
Computer-Assisted Cryptographic Proofs for
Low-Level Implementations

François Dupressoir
IMDEA Software Institute, Madrid, Spain

September 11, 2015 – Paris
Workshop on Implementation: Security and Evaluation

Objectives

I Obtain cryptographic security proofs:

for low-level implementations (software or hardware);
in low-level adversary models.

I Use formal methods to automate:

proof checking (heavy-duty/general formal methods: proof
assistants, semi-automated program verification);
proof finding (lightweight formal methods: specialized tools for
specialized problems);
code generation (semantics-preserving compilation,
security-aware compilation, leakage protection...).

Cryptographic Proofs: A Reminder

Forall adversary against the construction, there exists an adversary
against the primitive that has similar complexity and succeeds with

almost the same probability.

The Problems with Cryptographic Proofs

Implementing even good standards securely remains a
monumental challenge.
(Schneier et al., 2015)

Assuming a good cryptographic specification/standard, three
sources of problems in practice:

I algorithm to standard

elegant mathematics tend to fall apart when applied to
bitstrings;
performance, compatibility, efficiency, flexibility, . . .

I standard to implementation

bugs when implementing crypto, protocol, or more . . .

I implementation to executable

compiler bugs, compiler optimizations, . . .
side-channels, ill-adapted adversary model, . . .

Our Plan: Stacking Reductions

I Computer-aided
cryptographic proof yields
security of standard
algorithm;

I Functional equivalence proof
yields black-box
implementation security;

I Show that specific
non-black-box capabilities
do not help low-level
adversaries against a specific
implementation.

Verifiable Cryptographic Security for Standard
Algorithms

I EasyCrypt: an interactive proof assistant...

I ... that includes program logics for reasoning about
probabilistic programs...

I ... and in particular to formalize cryptographic proofs:

equivalence, equivalence up to failure (relational logic);
probability bounding (probabilistic logic);
...

I Other tools provide some automated proof finding in
specialized cases:

ZooCrypt

Verifiable Black-Box Cryptographic Security for
Standard Implementations

I If you have the time and manpower and are willing to work
with a high-level language, you can try direct proofs of
security at the implementation level:

on F# implementation: Bhargavan et al.’11-??

I Otherwise, use one of these techniques to turn a security
proof on the standard into a black-box security proof on the
implementation:

Code extraction: Blanchet and Cadé’12, Almeida et al.’14
Model extraction: Aizatulin et al.’12
By total correctness: D’13, Almeida et al.’13, Beringer et al.’15

How far can we take this?

I Existing tools more than adequate to prove total functional
correctness for this kind of algorithms. This brings us to C.

Compositionality helps a lot: proofs of component correctness
can be reused.
Constructing such proofs is still a lot of work, and some care is
needed to make sure the implementation adversary model
makes sense, but they are well understood.

I Compiler correctness guarantees semantics preservation for
valid programs. Program validity is often discharged in the
previous step. This gives you black-box security of the
executable code.

Trust your compiler and you should be ok.
Better yet, prove your compiler: CompCert (Leroy et al.,
05-??)

Verifiable Side-Channel Cryptographic Security of
Low-Level Standard Implementations

Observation: It is sufficient to prove functional equivalence of the
executable with the standard (e.g. by semantic preserving
compilation)
AND to prove that the leakage produced by the executable code
can be perfectly simulated using only the adversary’s view (public
inputs and outputs).

Leakage Simulation the Easy Way

I We can check (or enforce) that a leakage simulator exists very
easily in some cases using (probabilistic) non-interference

executing the program on any two initial memories that agree
on (the marginal distribution of) their public variables yields
two final memories that agree on (the marginal distribution of)
their public variables;
the simulator is then trivial: given the public inputs, sample
the private ones at random and run the program.

I Three examples of “easy” leakage simulations:

constant-time crypto (timing countermeasure);
two tools for reasoning about the deployment of masking.

Constant-Time Cryptography
with J.B. Almeida, M. Barbosa and G. Barthe

I Timing gives information about secrets;
I Adversary gets:

list of program counters (branch prediction, instruction
cache...); and
list of memory addresses read or written (cache misses);

I Countermeasure: ensure that these never depend on secret
inputs.

Simple non-interference property;
Some refinements needed for best precision
(Encrypt-then-MAC).

I A lot of formal tools exist to verify this kind of properties.

Type-systems (applied to primitives, MEE-(TLS)-CBC...),
Product programs (ongoing work).

I Easy to generalize to any compositional leakage model that
leaks more than program counters.

Modelling DPA Adversaries
with G. Barthe, S. Beläıd, P.-A. Fouque, B. Grégoire and P.-Y. Strub

Noisy Leakage model

I Adversary receives responses and a noisy leakage trace.

I Security is entropy-based.

I Difficult to reason about automatically.

t-threshold probing model

I Adversary (adaptively or non-adaptively) chooses at most t
locations (variables, nodes, wires) in the circuit to probe;

I Security is simulation-based: any set of probes of size at most
t can be simulated using at most m − 1 shares of the secrets;

I Formal methods apply nicely.

“can be simulated” ∼ “is independent of the secret”
(probabilistic) non-interference... a lot of it

(Duc et al., 14) show that security in the noisy leakage model is
implied∗ by security in the t-threshold probing model.

Enter Masking

Masking uses secret-sharing schemes to protect implementation
against DPA and other side-channel attacks.
For example, using an additive secret-sharing scheme:

I A secret x is uniformly split into m shares ~x = (x0, . . . , xm−1).

x0
$← F256

x1
$← F256

x2 ← x ⊕ x0 ⊕ x1
I Intuitively, splitting secrets into m shares protects against

adversaries that can set up m − 1 probes.

But multiplication is an issue.

Verifying Masked Algorithms

I The sheer size of each problem makes it unrealistic to expect
flawless pen and paper proofs.

I What can we do?

Security in the t-threshold probing model is probabilistic
non-interference.
A lot of it: we need to prove that each t-tuple of intermediate
variables is distributed independently from the secret inputs.
That’s O(|F|r t2t) solutions to count (ESW’13, ...)...
... or O(t2t) automorphisms to find.

Verifying Masked Algorithms

I The sheer size of each problem makes it unrealistic to expect
flawless pen and paper proofs.

I What can we do?

Security in the t-threshold probing model is probabilistic
non-interference.
A lot of it: we need to prove that each t-tuple of intermediate
variables is distributed independently from the secret inputs.
That’s O(|F|r t2t) solutions to count (ESW’13, ...)...
... or O(t2t) automorphisms to find.

Proving Probabilistic Non-Interference

I Program + Set of Probes = Set of probabilistic
field/ring/group expressions

I Identify a large sub-expression e, where a random sampling r
appears in an invertible position, and nowhere else. Replace e
with r .

I Iterate until all trace of the secret disappears (Success!) or a
fixpoint is reached (Failure!).

What about that 22t?

Idea: Instead of trying to prove
(n
t

)
t-tuples non-interferent, why

don’t we try to prove many less, much larger sets non-interferent?

I When proving probabilistic non-interference, keep track of the
successive substitutions.

I Once we know that a t-tuple is non-interferent, we add other
probes to it and try to replay the substitutions in order.

I The difficulty is now in recombining the various chunks and
making sure we haven’t forgotten any.

I No chance of being generally efficient (NP-hard).

And in practice?

Reference Target # tuples Result
Complexity

sets time
First Order Masking

RP-CHES10 � 13 X 7 ε
CPRR-FSE13 Sbox 63 X 17 ε
CPRR-FSE13 full AES 17,206 X 3,342 128s

Second Order Masking
SP-RSA06 Sbox 1,188,111 X 4,104 1.649s
RP-CHES10 � 435 X 92 0.001s
RP-CHES10 Sbox 7,140 X 866 0.045s
RP-CHES10 AES KS 23,041,866 X 771,263 340,745s
CPRR-FSE13 AES (2 rnds) 25,429,146 X 511,865 1,295s
CPRR-FSE13 AES (4 rnds) 109,571,806 X 2,317,593 40,169s

Third Order Masking
RP-CHES10 � 24,804 X 1,410 0.033s
CPRR-FSE13 Sbox 4,499,950 X 33,075 3.894s
CPRR-FSE13 Sbox∗ 4,499,950 X 39,613 5.036s

Fourth Order Masking
SP-RSA06 Sbox 4,874,429,560 X 35,895,437 22,119s
RP-CHES10 � 2,024,785 X 33,322 1.138s
CPRR-FSE13 Sbox 2, 277, 036, 685 X 3,343,587 879s

Fifth Order Masking
RP-CHES10 � 216,071,394 X 856,147 45s

And in practice?

I Full AES at order 2 ran for 12 days (before we stopped it).

I An optimistically linear estimate put completion somewhere in
the 4 year range...

I We need to do something about that compositional feeling.

The Problem with Composition

Definition (Tight Simulation (RP’10 Security))

A gadget G is t-tight simulatable whenever, any d ≤ t probes in G
can be simulated using at most d shares of each of its inputs.

I Only implies t-threshold probing security when gadget is
applied to inputs that are independently shared.

Strong Simulation

Definition (Strong Simulation)

A gadget G is t-strongly simulatable whenever every set of
di + do < t probes on G that are split between internal (di) and
output (do) wires can be simulated using at most di shares of each
of the gadget’s inputs.

Compositional t-Threshold Probing Security

I Given security properties of individual gadgets in the circuit...

Strong Simulation (Refresh, SecMult, . . .)
Affine Simulation (for affine and linear gadgets)
Tight Simulation (maybe some user-defined gadgets?)

I ... and a universallly quantified set of at most t adversary
observations (split between the core gadgets)...

I ... starting from the last gadget in the circuit:

check that the number of observations on the gadget is ≤ t;
simulate the observations on that gadget;
add the set of input shares required to build the gadget’s
simulators as output observations on the parent gadgets;
repeat on next gadget; ...

I ... and finally check that the number of shares of each secret
input required to simulate the whole circuit is ≤ t.

A Compositional Proof Example

I The S-box is checked once, and its “type” is obtained;

I This type can be used as is to prove, say, full AES.

I Bonus: a failure in the proof indicates the need for a Refresh.

Compositional Results

Scheme # Refresh Time Memory

AES (�) 2 0.09s 4Mo

AES (x � g(x)) 0 0.05s 4Mo

Keccak 0 121.20 456Mo

Keccak (gen) 600 2728.00s 22870Mo

Simon 67 0.38s 15Mo

Speck 61 6.22s 38Mo

Table : Time taken to verify masked implementation (at any order)

Conclusion

I Combination of techniques to obtain low-level provable
security results.

Separate scheme security from implementation security;
Cut the task into subtasks for which good formal tools exist.

I Proofs are done on a particular program.

All techniques are language-independent (C, ASM, HDL...);
The leakage models are not.

I Proofs are done with respect to a model.

Choice/Adequacy of model remains expert knowledge;
Tools illustrated in simple models.

What next?

I Capture lower-level leakage models:

Transitions and glitches can be easily captured in the first tool;
Extending the second tool to scenarios where a single probe
may reveal several values is feasible.

I Extensions to non-compositional leakage:

Take pipelines, caches etc. into account...

I Potential use in evaluation processes?

Evaluate device leakage, identify PoI;
Give some context of the PoI to the verification tool;
Get much reduced list of potential flaws that can be used to
identify an attack or dismiss false positives.

