
Guillaume VINET

19th May 2019

1

• White-Box Cryptography (WBC) security analyses are
becoming more mature

• Tracing the binary execution is now part of the state of
the art

• Tracing can be very powerful if the WBC code is not
adequatly protected.

• Nowadays, a state-of-the-art analysis requires to:
• Optimize the data tracing to overcome the data size, disk space

and heavy processing issues

• Focus the analyses to specific instructions or parts of the code

• Cover a large space of different attacks

2

3

Native

binary file

(assembly code)

NO SOURCE FILES!

It is not possible to

add a printf or

comment a line to

see what happens
4

5

Native

binary file

Algorithm level

obfuscation

AES trace acquisition

with visible rounds

Another AES trace acquisition

but with no pattern

6

Native

binary file

Program level

obfuscation

Algorithm level

obfuscation

• Control flow

• Data obfuscation

• Preventive transformations

Illustration: http://tigress.cs.arizona.edu/transformPage/docs/flatten/index.html

Control flow flattening

7

Native

binary file

Program level

obfuscation

Algorithm level

obfuscation

8

9

Input Output

Observe

Modify

White-Box

10

Option 1: Reverse engineering
Assets:

• White-Box algorithm recovery

(Industrial Property)

Drawbacks:

• Elapsed time: from several weeks to

several months (if they are good

protections)

• Expertise:

• Multiple experts: reverse

engineering & cryptography
11

Unboxing the White-Box - Practical attacks against Obfuscated Ciphers

Eloi Sanfelix, Cristofaro Mune and Job de Haas

Black Hat 2015

Differential Computation Analysis Hiding your White Box Designs is Not Enough

Joppe W. Bos, Charles Hubain, Wil Michiels and Philippe Teuwen

CHES 2016

Dynamic Binary

Instrumentation Tool

to generate

acquisition trace

12

Assets:

• Elapsed time: from several hours to several weeks

• Expertise:

• Expert: cryptography

Drawbacks (coming from binary obfuscation):

• White-Box algorithm not recovered

• Big trace size

• Time of acquisition

13

• We trace directly the White-Box without reverse

engineering.

• We will obtain big trace size

14

15

https://github.com/SideChannelMarvels

Memory Access monitoring:

• Read/Write value

• Program Counter

• Kind of operation
included in

16

instruction

Reading

Writing

Illustration: https://www.sstic.org/media/SSTIC2016/SSTIC-actes/design_de_cryptographie_white-box_et_a_la_fin_c_es/SSTIC2016-Slides-

design_de_cryptographie_white-box_et_a_la_fin_c_est_kerckhoffs_qui_gagne-hubain_teuwen_1.pdf
17

Assets:

• Binary can be traced directly:

valgrind --tool=tracergrind --output=ls.trace ls

• valgrind tracer

• trace filename

• binary to trace

18

Assets:

• Executables can be traced directly: no reverse

engineering skill required

• Open Source

Drawbacks:

• Only memory access tracing

• Filtering based only on PC address/Memory

address range

• To trace a library, a launcher must be created

19

Rainbow

• Memory Access monitoring:

• Read/Write value

• Program Counter

• Kind of operation

• Register monitoring
Unicorn

Illustration https://www.ledger.com/2019/02/26/introducing-rainbow-donjons-side-channel-analysis-simulation-tool/
20

Rainbow

Assets:

• Open source

• Use the powerful Unicorn Engine…

21

Rainbow

Source https://github.com/Ledger-Donjon/rainbow/blob/master/examples/ledger_ctf2/ripped.py

Call to external libraries

must be implemented

22

Rainbow

Assets:

• Open source

• Use the powerful Unicorn Engine…

Drawbacks:

• … that might need reverse engineering

• Executable/Library must be instrumented by a

script

• The Unicorn emulation is slower than Valgrind/PIN

23

X86, x86_64,

ARM supportincluded in

• Memory Access monitoring:

• Read/Write value

• Program Counter

• Kind of operation

• Register monitoring

24

25

Assets:

• Faster than Tracer and Rainbow

• Executables can be traced directly

• A lot of filtering options

Drawbacks:

• Not open source

• To trace a library, a launcher must be created

26

27

• We trace directly the White-Box without reverse

engineering.

• Configuration:

• CPU i7-7560U, 2.4GHz dual core

• 16 GB of RAM (we not need so much)

• SSD NVMe

• We can only use Side Channel Marvels Tracer or esTracer

• We will obtain big trace size

28

• We trace directly the White-Box without reverse

engineering. We can only use Side Channel Marvels Tracer

or esTracer

• We will obtain big trace size

29

Input:

• message to sign m ,

• elliptic curve parameters p , a , b , n , G = (Gx , Gy),

• secret key d .

Output:

• signature (r , s)

• Generate randomly the secret scalar k in [1 , n - 1]

• Compute the scalar multiplication: Q = (Qx , Qy) = [k] . G

• Compute r = Qx mod n

• Compute s = [r×d + Hash(m)] × k-1 mod n

• return (r , s)

30

Input:

• message to sign m ,

• elliptic curve parameters p , a , b , n , G = (Gx , Gy),

• secret key d .

Output:

• signature (r , s)

• Generate randomly the secret scalar k in [1 , n - 1]

• Compute the scalar multiplication: Q = (Qx , Qy) = [k] . G

• Compute r = Qx mod n

• Compute s = [r×d + Hash(m)] × k-1 mod n

• return (r , s)

31

32

r3 r2 r1 r0
x d3 d2 d1 d0

c7 c6 c5 c4 c3 c2 c1 c0

Example with 32-bits r & d

• s = [r×d + Hash(m)] × k-1 mod n

• r is known

33

r3 r2 r1 r0
x d3 d2 d1 d0

c7 c6 c5 c4 c3 c2 c1 c0

Example with 32-bits r & d

• s = [r×d + Hash(m)] × k-1 mod n

• r is known

• Guess d0 and correlate 8 bits information

• Intermediate value is:

• c0 = r0 x d0 mod 28

34

r3 r2 r1 r0
x d1 d2 d1 d0

c7 c6 c5 c4 c3 c2 c1 c0

Example with 32-bits r & d

• s = [r×d + Hash(m)] × k-1 mod n

• r is known

35

• Guess d1 and correlate 16 bits using the

best candidates from d0

• Intermediate value is:

• c1 c0 = (r1r0 x d1d0) mod 216

36

37

38

39

What must be traced?

• only the binary itself, not external system

libraries

How to know where to trace?

• Trace memory access or registers

• Display them to see distinguishable patterns

• Program Counter (PC), address of executed

instruction, tracing is a good start

40

41

42

Double & Add but not our use case
Our use case: r x d

33 millions points (64 bits) only for PC register

43

~4.510 MB

~4.446 MB

~4.509 MB

~4.667 MB

~4.287 MB

~4.287 MB

~4.805 MB

~4.661 MB

~4.437 MB

~4.677 MB

44

~4.510 MB

~4.446 MB

~4.509 MB

~4.667 MB

~4.287 MB

~4.287 MB

~4.805 MB

~4.661 MB

~4.437 MB

~4.677 MB

2 problems

• Different trace

size

• Big trace size

45

46

47

Problem 1 - Different trace size

• Why?

• ECDSA algorithm

• How defeat it?

• Remove variant PC

48

Problem 2 – Big trace size

• Why?

• Unvariant registers

• How defeat it?

• Step 1: remove identical

colums

• Step 2: remove duplicated

columns

Step 1 Step 2 49

Drawbacks:

• Post-processing:

• Problem 1: space disk. We obtain big traces and

transform them in small traces.

• Problem 2: time. We lost a lot of time to generate them,

and filter them.

50

Drawbacks:

• Post-processing:

• Problem 1: space disk. We obtain big traces and

transform them in small traces.

• Problem 2: time. We lost a lot of time to generate them,

and filter them.

• Pattern Detector & Accurate register tracing

51

Example of desynchronisation with 2 PC traces

52

Example of desynchronisation with 2 PC traces

53

Trig&Act:

• Trigger: pattern detector

• Action: start/stop acquisition, stop program

Trig&Act chaining:

• Trace only first & last rounds

• Defeat several synchronisations

54

cmp al, [rbp+var_2C]

• No modification in

rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11,

r12, r13, r14, r15, pc

• Do not trace this instruction

55

sub edx, eax

• Only edx is written and eax/edx read

• Useless to acquire rcx, rbx, rsp, rbp, rsi, rdi, r8,

r9, r10, r11, r12, r13, r14, r15, pc

• Acquire only read/written registers or both

56

57

• Trig&act to get synchronized traces

• Trace only written registers

58

~28 MB

~28 MB

~28 MB

~28 MB

~28 MB

~28 MB

~28 MB

~28 MB

~28 MB

~28 MB

59

60

61

62

63

64

~203 MB

~204 MB

~207 MB

~214 MB

~196 MB

~196 MB

~220 MB

~213 MB

~203 MB

~214 MB

65

66

67

68

With trig&act, we can skip the point

multiplication (very big). Without it,

we would have the same trace size as

with Tracer Valgrind.

69

70

71

We attack a multiplication… so we could focus

on instruction related to it.

For each executed mult instruction:

• Acquire the read/written registers

72

~0.043 MB

~0.043 MB

~0.043 MB

~0.043 MB

~0.043 MB

~0.043 MB

~0.043 MB

~0.043 MB

~0.043 MB

~0.043 MB

73

74

•

•

75

r3 r2 r1 r0
x d3 d2 d1 d0

c7 c6 c5 c4 c3 c2 c1 c0

Example with 32-bits r & d

• s = [r×d + Hash(m)] × k-1 mod n

• r is known

• Guess d0 and correlate 8 bits information

• Intermediate value is:

• c0 = r0 x d0 mod 28

78

r3 r2 r1 r0
x d3 d2 d1 d0

c7 c6 c5 c4 c3 c2 c1 c0

Example with 32-bits r & d

• s = [r×d + Hash(m)] × k-1 mod n

• r is known
• Guess d1 and correlate 16 bits using the

best candidates from d0.

• Intermediate value is:

• c1 c0 = (r1r0 x d1d0) mod 216

79

80

• d0 : 5 best guesses

• d1 : 5 best guesses

• d2 : 5 best guesses

• d3 : 1 best guesses

81

• d3 d2 d1 d0 :word0
• d7 d6 d5 d4 :word0
• d11 d10 d9 d8 :word0
• d15 d14 d13 d12:word0
• d19 d18 d17 d16:word0
• d23 d22 d21 d20:word0

• word0
• word1
• word2
• word3
• word4
• word5

r7 r6 r5 r4 r3 r2 r1 r0
x d7 d6 d5 d4 d3 d2 d1 d0

...c7 c6 c5 c4 c3 c2 c1 c0

82

word0 recovery

r7 r6 r5 r4 r3 r2 r1 r0
x d7 d6 d5 d4 d3 d2 d1 d0

c3 c2 c1 c0

83

word0 recovery

r7 r6 r5 r4 r3 r2 r1 r0
x d7 d6 d5 d4 d3 d2 d1 d0

c7 c6 c5 c4

word1 recovery

If we attack word1 in the same frame,

we might correlate word0

with d7 d6 d5 d4

84

r7 r6 r5 r4 r3 r2 r1 r0
x d7 d6 d5 d4 d3 d2 d1 d0

c3 c2 c1 c0

word0 recovery

r7 r6 r5 r4 r3 r2 r1 r0
x d7 d6 d5 d4 d3 d2 d1 d0

c7 c6 c5 c4

word1 recovery

85

• 500 traces: 407 sec & 4.1 MB

• DCA Attack:

• 48 sec

• Value Model

86

87

88

89

Tracing a White-Box must be focused on the binary.

Why trace directly without reverse engineering?

Fast

But:

• Big size traces

Post treatment required & time consuming

90

Strategies to defeat these issues:

Focus tracing only on memory access or register access

Pattern detector to trace only interesting area

Depending on the algorithm, focus on specific instructions

In that way, it is possible to obtain small traces that still contain leakage

points.

91

