

### Leakage Assessment Methodology

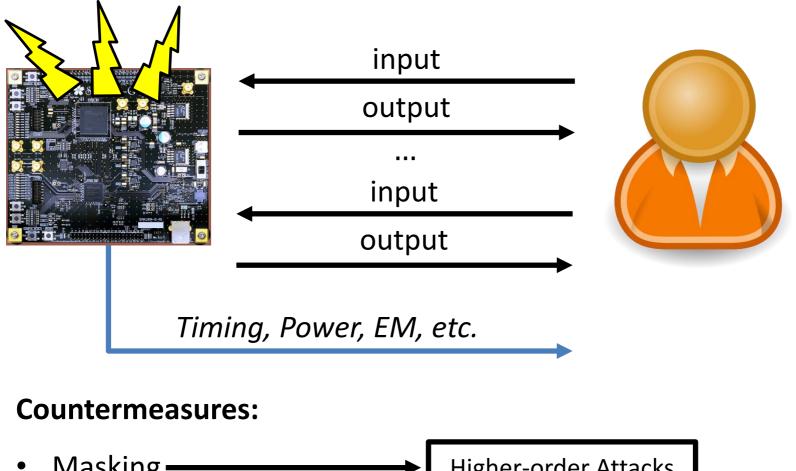
- a clear roadmap for side-channel evaluations -

**Tobias Schneider** and Amir Moradi



Friday, September 11<sup>th</sup>, 2015

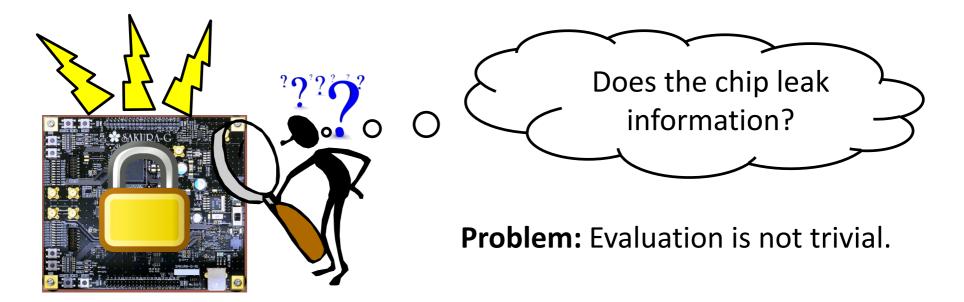
### **Motivation** Physical Attacks & Countermeasures



Masking Higher-order Attacks
Hiding Univariate Multivariate

Leakage Assessment Methodology | WISE 2015 | Tobias Schneider

### **Motivation Security Evaluation**

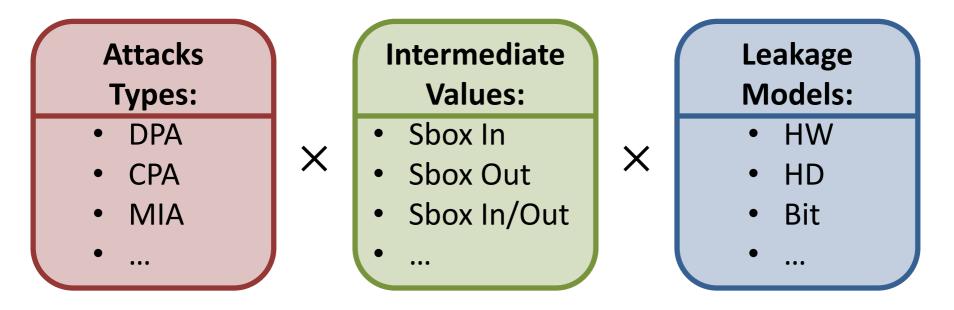




**Goal:** Establish testing methodology capable of robustly assessing the physical vulnerability of cryptographic devices.

## **Motivation Attack-based Testing**

Perform state-of-the-art attacks on the device under test (DUT)

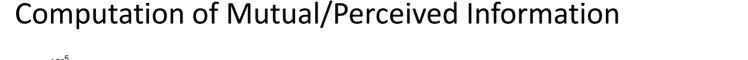


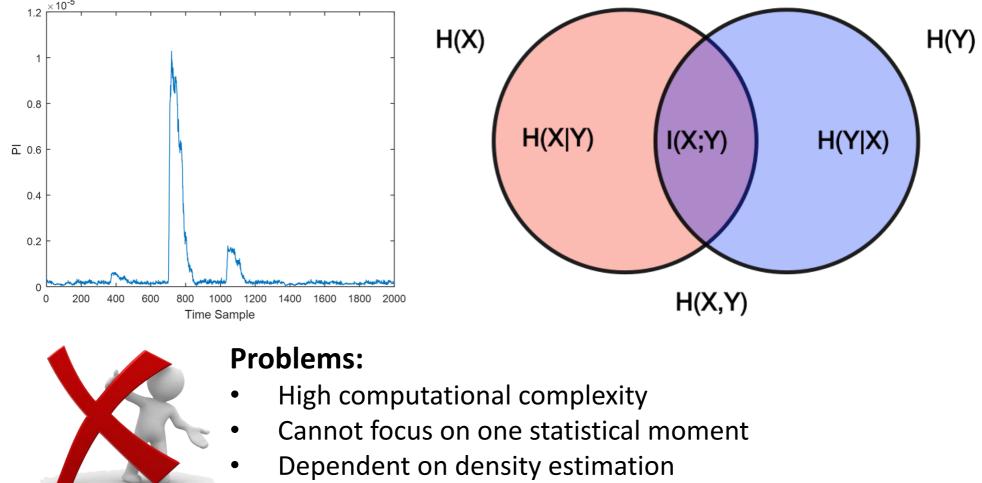


#### **Problems:**

- High computational complexity
- Requires lot of expertise
- Does not cover all possible attack vectors

# **Motivation** Information-theoretic Testing





• Does not cover all possible attack vectors

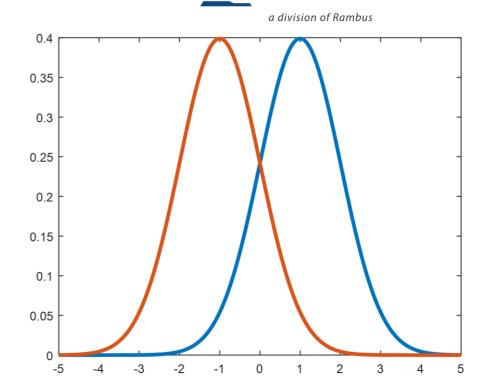
## **Motivation Testing based on t-Test**

Tries to detect any type of leakage at a certain order

• Proposed by CRI at NIST workshop

### **Advantages:**

- Independent of architecture
- Independent of attack model
- Fast & simple
- Versatile





#### **Problems:**

- No information about hardness of attack
- Possible false positives if no care about evaluation setup

## Outline

**1. Statistical Background** 

4. Efficient Computation

2. Testing Methodology

5. Conclusion

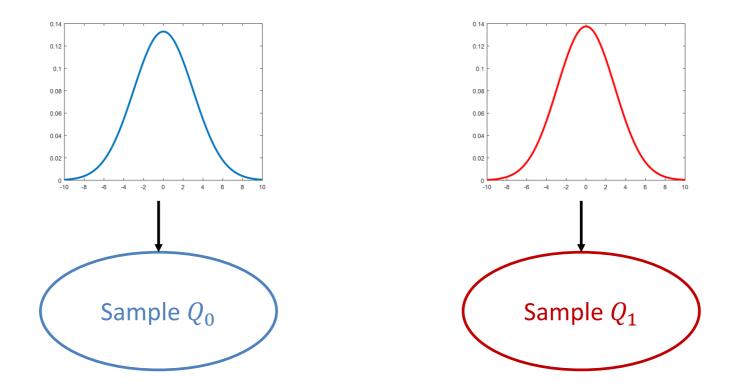
3. Correct Measurement

### **Statistical Background**

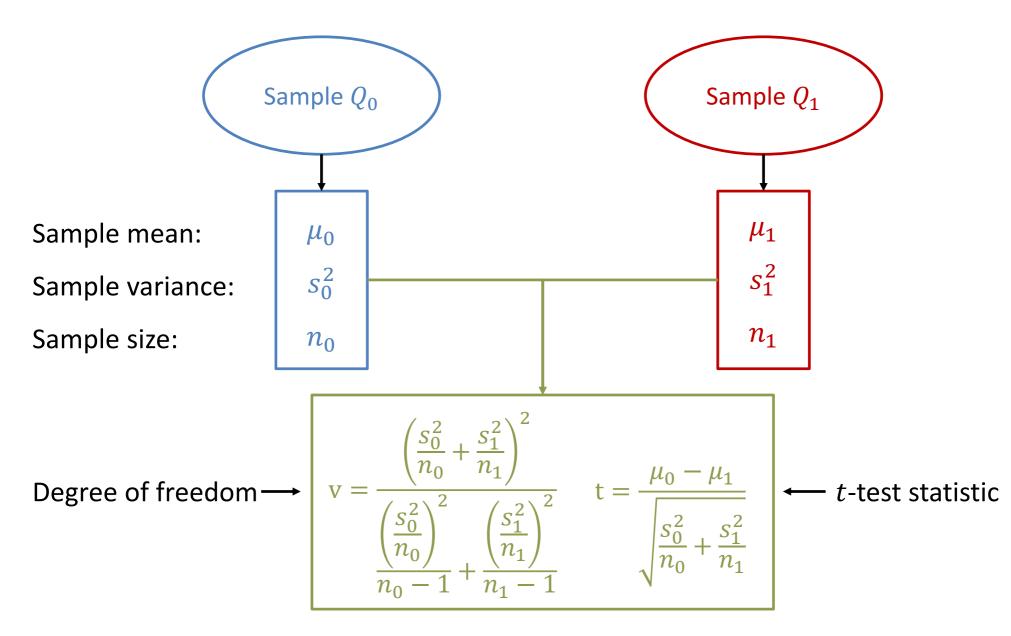
• *t*-Test

Leakage Assessment Methodology | WISE 2015 | Tobias Schneider

RUHR-UNIVERSITÄT BOCHUM

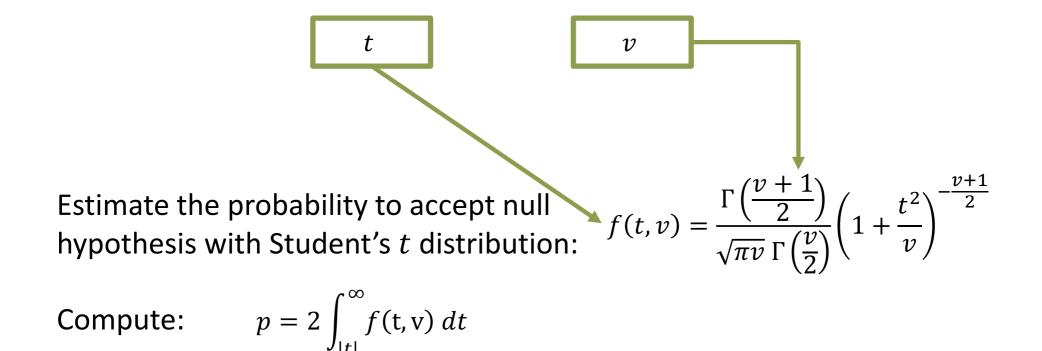


Null Hypothesis: Two population means are equal.



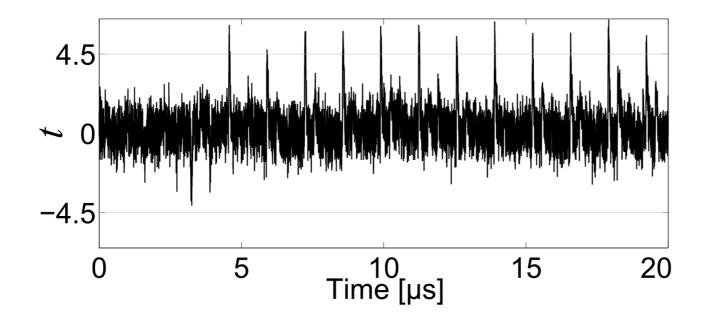
Leakage Assessment Methodology | WISE 2015 | Tobias Schneider

RUHR-UNIVERSITÄT BOCHUM



Small p values give evidence to reject the null hypothesis

- For testing usually only the *t*-value is estimated
- Compared to a threshold of |t| > 4.5
  - p = 2F(-4.5, v > 1000) < 0.00001
  - Confidence of > 0.99999 to reject the null hypothesis



# **Testing Methodology**

- Specific *t*-Test
- Non-Specific *t*-Test
- Higher Orders

# **Testing Methodology Specific** *t***-Test**

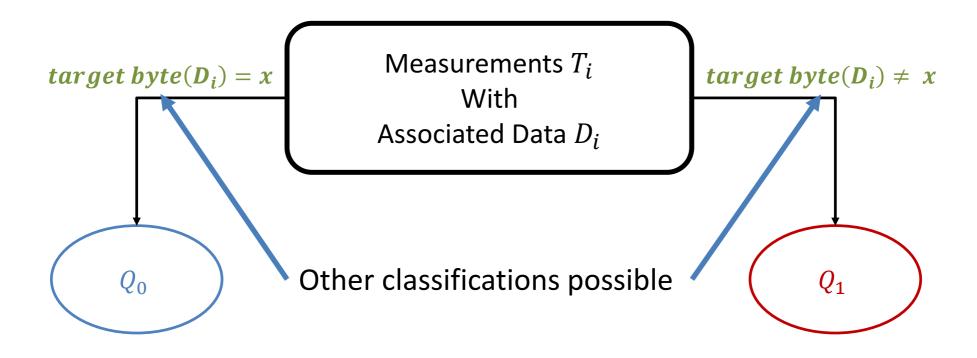


#### Specific *t*-Test:

- Key is known to enable correct partitioning
- Test is conducted at each sample point separately (univariate)
- If corresponding *t*-test exceeds threshold  $\Rightarrow$  DPA probable

RUHR-UNIVERSITÄT BOCHUM

# **Testing Methodology Specific** *t***-Test**



### Specific *t*-Test:

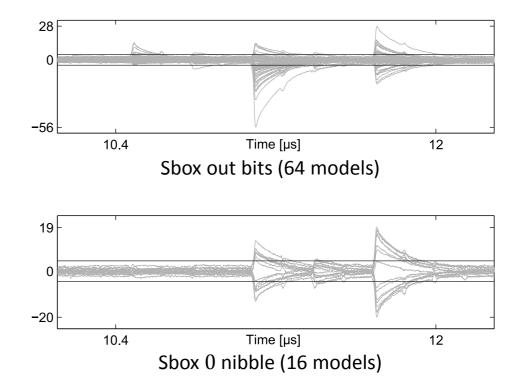
- Key is known to enable correct partitioning
- Test is conducted at each sample point separately (univariate)
- If corresponding *t*-test exceeds threshold  $\Rightarrow$  DPA probable

RUHR-UNIVERSITÄT BOCHUM

# Testing Methodology Specific t-Test

### Example: PRESENT (last round)

- addRoundKey, sBoxLayer, pLayer
- Bitwise: 3 × 64 tests
- Nibblewise: 3 × 16 × 16 tests
- Other tests possible



### **Problems:**

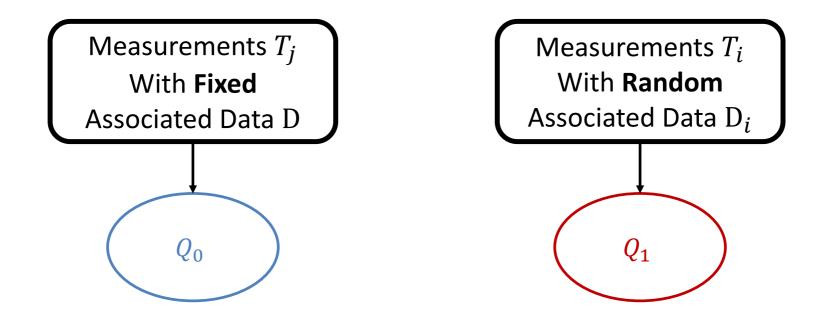


- Same as attack-based approach
- Many different intermediate values
- Many different models

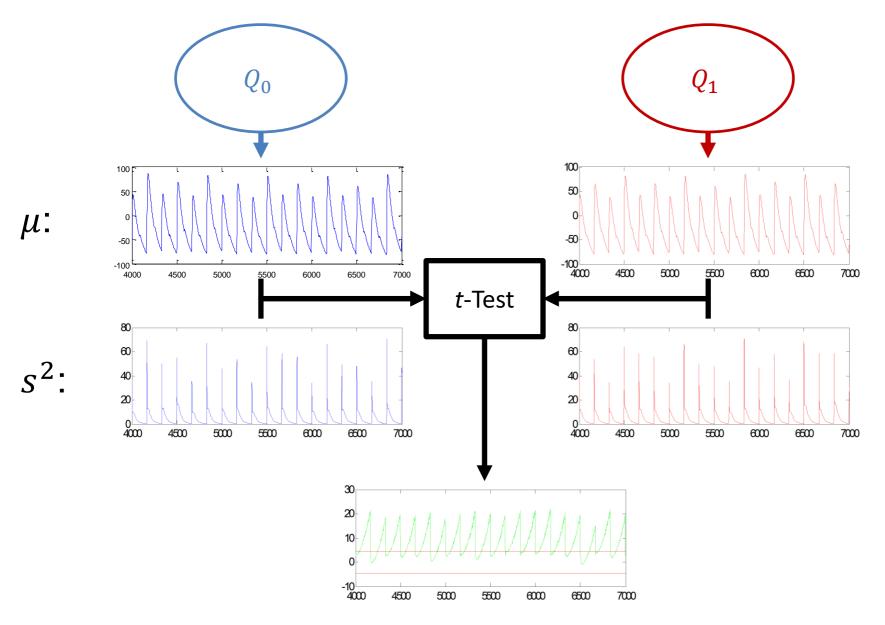
# **Testing Methodology Non-Specific t-Test**

### Non-Specific *t*-Test:

- *fixed vs. random t-*test
- Avoids being dependent on any intermediate value/model
- Detected leakage of single test is not always exploitable



### **Testing Methodology Non-Specific** *t***-Test**



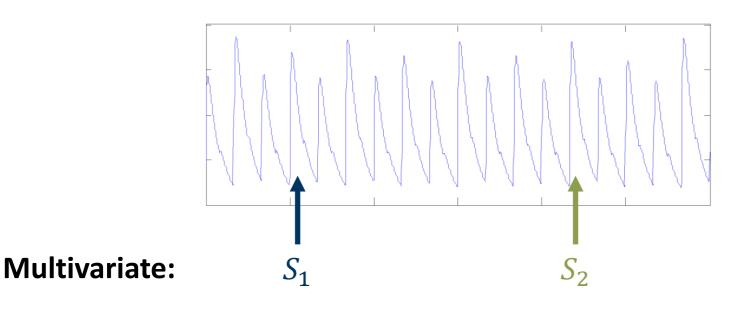
# **Testing Methodology Non-Specific** *t***-Test**

- Non-specific t-test reports a detectable leakage
  - ⇒ Specific t-test reports leakage with higher confidence
- Other direction (⇐) cannot be concluded from a single non-specific *t*-test
- Recommended to perform a number of non-specific tests with different fixed data

#### Semi-fixed vs. random test:

- Use a set of particular associated data instead of only one
- All lead to certain intermediate value
- Eliminates some of the drawbacks of fixed vs. random

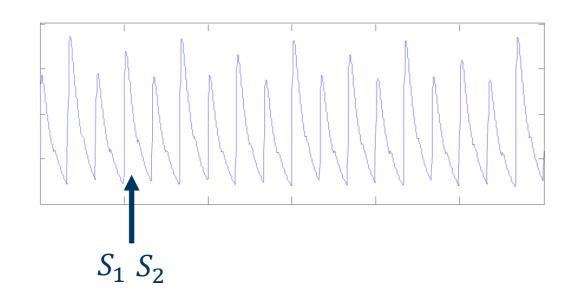
# **Testing Methodology Higher Orders**



- Sensitive variable is shared:  $S = S_1 \circ S_2$
- Shares are processed at different time instances (SW)
- Leakages at different time instances need to be combined first

Centered Product: 
$$x' = (x_1 - \mu_1) \cdot (x_2 - \mu_2)$$

# **Testing Methodology Higher Orders**



Shares are processed in parallel (HW)

**Univariate:** 

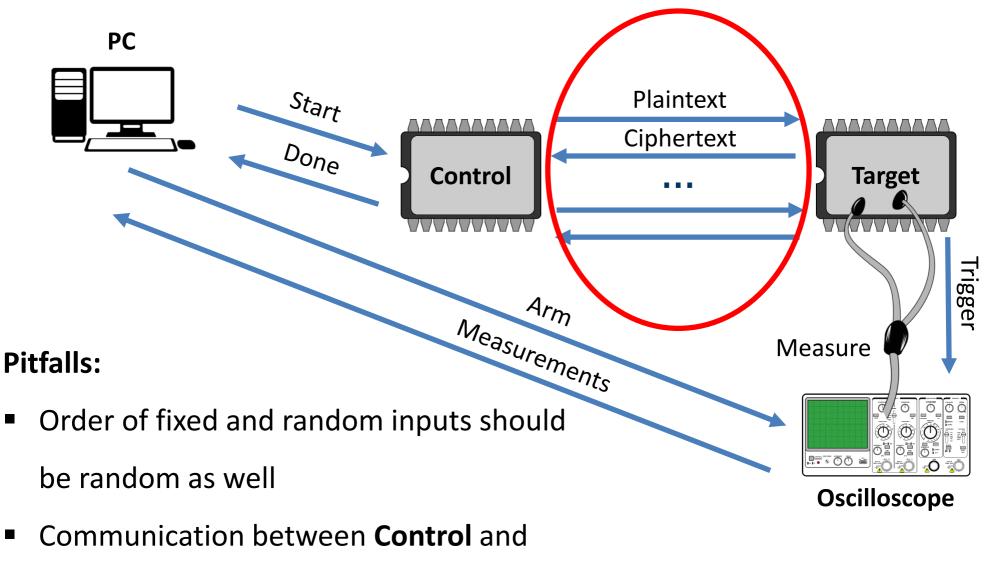
Leakages at the same time instance need to be combined first

Variance: 
$$x' = (x - \mu)^2$$
  
In some cases:  $x' = \left(\frac{x - \mu}{s}\right)^d$   
In general:  $x' = (x - \mu)^d$ 

# **Correct Measurement**

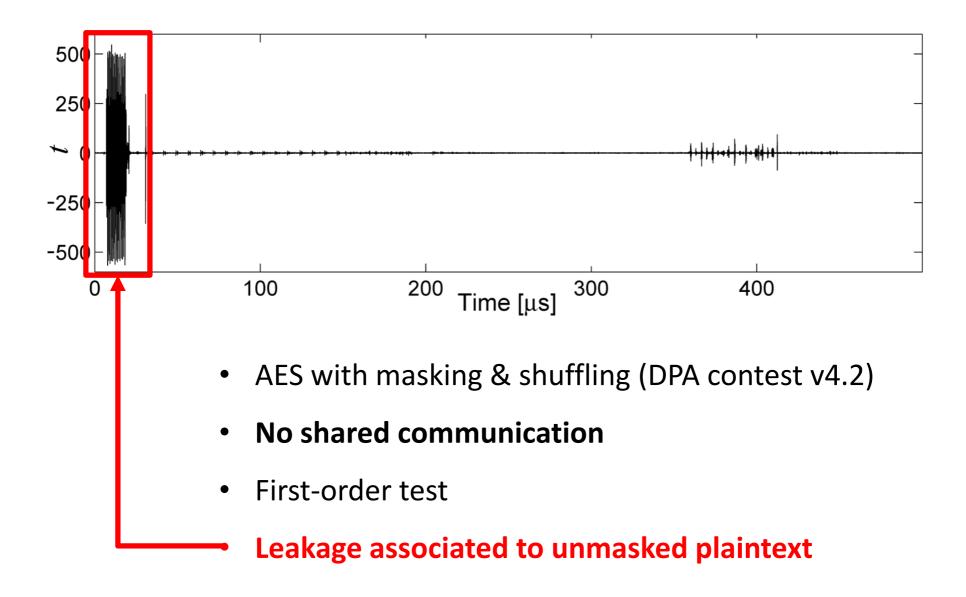
- Setup
- Case Study: Microcontroller
- Case Study: FPGA
- Recommendations

### **Correct Measurement Setup**

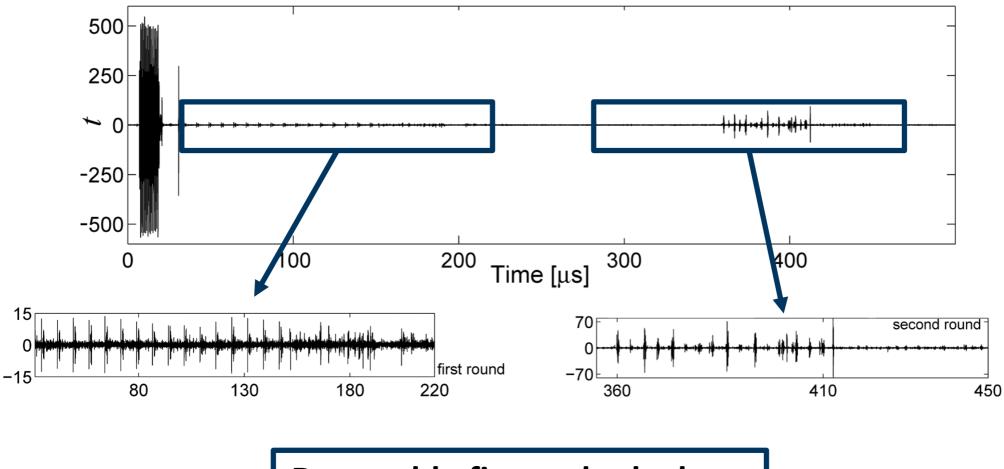


Target should be masked (if possible)

### **Correct Measurement CS: Microcontroller**

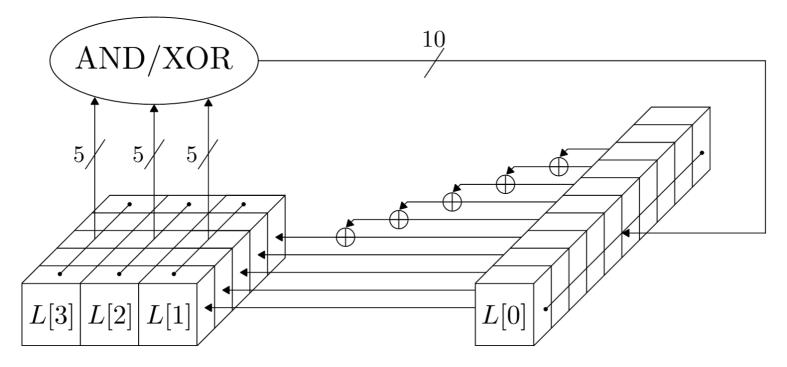


### **Correct Measurement CS: Microcontroller**



### Detectable first order leakage

### **Correct Measurement CS: FPGA**

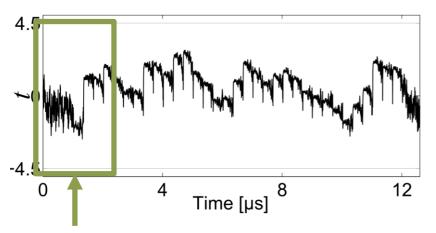


- NLFSR [1]
- 2<sup>nd</sup> –order threshold implementation
- Test at different orders

[1] A note on the security of Higher-Order Threshold Implementations Oscar Reparaz, ePrint Report 2015/001

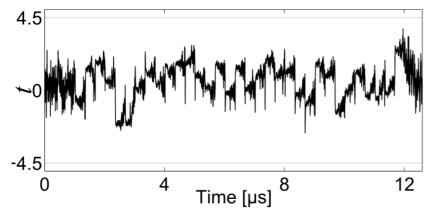
Leakage Assessment Methodology | WISE 2015 | Tobias Schneider

### **Correct Measurement CS: FPGA**



### First Order

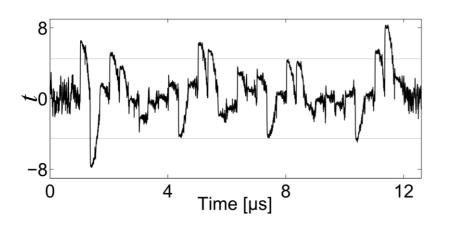
### No plaintext leakage



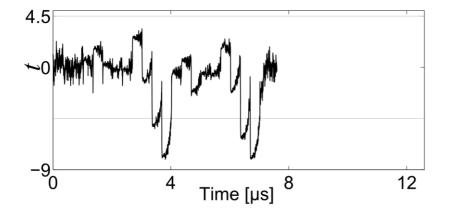
### **Second Order**

### No detectable leakage in first two orders (univariate)

### **Correct Measurement CS: FPGA**



### **Fifth Order**



### Second Order (bivariate)

### Might be vulnerable to bivariate second order attack

### **Correct Measurement Recommendations**

#### Fixed vs. random:

- DUT with *masking* countermeasure
- With masked communication

#### Semi-fixed vs. random:

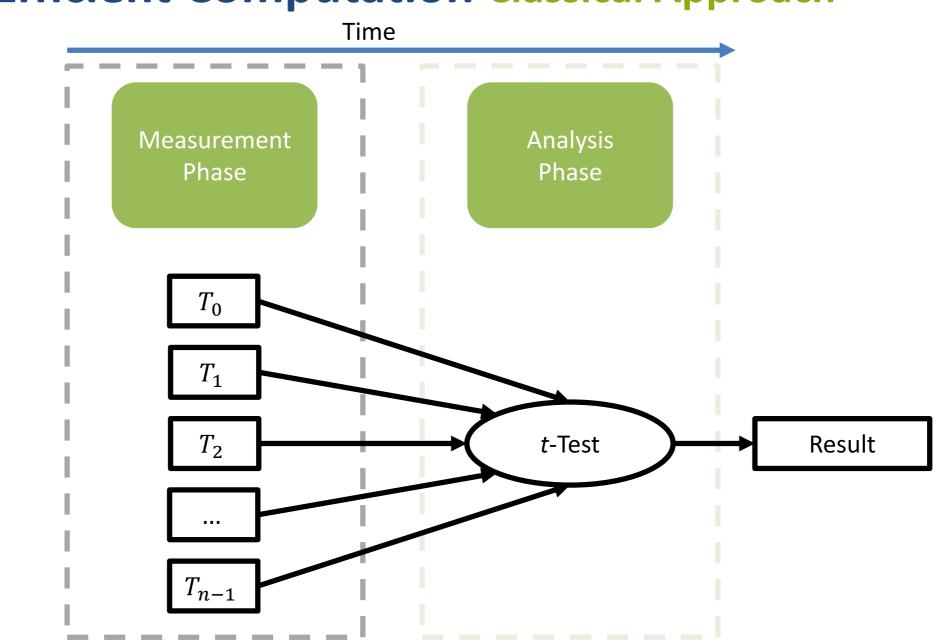
- DUT with *hiding* countermeasure
- Without masked communication

#### **Specific t-test:**

- DUT with *no* countermeasures
- Failed in former non-specific tests
- Identify suitable intermediate values for key recovery

# **Efficient Computation**

- Classical Approach
- Incremental
- Multivariate
- Parallelization

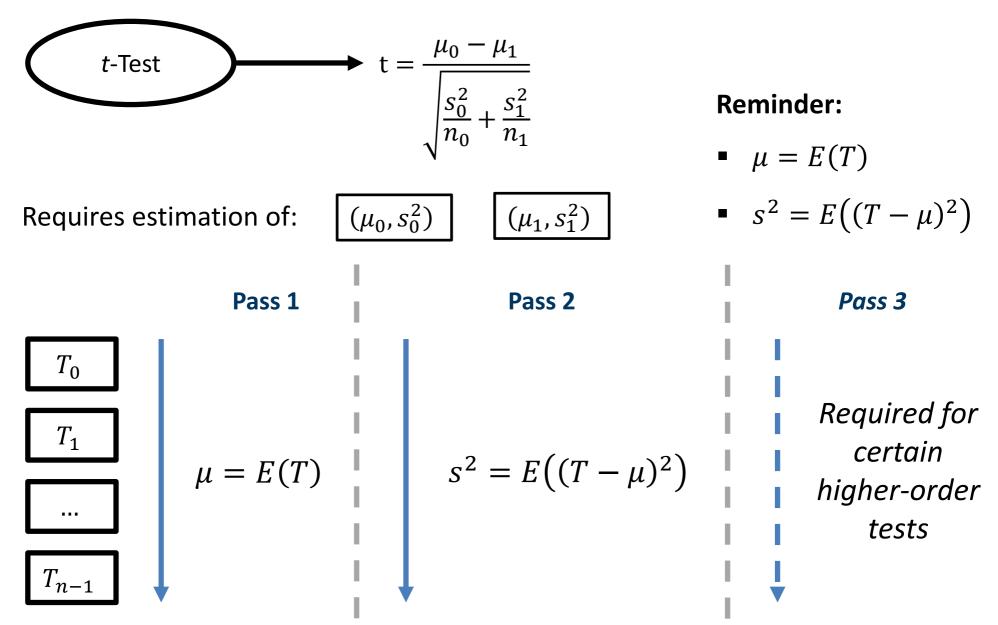


### **Efficient Computation Classical Approach**

Leakage Assessment Methodology | WISE 2015 | Tobias Schneider

RUHR-UNIVERSITÄT BOCHUM

# **Efficient Computation Classical Approach**



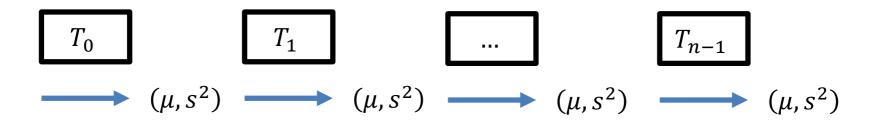
# **Efficient Computation Classical Approach**

### Problems:

- 1) Measurement phase need to be completed
- 2) All measurements need to be stored
- 3) Traces need to be loaded multiple times

### Solution: Incremental Computation

Idea: Update intermediate values for each new trace



Higher-order tests require the computation of additional values

### Advantages:

- 1) Can be run in parallel to measurement phase
- 2) Does not require that all measurements are stored
- 3) Loads each trace only once

**Problem:** Computation of intermediate values

Approach 1: Use raw moments

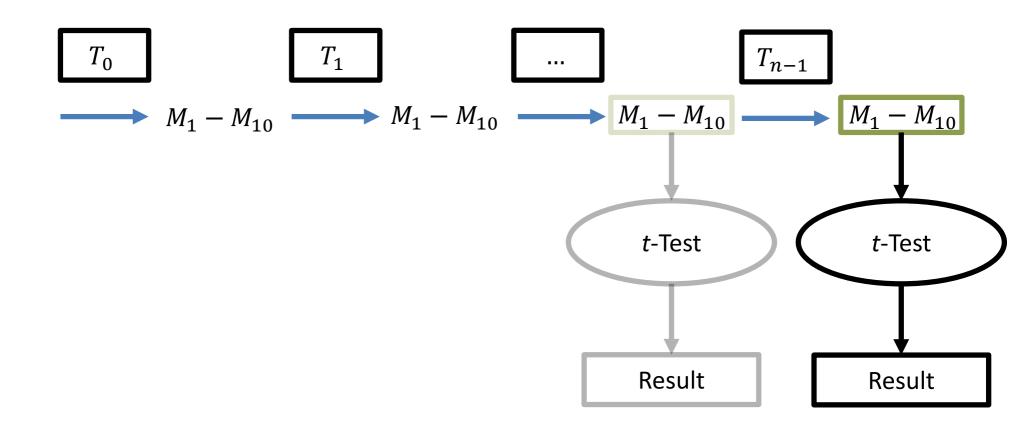
d<sup>th</sup>-order raw moment: 
$$M_d = E(T^d)$$

Given: 
$$M_1$$
  $M_2$ 

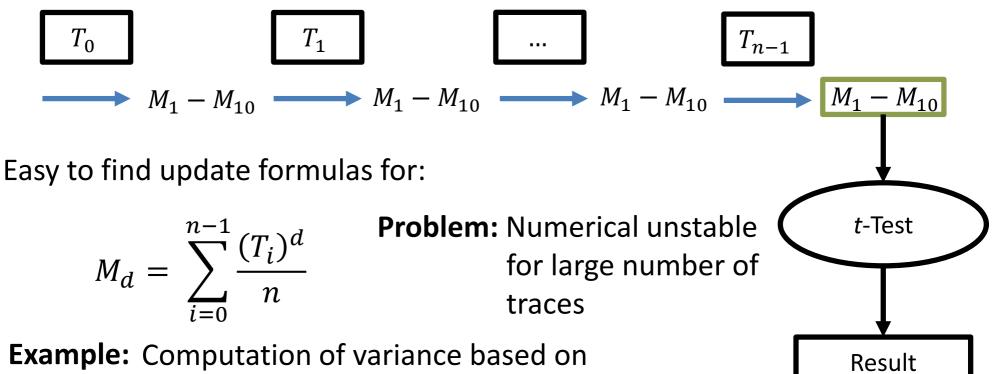
Compute: 
$$\mu = M_1$$
  $s^2 = M_2 - (M_1)^2$ 

Higher-order test require additional moments

**Example:** Univariate  $1^{\text{st}}-5^{\text{th}}$  order tests require  $M_1 - M_{10}$ 



RUHR-UNIVERSITÄT BOCHUM



simulations (100M traces ) with  $\mathcal{N}(100,\!25)$ 

| Method | Order 1  | Order 2                  | Order 3  | Order 4     | Order 5        |  |
|--------|----------|--------------------------|----------|-------------|----------------|--|
| 3-Pass | 25.08399 | 1258.18874               | 15.00039 | 96.08342    | 947.25523      |  |
| Raw    | 25.08399 | 1258.1 <mark>4132</mark> | 14.49282 | -1160.83799 | -1939218.83401 |  |

Approach 2: Use *central* moments (and  $M_1$ )

dth-order central moment:  $CM_d = E\left((T-\mu)^d\right)$ Given: $M_1$  $CM_2$ Compute:  $\mu = M_1$  $s^2 = CM_2$ 

Higher-order test require additional central moments

$$\mu_{d} = \frac{CM_{d}}{\sqrt{CM_{2}}^{d}} \qquad (s_{d})^{2} = \frac{CM_{2d} - CM_{d}^{2}}{CM_{2}^{d}}$$

0

Not that easy to find update formulas for:

$$CM_d = \sum_{i=0}^{n-1} \frac{(T_i - \mu)^d}{n}$$

**Idea:** Use incremental formulas for central sums from [2]

Central sum: 
$$CS_d = \sum_i (T_i - \mu)^d$$
 with  $CM_d = \frac{CS_d}{n}$ 

For set  $Q' = Q \cup \{t\}$  with  $\Delta = t - M_{1,Q}$ :

$$CS_{d,Q'} = CS_{d,Q} + \sum_{k=1}^{d-2} {\binom{d}{k}} CS_{d-k,Q} \left(\frac{-\Delta}{n}\right)^k + \left(\frac{n-1}{n}\Delta\right)^d \left[1 - \left(\frac{-1}{n-1}\right)^{d-1}\right]$$

[2] Formulas for Robust, One-Pass Parallel Computation of Covariances and Arbitrary-Order Statistical Moments Philippe Pébay, Sandia Report SAND2008-6212

Leakage Assessment Methodology | WISE 2015 | Tobias Schneider

#### RUHR-UNIVERSITÄT BOCHUM

A *t*-test of order *d* requires to estimate the central moments up to order 2*d*.

#### **Comparison to the raw moments approach:**

- Slightly higher computational effort
- Less numerical problems, higher accuracy

| Method | Order 1  | Order 2                  | Order 3  | Order 4     | Order 5        |  |
|--------|----------|--------------------------|----------|-------------|----------------|--|
| 3-Pass | 25.08399 | 1258.18874               | 15.00039 | 96.08342    | 947.25523      |  |
| Raw    | 25.08399 | 1258.1 <mark>4132</mark> | 14.49282 | -1160.83799 | -1939218.83401 |  |
| Our    | 25.08399 | 1258.18874               | 15.00039 | 96.08342    | 947.25523      |  |

# **Efficient Computation Multivariate**

If combination function does not use the mean, computation of

the parameters is trivial (e.g., sum or product)

$$T_i = A_i \cdot B_i \qquad \qquad T_i = A_i + B_i$$

Problematic for optimum combination function (centered product)

$$T_i = (A_i - \mu_A) \cdot (B_i - \mu_B)$$

Incremental formulas need to be adjusted

# **Efficient Computation Parallelization**

| Trace <i>n</i>   | <i>t</i> <sub><i>n</i>,0</sub> |   | t <sub>n,1</sub> | <i>t</i> <sub><i>n</i>,2</sub> | <i>t</i> <sub><i>n</i>,3</sub> | <i>t</i> <sub><i>n</i>,4</sub> |  |
|------------------|--------------------------------|---|------------------|--------------------------------|--------------------------------|--------------------------------|--|
| Trace <i>n+1</i> | <i>t</i> <sub>n+1,0</sub>      | 1 | $t_{n+1,1}$      | t <sub>n+1,2</sub>             | t <sub>n+1,3</sub>             | $t_{n+1,4}$                    |  |
|                  | Thread<br>0                    |   | Thread<br>1      | Thread<br>2                    | Thread<br>3                    | Thread<br>4                    |  |

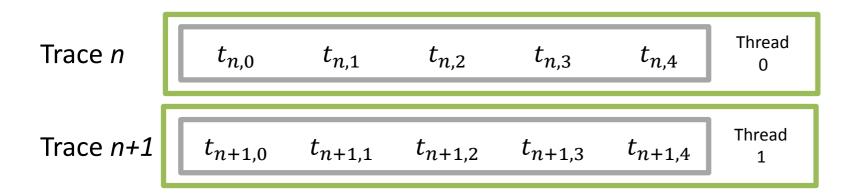
Computations on separate points completely independent (univariate)

#### Time Comparison (8 Threads):

- 10M traces
- 22500 sample points
- 1<sup>st</sup>-5<sup>th</sup> order

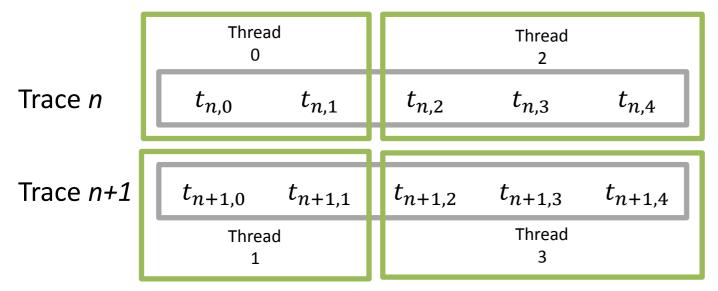
| Method | Time   | Memory     |
|--------|--------|------------|
| 3-Pass | 10.7 h | 108.280 KB |
| Raw    | 5.6 h  | 108.452 KB |
| Our    | 5.9 h  | 108.592 KB |

# **Efficient Computation Parallelization**



- Useful if measurement phase already completed
- Need adjusted formulas for the central sums

# **Efficient Computation Parallelization**



Possible to combine both approaches for maximum performance

### Example:

- 1<sup>st</sup>-5<sup>th</sup> order *t*-test
- 100,000,000 traces (each with 3,000 sample points)
- 9h on 2 x Intel Xeon X5670 CPUs @ 2.93 GHz (24 hyper-threading cores)

### Conclusion

Leakage Assessment Methodology | WISE 2015 | Tobias Schneider

RUHR-UNIVERSITÄT BOCHUM

# Conclusion

- *t*-test is simple and fast
- Some aspects need to be considered for correct testing
  - Measurement Phase
  - Analysis Phase
- *t*-test for security evaluation has become popular

### **Thanks for Listening!**

Any Questions?

Leakage Assessment Methodology | WISE 2015 | Tobias Schneider

RUHR-UNIVERSITÄT BOCHUM