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• Binary analysis: dynamic fault injection is a powerful way to 
stress WBC-based solutions,

• Publications in this area remain modest, mostly due to 
challenging practical realisation,

• Registers, memory access can be changed in runtime leading 
to exploitable faulty computations,

• Nowadays, a state-of-the-art WBC security analysis must 
include:
• static and dynamic fault injections
• an efficient way to induce dynamic faulty computations: being precise 

and able to affect large range of instructions
• a large range of public fault injection attacks exploiting single or 

multiple faults
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Native 

binary file 

(assembly code)

NO SOURCE FILES!
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Native 

binary file

Cryptographic

attacks
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• Differential Fault Analysis (DFA)

• Safe Error

• …



Native 

binary file

Cryptographic

attacks

• Defeat integrity mechanisms

• Defeat algorithm protection. 

Stuck mask value to transform a 2nd

order attack to a 1rst order

• …
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Security 

downgrade

• Differential Fault Analysis (DFA)

• Safe Error

• …
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Assets:

• Easy to implement

Drawbacks:

• Speed: how to avoid combinatorial 

complexity with multiple fault injections?

• Accuracy: valuable to modify table value, 

but not disturbing operation execution

• Anti-Fault countermeasures: fault easily 

detected
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https://github.com/SideChannelMarvels

• Python framework

• Tree strategy to inject 

the faults

included in
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Assets:

• Accuracy: 

• Alter registers, memory or instructions

• Multiple fault injection to defeat security 

countermeasures

Drawbacks:

• Fault Model: which fault effects must be implemented 

• Speed: how to avoid combinatorial complexity with multiple 

fault injections?
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Assets:

• Open source

• Use the powerful Unicorn Engine…
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Source https://www.riscure.com/uploads/2017/09/eu-15-sanfelix-mune-dehaas-unboxing-the-white-box-wp_v1.1.pdf

Know where to recover the 

ciphertext once the fault was 

injected
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Call to external libraries

must be implemented/patched



Assets:

• Open source

• Use the powerful Unicorn Engine…

Drawbacks:

• … that needs reverse engineering

• Executable/Library must be instrumented by a 

script

• The Unicorn emulation is slow
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Relevant

Fault Models
Speed

Where? When?

Configuration
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Dynamic fault injection



Faults models:

• Register modification

20



Faults models:

• Register modification

• Data Flow Modification
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Faults models:

• Register modification

• Data Flow Modification

• Control Flow Modification with Program 

Counter Register
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Where to fault:

• Filtering based on:

• Program Counter

• Kind of instruction: mov, add …
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When to fault: pattern detector
•

•
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When to fault: pattern detector
•
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• X86, x86_64, 

ARM support

• Takes advantage 

of Qemu speed

included in

• Dynamic register modification

• Data flow disturbance

• Control flow disturbance

• Multi-fault injection

• Fault&trace capabilities

• Filtering and trig&act capabilities
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• Attack an AES White-Box implementation 

• Configuration:

• CPU i7-7560U, 2.4GHz dual core

• 16 GB of RAM (we not need so much)

• SSD NVMe 

• Double fault injection

• Key recovery from the faulty outputs with a DFA of Piret 

(with 4 modified bytes in a specific way)
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• Attack an AES White-Box implementation 

• Double fault injection

• Key recovery from the faulty outputs with a DFA of Piret 

(with 4 modified bytes in a specific way)
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nb_ins x nb_fault_model x nb_target x nb_input x nb_area



$./cipheraes 06 1F C9 F5 88 B2 F9 D2 00 19 86 82 2C 12 11 79

message: 061fc9f588b2f9d2001986822c121179

cipher: 14ed01ea7ce2a551c9791ae85c7cecf4

AES-128

X86-64 architecture

Differential Fault Analysis with a double fault 

injection attack:

• Data flow disturbance

• Control flow disturbance
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14 campaigns faulting one register (rsp/rbp not 

included)
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~76 min (multi-thread not used)

~112 injected faults by second

511,000 injected faults
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Correct/ 

Faulty output

analysis

Execute algorithm:

• To recover the key

• Or to detect in which round the fault was injected

• A lot of public algorithm available, but if they fail it

gives no information 
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Correct/ 

Faulty output

analysis

Execute algorithm:

• To recover the key

• Or to detect in which round the fault was injected

• A lot of public algorithm available, but if they fail it

gives no information 

Reverse 

engineering

• Understand the effect of the fault on the program

execution

• Give a way to understand very accurately the fault

but it requires reverse engineering skills
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Correct/ 

Faulty output

analysis

Execute algorithm:

• To recover the key

• Or to detect in which round the fault was injected

• A lot of public algorithm available, but if they fail it

gives no information 

Reverse 

engineering

• Understand the effect of the fault on the program

execution

• Give a way to understand very accurately the fault

but it requires reverse engineering skills

Fault & Trace
• Fault and trace at the same time (memory access, 

Program Counter registers …)

• Give a visual way to understand accurately the fault

effect without reverse engineering skills
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Fault and trace the PC register to see the executed instructions

Traces are identicalTraces are different
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Fault and trace the PC register to see the executed instructions

Traces are identicalTraces are different
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loc_4033CE:

cmp     [rbp+var_1], 3

jbe     short loc_403393

loc_403393:

movzx   eax, [rbp+var_1]

cdqe

mov     edx, [rbp+rax*4+var_20]

movzx   eax, [rbp+var_1]

cdqe

mov     eax, [rbp+rax*4+var_30]

cmp     edx, eax

jz      short loc_4033C4

The output was computed 

twice. Its consistency is 

checked by block of four 

bytes.

loc_4033D4

nop

leave

retn
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loc_4033CE:

cmp     [rbp+var_1], 3

jbe     short loc_403393

loc_403393:

movzx   eax, [rbp+var_1]

cdqe

mov     edx, [rbp+rax*4+var_20]

movzx   eax, [rbp+var_1]

cdqe

mov     eax, [rbp+rax*4+var_30]

cmp     edx, eax

jz      short loc_4033C4

movzx   eax, [rbp+var_1]

lea     rdx, ds:0[rax*4]

mov     rax, [rbp+var_38]

add     rax, rdx

mov     dword ptr [rax], 0

The output was computed 

twice. Its consistency is 

checked by block of our 

bytes.

In case of a failure, the 

four-byte block is set to 

zero.

loc_4033D4

nop

leave

retn
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loc_4033CE:

cmp     [rbp+var_1], 3

jbe     short loc_403393

loc_403393:

movzx   eax, [rbp+var_1]

cdqe

mov     edx, [rbp+rax*4+var_20]

movzx   eax, [rbp+var_1]

cdqe

mov     eax, [rbp+rax*4+var_30]

cmp     edx, eax

jz      short loc_4033C4

movzx   eax, [rbp+var_1]

lea     rdx, ds:0[rax*4]

mov     rax, [rbp+var_38]

add     rax, rdx

mov     dword ptr [rax], 0

loc_4033C4:

movzx   eax, [rbp+var_1]

add     eax, 1

mov     [rbp+var_1], al

We start the output 

analysis

The output was computed 

twice. Its consistency is 

checked.

In case of a failure, the 

four-byte block is set to 

zero.

loc_4033D4

nop

leave

retn

These operation are done 

4 times to analyze all the 

output.

59



loc_4033CE:

cmp     [rbp+var_1], 3

jbe     short loc_403393

loc_403393:

movzx   eax, [rbp+var_1]

cdqe

mov     edx, [rbp+rax*4+var_20]

movzx   eax, [rbp+var_1]

cdqe

mov     eax, [rbp+rax*4+var_30]

cmp     edx, eax

jz      short loc_4033C4

movzx   eax, [rbp+var_1]

lea     rdx, ds:0[rax*4]

mov     rax, [rbp+var_38]

add     rax, rdx

mov     dword ptr [rax], 0

loc_4033C4:

movzx   eax, [rbp+var_1]

add     eax, 1

mov     [rbp+var_1], al

We start the output 

analysis

The output was computed 

twice. Its consistency is 

checked.

In case of a failure, the 

four-byte block is set to 

zero.

loc_4033D4

nop

leave

retn

These operation are done 

4 times to analyze all the 

output.
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loc_4033CE:

cmp     [rbp+var_1], 3

loc_403393:

movzx   eax, [rbp+var_1]

cdqe

mov     edx, [rbp+rax*4+var_20]

movzx   eax, [rbp+var_1]

cdqe

mov     eax, [rbp+rax*4+var_30]

cmp     edx, eax

jz      short loc_4033C4

movzx   eax, [rbp+var_1]

lea     rdx, ds:0[rax*4]

mov     rax, [rbp+var_38]

add     rax, rdx

mov     dword ptr [rax], 0

loc_4033C4:

movzx   eax, [rbp+var_1]

add     eax, 1

mov     [rbp+var_1], al

loc_4033D4

nop

leave

retn
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loc_4033CE:

cmp     [rbp+var_1], 3

loc_403393:

movzx   eax, [rbp+var_1]

cdqe

mov     edx, [rbp+rax*4+var_20]

movzx   eax, [rbp+var_1]

cdqe

mov     eax, [rbp+rax*4+var_30]

cmp     edx, eax

jz      short loc_4033C4

movzx   eax, [rbp+var_1]

lea     rdx, ds:0[rax*4]

mov     rax, [rbp+var_38]

add     rax, rdx

mov     dword ptr [rax], 0

loc_4033C4:

movzx   eax, [rbp+var_1]

add     eax, 1

mov     [rbp+var_1], al

loc_4033D4

nop

leave

retn
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loc_4033CE:

0x4033CE cmp     [rbp+var_1], 3

0x4033D2

loc_403393:

movzx   eax, [rbp+var_1]

cdqe

mov     edx, [rbp+rax*4+var_20]

movzx   eax, [rbp+var_1]

cdqe

mov     eax, [rbp+rax*4+var_30]

cmp     edx, eax

jz      short loc_4033C4

movzx   eax, [rbp+var_1]

lea     rdx, ds:0[rax*4]

mov     rax, [rbp+var_38]

add     rax, rdx

mov     dword ptr [rax], 0

loc_4033C4:

movzx   eax, [rbp+var_1]

add     eax, 1

mov     [rbp+var_1], al

0x4033D4 nop

0x4033D5 leave

0x4033D6 retn
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Faulting a White-Box must be focused on the binary.

Dynamic fault injection is a prerequisite

Accurate multiple faults can be injected

Security mechanisms can be defeated

But

Combinatorial complexity 
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nb_ins x nb_fault_model x nb_target x 

nb_input x nb_area



Strategies to defeat these issues:

Pattern detector to fault only interesting area

Focus faulting on specific Register / Program Counter 

or instructions

Fault & trace to understand the effect of a fault or                     

downgrade security

In that way, it is possible to execute successful multi-fault attacks, in 

reasonable amount of time.
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