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True Random Number Generators

What is this talk about?

overview of entropy estimation, in the context of TRNGs

theoretical justification for some heuristics / explanation for subtle issues
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True Random Number Generators Design

True Random Number Generators

source

digitalization

pre-processor postprocessor
(conditioner)

output

(a) physical source generates noise (somewhat unpredictable)

(b) noise converted to digital form (may introduce extra bias)

(c) (little) preprocessing decreases bias (e.g. ignoring less variable bits)

(d) postprocessing eliminates bias and dependencies (e.g. extractor)

(e) output should be uniform
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True Random Number Generators Design

New paradigm: real-time monitoring

source

digitalization

pre-processor postprocessor
(condtitioner)

output

failure tests health tests
entropy estimation output tests

standards [KS11,TBKM16]: monitor the source and digitalized raw numbers

sometimes one implements also online output tests [VRV12].

Real-time testing necessary

Need to evaluate the whole construction, no black-box outputs tests!

(a) biased functions may pass outputs tests

(b) sources may be bit different outside of lab (environmental influences)
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True Random Number Generators Design

Theoretical framework

weak source:
entropy + assumptions to learn it from samples

preprocessor: condenser

postprocessor: extractor
optionally: + hashing (extra masking)

output: indistinguishable from random

weak source + online entropy estimation + calibrating postprocessor ≈ TRNG
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True Random Number Generators Design

Evaluating security - criteria

Standards for Random Number Generators

Two popular and well documented (examples+justifications) recommendations

AIS 31 - German Federal Office for Information Security (BSI)

SP 800-90B - U.S. National Institute for Standards and Technology (NIST)

Randomness tests

Most popular: NIST, DieHard, DieHarder, TestU01
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True Random Number Generators Sources

Examples of sources

Many proposals. Below examples with public (web) interfaces

Radioactive decay [Wal] (https://www.fourmilab.ch/hotbits/)

Atmospheric noise [Haa] (http://www.random.org/)

Quantum vacuum fluctuations [SQCG] (http://qrng.anu.edu.au)
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True Random Number Generators Sources

Necessary properties of sources

X = X1, X2, Xm

raw bits

f(X)

post-processing

b1b2 . . . bn

random bits

indistinguishability
≈

Theorem (Min-entropy in sources necessary [RW04])

If X ∈ {0, 1}m is such that f(X) ≈ Un then X ≈ Y s.t. H∞(Y ) > n where

H∞(X) = min
x

log 1
PX(x)

is the min-entropy of the source (also when conditioned on the randomness of f ).

Can we use Shannon entropy?

many papers estimate Shannon entropy in the context of TRNGs (easier)

best available tests utilize Shannon entropy (compression techniques)

standards put more emphasize on min-entropy only recently
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True Random Number Generators Sources

Shannon entropy is bad in one-shot regimes...

Shannon entropy is a bad estimate even for (less restrictive) collision entropy
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Figure: Worst bounds on collision entropy when Shannon entropy is fixed (256 bits).

Example

Even with H(X) = 255.999 we could have only H2(X) = 35.7.
Construction: a heavy unit mass mixed with the uniform distribution.
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True Random Number Generators Sources

... but ok for repeated experiments!

Asymptotic Equiparition Property

If the source produces X1, X2, X3 . . . then for x← X1, . . . , Xn we have

1
n

log 1
PXn (x) = 1

n
H(Xn) + o(1) w.p. 1− o(1)

Under reasonable restrictions on the source (e.g. iid or stationarity and ergodicity).

Essentially: almost all sequences are roughly equally likely.

Shannon is asymptotically good

We conclude that for n→∞
1
n
H∞(X1, . . . , Xn|E) ≈ 1

n
H(X1, . . . , Xn|E), Pr[E] = 1− o(1)

this demonstrates the entropy smoothing technique [RW04,HR11,STTV07,Kog13].
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True Random Number Generators Sources

How big is the error?

can quantify the convergence in the AEP (Holenstein, Renner [HR11]...
... much better when entropy per bit is high - relevant to TRNGs [Sko17]
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Figure: (smooth) min-entropy per bit, independent 8-bit samples with Shannon rate 0.997 per bit
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True Random Number Generators Sources

Sources - conclusion

Shannon approximation

min-entropy necessary for post-processing, but hard to estimate

we have simple Shannon entropy estimators (compression techniques [Mau92])

under (practically reasonable) restrictions on the source, one can approximate by
Shannon entropy; the justification is by entropy smoothing+AEP

convergence even better in high-entropy regimes (relevant to TRNGs)

What about Renyi entropy?

One can also use collision entropy (between min-entropy and Shannon entropy),
which is faster to estimate [AOST15] (at least for iid sources).
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True Random Number Generators Postprocessing

Instantiating Postprocessors

X

high min-entropy

Ext(X)

post-processing

≈ε Un
indistinguishable from random

Here ≈ε means ε-closeness in total variation (statistical distance).

Implementing postprocessors

Randomness extractors, like Teoplitz Matrices or the Trevisan extractor
(implemented in quantum TRNGs [MXXTQ+13]).

CBC-MAC (inside Intel’s IvyBridge; TRNG is part of hybrid design!)

other cryptographic functions (e.g. early Intel RNGs used SHA-1)
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True Random Number Generators Postprocessing

Postprocessors - Drawbacks

Disadvantages of post-processing

entropy waste (input > output, necessary!)
(a) best extractors: 2 log(1/ε) bits
(b) other: half of input entropy as the practical rule of thumb [TBKM16,HKM12])

slowdown
(a) Quantis: the bit rate goes down from about 4Mbps to approximately 75Kbps [Qua].
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True Random Number Generators Postprocessing

Security with insufficient entropy?

What if entropy estimates fail?

Key derivation - security under weak keys

some cryptographic applications remain (somewhat) secure when fed with
insufficient entropy [BDKPP+11,DY13,DPW14].

entropy defficiency may be ”obscured” by the hash function and not easy to
exploit in practice [TBKM16]
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Security evaluation Methodology

What to evaluate

source

digitalization

pre-processor postprocessor
(condtitioner)

output

failure tests health tests
entropy estimation output tests

test feature cathegory
source breakdown zero-entropy alarm health-test

source failure low-entropy alarm health-test
source rate entropy level entropy estimation

output uniformity bias-alarm randomness tests
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Security evaluation Methodology

How to evaluate security from samples?

Hypothesis testing

We use the statistical framework

null Hyp0: ”generator is good”

alternative Hypa: ”generator is bad”

Can never confirm Hyp0!

Absence of evidence is no evidence of absence

Can commit two errors

α = Pr[reject Hyp0|Hyp0] reject good generator = Type I Error

β = Pr[accept Hyp0|Hypa] accept bad generator = Type II Error

Note: often Type I is of interest (validating theories in empirical sciences)

Our priority: minimize Type II (first), keep Type I reasonably small (second).
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Security evaluation Statistical tests - caveats

Error testing - methodological issues (I)

type II errors ignored in standards and implementations?

Documents and packages refer to type I instead! Is the methodology correct?

type II errors for testing randomness are hard

Consider deciding the output uniformity

type I errors can be computed precisely
(”good” = uniform output, can give concrete bounds!)

type II errors are hard
( need state what ”bad” means; how to quantfify all ”bad” possibilities?)
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Security evaluation Statistical tests - caveats

Error testing - methodological issues (II)

Practical solution to Type II error testing

Since alternative is ”amporphic”:
1 develop tests for Type I error, but keep α not too small (e.g. α ∈ (0.01, 0.001))!
2 cover a range of assumptions by different tests

Rationale:

too small α makes β big

different tests cover different ”pathologies”

for some tests β is provably small under mild assumptions [Ruk11]

This approach used in standards and software packages.

Test batteries

Statistics of the observed data should be close to the ideal behavior

∀T ∈ Battery Pr[T (obs)� T (ideal))] ≈ 0
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Security evaluation Statistical tests - caveats

Multiple testing issues

The rejection power of a battery is bigger than a power of individual tests.

Pr[battery rejects] . #tests · Pr[single test rejects] union bound

Pr[battery rejects] . (Pr[single test rejects])#tests positive dependency

BSI standard - addressed

output uniformity(α = 10−3) = 1258× basic tests(α = 10−6)

NIST standard - not addressed; criticized [DB16,MS15]

not addressed in many batteries for randomness testing

multiple hypothesis not properly addressed?

in output testing NIST rejects more =⇒ type II error smaller !

consult the statistical literature when tailoring tests

see [Ruk11] for more about the NIST methodology
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Security evaluation Hardware implementations - caveats

Real-time tests on hardware

Why testing on hardware? Isolation from software!

security countermeasure (against software attacks)

efficiency (want real-time solution)

Can embed on-the-fly tests into small pieces of hardware?

only relatively simple tests can be implemented (minimizing chip area)

need to optimize variables (e.g. less storage for bounded quantities)

need to precompute ”heavy” functions (e.g. gaussian tails in CLT)

implemented estimators may influence the source!

Some implementations have been done for FPGAs [SSR09].
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Security evaluation Entropy Estimators

Entropy estimation: overview

sample

test IID

simple estimator
frequencies counting

complicated estimators

Markov model

compression tests

collision estimates

...

run all and take the worst!

yes no
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Security evaluation Entropy Estimators

Entropy estimation: IID

Some physical sources can be modeled as IID (memoryless) [BL05]

simplest: counting frequencies [KS11,TBKM16]

possible low-memory implementations (online estimators [LPR11])

further improvements possible, by comnbining concepts from streaming
algorithms (frequency moments estimates) [AOST15] and entropy smoothing
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Security evaluation Entropy Estimators

Entropy estimation: testing IID

Testing the iid assumption roughly consists of the following steps
1 seek for bias
2 seek for long-term correlations
3 seek for short-term dependencies (stationarity)

Maciej Skórski (IST Austria) Evaluating Entropy for True Random Number Generators WR0NG 2017, 30th April, Paris 34 / 49



Security evaluation Entropy Estimators

Entropy estimation: non-IID - Markov model

assume bits with k-th order dependencies (alphabet size = 2k)

estimate the initial distribution pi (counting frequencies)

estimate transition probabilities of the form

pi,j
def= Pr[Xn = i|Xn−1 = j] =?

(counting occurrences of pairs j, i)

address multiple testing α′ = 1− (1− α)k
2

(transition probabilities)

address sampling errors

pi,j := min(1, pi,j + δi,j)

δi,j depends on occurrences of j, i, the sample size, the significance

calculate entropy per sample using (pi))i and (pi,j))i,j
Shannon Entropy in small chain H = −

∑
i
pi
∑

j
pi,j log pi,j

Renyi Entropy in small chain - transition matrix + dynamic programming [TBKM16]
Renyi Entropy in limit - eigenvalues of transition matrix powers [RAC99]
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Security evaluation Entropy Estimators

Entropy estimation under Markov model (II)

Estimation problems [TBKM16]

can only capture small alphabets; for k = 16 bits, the matrix has 232 entries to
estimate! extensive lab tests use k = 12 [HKM12]

give close bounds only for large probabilities (e.g. pi,j > 0.1); estimates for
small probabilities are crude (sampling issue: cannot easily hit a tiny set)

Practcal solution

Mitigate the sample size issues by preprocessing (e.g. ignorng less variable
bits [TBKM16]).
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Security evaluation Health tests

Health tests

Required features of health tests

We expect the tests to be [KS11,TBKM16]

efficient

report failures quickly

avoid false-alaram rates (the hypothesis: entropy decrease)

cover major failures

source gets stuck - many repetitions locally [TBKM16]

big entropy decrease - too high frequencies of a block [TBKM16]

frequencies of 4-bit words [KS11], genaralized [Sch01]
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Security evaluation Health tests

Low entropy detection

How to speed up health tests?

Frequency counting works under iid (otherwise 0101010101... passes the test). In
this setting one can improve low-entropy detection by using Renyi entropy!

Estimators taylored to low-entropy regimes

Consider iid samples with at most k bit of collision entropy. Then estimating collision
entropy per sample up to constant accuracy at the error probability ε needs

N = O
(
2k/2ε−2)

samples [OS17]. This quantfies type II error under iid!
The result utilizes ideas developed in streaming algorithms.
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Security evaluation Health tests

Healt tests - summary

online health tests: a new paradigm

in practice: only simple tests requiring not too many samples

not much literature on it
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Conclusion

Conclusion

Shannon entropy, under reasonable assumptions, may be used to approximate
min-entropy; the higher entropy rate, the smaller error;

in statistical tests, is almost impossible to quantify errors of type II (wrong TRNG);
instead one develops many tests to cover a variety of ”bad” behaviors

for health tests, one can take advantage of faster estimators for Renyi entropy

Research directions?

implementing (provable secure) hardware-specific health tests and entropy
evaluation

theoretical analysis of health tests?

more sophisticated approaches than well-known statistics (chi-squared,
central limit theorem)?

Note: For a survery about security of TRNGs see also [Fis12].
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Thank you for your attention!

Questions?
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