RNG issues fixed since 2012? A follow-up study.
[Hastings, Fried, Heninger 2016]

I Did vendors fix their broken implementations?

I Can we observe patching behavior in end users?



Methodology for this study

What happens when we ask vendors
to fix a vulnerability?

1. Aggregated internet-wide TLS scans from 2010-2016

2. Computed batch GCD for 81.2 million RSA moduli

3. Identified vendors of vulnerable implementations

4. Examined results based on response to 2012 notification



Data sources: how to read the plots

I Scan sources along top of plot

I Scan dates on x-axis

I Absolute counts on y-axis

07/2010

12/2010

10/2011

06/2012

02/2014

07/2015

05/2016
0M

10M

20M

30M

40M

H
T

T
P

S
H

os
ts

CensysRapid7EcosystemP&QEFF



Six years of factoring keys
I 51 million distinct HTTPS RSA moduli : 0.43% vulnerable
I 65 million distinct HTTPS certificates : 2.2% vulnerable
I 1.5 billion HTTPS host records : 0.19% vulnerable
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Original notification

I Low response rates from vendors

I Took place March-June 2012

Vendor response to original notification

183115

Public Response

Private Response

Auto-responder

No response



Innominate
mGuard network security devices (Smart, PCI, Industrial RS, Blade, Delta, EAGLE)

I Public advisory in June 2012

I Consistent population of vulnerable devices since 2012

I New devices not vulnerable, but old devices not patched
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Juniper
SRX Series Service Gateways (SRX100, SRX110, SRX210, SRX220, SRX240, SRX550,
SRX650), LN1000 Mobile Secure Router

I Public security bulletin in April 2012, out-of-cycle security
notice in July 2012

I Majority of factored keys in 2012 were Juniper hosts

I Weird behavior in April 2014
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Juniper
SRX Series Service Gateways (SRX100, SRX110, SRX210, SRX220, SRX240, SRX550,
SRX650), LN1000 Mobile Secure Router

I 30,000 Juniper-fingerprinted hosts (9000 vulnerable) came
offline after Heartbleed

I IPs do not reappear in later scans: TLS disabled, scans
blocked, devices offline?
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Juniper
SRX Series Service Gateways (SRX100, SRX110, SRX210, SRX220, SRX240, SRX550,
SRX650), LN1000 Mobile Secure Router

Did Juniper users ever patch?

Vulnerable Not vulnerable
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IBM
Remote Supervisor Adapter II, BladeCenter Management Module

I Public security advisory (CVE-2012-2187) in September 2012

I Prime generation bug: 36 possible public keys from 9 primes

I 100% of fingerprintable moduli are vulnerable

07-2010

12-2010

10-2011

06-2012

02-2014

07-2015

05-2016
0

200

400

600

V
u

ln
er

ab
le

H
os

ts

CensysRapid7EcosystemP&QEFF

Heartbleed



Huawei

I Introduced vulnerability in 2014

I Security advisory published Aug 2016
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Non-RSA cryptographic RNG disasters

I DSA: 1% of SSH host private keys revealed from nonce
collisions. [HDWH 2012]

I ECDSA: Android Bitcoin wallet vulnerability;
dozens–hundreds of bitcoins stolen in 2013.

I AES-GCM: Fixed or colliding nonces. [Böck, Zauner, Devlin,
Somorovsky, Joanovic 2016]

I Dual-EC: Juniper ScreenOS malicious code insertion.
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