
1

Guillaume VINET

19th May 2019

• Binary analysis: dynamic fault injection is a powerful way to
stress WBC-based solutions,

• Publications in this area remain modest, mostly due to
challenging practical realisation,

• Registers, memory access can be changed in runtime leading
to exploitable faulty computations,

• Nowadays, a state-of-the-art WBC security analysis must
include:
• static and dynamic fault injections
• an efficient way to induce dynamic faulty computations: being precise

and able to affect large range of instructions
• a large range of public fault injection attacks exploiting single or

multiple faults

2

3

Native

binary file

(assembly code)

NO SOURCE FILES!

4

5

Native

binary file

Cryptographic

attacks

6

• Differential Fault Analysis (DFA)

• Safe Error

• …

Native

binary file

Cryptographic

attacks

• Defeat integrity mechanisms

• Defeat algorithm protection.

Stuck mask value to transform a 2nd

order attack to a 1rst order

• …

7

Security

downgrade

• Differential Fault Analysis (DFA)

• Safe Error

• …

Native

binary file

Cryptographic

attacks

8

Security

downgrade

9

10

Assets:

• Easy to implement

Drawbacks:

• Speed: how to avoid combinatorial

complexity with multiple fault injections?

• Accuracy: valuable to modify table value,

but not disturbing operation execution

• Anti-Fault countermeasures: fault easily

detected

11

https://github.com/SideChannelMarvels

• Python framework

• Tree strategy to inject

the faults

included in

12

13

Assets:

• Accuracy:

• Alter registers, memory or instructions

• Multiple fault injection to defeat security

countermeasures

Drawbacks:

• Fault Model: which fault effects must be implemented

• Speed: how to avoid combinatorial complexity with multiple

fault injections?

14

Assets:

• Open source

• Use the powerful Unicorn Engine…

15

Source https://www.riscure.com/uploads/2017/09/eu-15-sanfelix-mune-dehaas-unboxing-the-white-box-wp_v1.1.pdf

Know where to recover the

ciphertext once the fault was

injected

16

Call to external libraries

must be implemented/patched

Assets:

• Open source

• Use the powerful Unicorn Engine…

Drawbacks:

• … that needs reverse engineering

• Executable/Library must be instrumented by a

script

• The Unicorn emulation is slow

17

18

Relevant

Fault Models
Speed

Where? When?

Configuration

19

Dynamic fault injection

Faults models:

• Register modification

20

Faults models:

• Register modification

• Data Flow Modification

21

Faults models:

• Register modification

• Data Flow Modification

• Control Flow Modification with Program

Counter Register

22

Where to fault:

• Filtering based on:

• Program Counter

• Kind of instruction: mov, add …

23

When to fault: pattern detector
•

•

24

When to fault: pattern detector
•

25

• X86, x86_64,

ARM support

• Takes advantage

of Qemu speed

included in

• Dynamic register modification

• Data flow disturbance

• Control flow disturbance

• Multi-fault injection

• Fault&trace capabilities

• Filtering and trig&act capabilities

26

27

• Attack an AES White-Box implementation

• Configuration:

• CPU i7-7560U, 2.4GHz dual core

• 16 GB of RAM (we not need so much)

• SSD NVMe

• Double fault injection

• Key recovery from the faulty outputs with a DFA of Piret

(with 4 modified bytes in a specific way)

28

• Attack an AES White-Box implementation

• Double fault injection

• Key recovery from the faulty outputs with a DFA of Piret

(with 4 modified bytes in a specific way)

29

nb_ins x nb_fault_model x nb_target x nb_input x nb_area

$./cipheraes 06 1F C9 F5 88 B2 F9 D2 00 19 86 82 2C 12 11 79

message: 061fc9f588b2f9d2001986822c121179

cipher: 14ed01ea7ce2a551c9791ae85c7cecf4

AES-128

X86-64 architecture

Differential Fault Analysis with a double fault

injection attack:

• Data flow disturbance

• Control flow disturbance

30

31

32

33

34

35

36

37

38

39

40

1557

0

755

35613

34422

7

565

34943

36500

35745

887

2078

36493

35935

644

310

225

0

0

264

78

0 5000 10000 15000 20000 25000 30000 35000 40000

rax

rcx

rdx

rsp

rbp

rsi

rdi

Faulty Output Correct Ouput Parse Error

No effect for the other registers (rbx, r8, r9, r10, r11, r12, r13, r14, r15)

14 campaigns faulting one register (rsp/rbp not

included)

41

~76 min (multi-thread not used)

~112 injected faults by second

511,000 injected faults

42

43

Correct/

Faulty output

analysis

Execute algorithm:

• To recover the key

• Or to detect in which round the fault was injected

• A lot of public algorithm available, but if they fail it

gives no information

44

Correct/

Faulty output

analysis

Execute algorithm:

• To recover the key

• Or to detect in which round the fault was injected

• A lot of public algorithm available, but if they fail it

gives no information

Reverse

engineering

• Understand the effect of the fault on the program

execution

• Give a way to understand very accurately the fault

but it requires reverse engineering skills

45

Correct/

Faulty output

analysis

Execute algorithm:

• To recover the key

• Or to detect in which round the fault was injected

• A lot of public algorithm available, but if they fail it

gives no information

Reverse

engineering

• Understand the effect of the fault on the program

execution

• Give a way to understand very accurately the fault

but it requires reverse engineering skills

Fault & Trace
• Fault and trace at the same time (memory access,

Program Counter registers …)

• Give a visual way to understand accurately the fault

effect without reverse engineering skills

46

47

48

Fault and trace the PC register to see the executed instructions

Traces are identicalTraces are different

49

Fault and trace the PC register to see the executed instructions

Traces are identicalTraces are different

50

51

52

53

54

55

56

loc_4033CE:

cmp [rbp+var_1], 3

jbe short loc_403393

loc_403393:

movzx eax, [rbp+var_1]

cdqe

mov edx, [rbp+rax*4+var_20]

movzx eax, [rbp+var_1]

cdqe

mov eax, [rbp+rax*4+var_30]

cmp edx, eax

jz short loc_4033C4

The output was computed

twice. Its consistency is

checked by block of four

bytes.

loc_4033D4

nop

leave

retn

57

loc_4033CE:

cmp [rbp+var_1], 3

jbe short loc_403393

loc_403393:

movzx eax, [rbp+var_1]

cdqe

mov edx, [rbp+rax*4+var_20]

movzx eax, [rbp+var_1]

cdqe

mov eax, [rbp+rax*4+var_30]

cmp edx, eax

jz short loc_4033C4

movzx eax, [rbp+var_1]

lea rdx, ds:0[rax*4]

mov rax, [rbp+var_38]

add rax, rdx

mov dword ptr [rax], 0

The output was computed

twice. Its consistency is

checked by block of our

bytes.

In case of a failure, the

four-byte block is set to

zero.

loc_4033D4

nop

leave

retn

58

loc_4033CE:

cmp [rbp+var_1], 3

jbe short loc_403393

loc_403393:

movzx eax, [rbp+var_1]

cdqe

mov edx, [rbp+rax*4+var_20]

movzx eax, [rbp+var_1]

cdqe

mov eax, [rbp+rax*4+var_30]

cmp edx, eax

jz short loc_4033C4

movzx eax, [rbp+var_1]

lea rdx, ds:0[rax*4]

mov rax, [rbp+var_38]

add rax, rdx

mov dword ptr [rax], 0

loc_4033C4:

movzx eax, [rbp+var_1]

add eax, 1

mov [rbp+var_1], al

We start the output

analysis

The output was computed

twice. Its consistency is

checked.

In case of a failure, the

four-byte block is set to

zero.

loc_4033D4

nop

leave

retn

These operation are done

4 times to analyze all the

output.

59

loc_4033CE:

cmp [rbp+var_1], 3

jbe short loc_403393

loc_403393:

movzx eax, [rbp+var_1]

cdqe

mov edx, [rbp+rax*4+var_20]

movzx eax, [rbp+var_1]

cdqe

mov eax, [rbp+rax*4+var_30]

cmp edx, eax

jz short loc_4033C4

movzx eax, [rbp+var_1]

lea rdx, ds:0[rax*4]

mov rax, [rbp+var_38]

add rax, rdx

mov dword ptr [rax], 0

loc_4033C4:

movzx eax, [rbp+var_1]

add eax, 1

mov [rbp+var_1], al

We start the output

analysis

The output was computed

twice. Its consistency is

checked.

In case of a failure, the

four-byte block is set to

zero.

loc_4033D4

nop

leave

retn

These operation are done

4 times to analyze all the

output.

60

loc_4033CE:

cmp [rbp+var_1], 3

loc_403393:

movzx eax, [rbp+var_1]

cdqe

mov edx, [rbp+rax*4+var_20]

movzx eax, [rbp+var_1]

cdqe

mov eax, [rbp+rax*4+var_30]

cmp edx, eax

jz short loc_4033C4

movzx eax, [rbp+var_1]

lea rdx, ds:0[rax*4]

mov rax, [rbp+var_38]

add rax, rdx

mov dword ptr [rax], 0

loc_4033C4:

movzx eax, [rbp+var_1]

add eax, 1

mov [rbp+var_1], al

loc_4033D4

nop

leave

retn

61

loc_4033CE:

cmp [rbp+var_1], 3

loc_403393:

movzx eax, [rbp+var_1]

cdqe

mov edx, [rbp+rax*4+var_20]

movzx eax, [rbp+var_1]

cdqe

mov eax, [rbp+rax*4+var_30]

cmp edx, eax

jz short loc_4033C4

movzx eax, [rbp+var_1]

lea rdx, ds:0[rax*4]

mov rax, [rbp+var_38]

add rax, rdx

mov dword ptr [rax], 0

loc_4033C4:

movzx eax, [rbp+var_1]

add eax, 1

mov [rbp+var_1], al

loc_4033D4

nop

leave

retn

62

loc_4033CE:

0x4033CE cmp [rbp+var_1], 3

0x4033D2

loc_403393:

movzx eax, [rbp+var_1]

cdqe

mov edx, [rbp+rax*4+var_20]

movzx eax, [rbp+var_1]

cdqe

mov eax, [rbp+rax*4+var_30]

cmp edx, eax

jz short loc_4033C4

movzx eax, [rbp+var_1]

lea rdx, ds:0[rax*4]

mov rax, [rbp+var_38]

add rax, rdx

mov dword ptr [rax], 0

loc_4033C4:

movzx eax, [rbp+var_1]

add eax, 1

mov [rbp+var_1], al

0x4033D4 nop

0x4033D5 leave

0x4033D6 retn

63

64

65

66

67

68

69

Faulting a White-Box must be focused on the binary.

Dynamic fault injection is a prerequisite

Accurate multiple faults can be injected

Security mechanisms can be defeated

But

Combinatorial complexity

70

nb_ins x nb_fault_model x nb_target x

nb_input x nb_area

Strategies to defeat these issues:

Pattern detector to fault only interesting area

Focus faulting on specific Register / Program Counter

or instructions

Fault & trace to understand the effect of a fault or

downgrade security

In that way, it is possible to execute successful multi-fault attacks, in

reasonable amount of time.

71

