
Security assessment of WhibOx 2017 candidates

Alexander Treff

WhibOx 2019 workshop



WhibOx 2017 rules

I Submit white-boxed AES-128 implementation

I Pure C code (no includes, libraries, . . . )

I Source ≤ 50MB, binary ≤ 20 MB, avg. runtime ≤ 1s

I Designer goal: remain unbroken

I Attacker goal: break as fast as possible



WhibOx 2017 results

I 94 implementations (1 invalid)
I 13 earned > 0 points

I 10 designers

I ALL broken

I Detailed presentation & write-up for winning challenge

I No (public) write-ups for others(?)



I How many can be broken in an automated way?
I i.e., without (much) reverse engineering
I DCA/DFA

I Classification by size, speed, security



Attack classification

I Automated
I DCA
I DFA
I Higher-order DCA

I Manual effort
I DCA after modification

I Devirtualization
I Removal of time-consuming code

I DFA after modification
I Removal of duplicate rounds
I Removal of pseudo-randomness

I Other methods

I Unbroken
I Reverse engineering effort



Toolchain

I customized Intel PIN plugin for trace acquisition

I Jlsca for efficient DCA

I DFA script from SideChannelMarvels
I customized aes-brute-force tool for round-10-key-bruteforcing

I Hulk from SideChannelMarvels does the same, but better



Differential computation analysis (DCA)

I Software counterpart to differential power analysis (DPA)

I Collect software execution traces

I Use statistical methods to figure out correct key bytes



DCA countermeasures

I Masking sensitive values throughout computation
I Generate pseudo-randomness from input

I Artificially enlarging traces by dummy operations
I Useful for contest
I Not desired for real-world implementations



Differential fault analysis (DFA)

I Obtain correct output for specific input

I Induce faulty outputs by e.g. flipping bits

I Collect faulty outputs

I Compare against correct output

I Compute last round key

I Compute actual AES key



DFA countermeasures

I Compute results twice & compare

I Mute output/set output to unrelated
I Other countermeasures

I < 4 faulty state bytes in r9
I > 4 faulty state bytes in r9
I Faulty state bytes in wrong position
I ”Skip” r9 vulnerability



Higher-order DCA

I Combine k samples of computation trace

I Exponential complexity

I Second-order is feasible for some implementations
I Reveals key for at least one first-order-resistant

implementation
I Apparently also breakable using other methods



DCA

I A lot of dummy-submissions
I Some using dual ciphers

I Use different selection function (Klemsa model)

I ≥ 1 Challenge resistant against input-DCA but vuln. to
output-DCA

I Majority breakable by DCA
I 14 AES reference implementations
I 19 T6 256 by chaes
I 17 other
I = 50 in total

I Some more can be broken when modified



DFA

I Only applied when DCA failed

I Good against virtualized implementations (Tigress)

I Manual injection sometimes better than automated

I 3/4 columns sufficient (last can be brute-forced)

I Another 7 broken using script, 7 broken manually



Modifications

I DCA improvements
I Removal of dummy code
I Removal of non-constant code
I Removal of trace-enlarging code (JH hash computation)
I Devirtualization
I Breaks 5 more challenges using DCA

I DFA improvements
I Removal of duplicate rounds
I Removal of DFA protection (obviously)



Leftover challenges

I All with > 0 points except festive jennings (using DFA, 3/4
cols)

I Second generation by kluxc3qa1 (5 submissions)
I Two more submissions by different authors

I One of them encoding input bits as (0=0x00000000,
1=0xfffffff7), adding rk-bits as uint32, then bitsliced
implementation

I The other one using multiple nested lookups



All source size

0 10 20 30 40
0

10

20

30

40

50

Time (s)

Sp
ac

e
(M

by
te

s)



Top 8 source size

0 10 20 30 40
0

10

20

30

40

50

1

2

3

4

5

6
7

8

Time (s)

Sp
ac

e
(M

by
te

s)



Top 8 binary size

0 10 20 30 40
0

10

20

30

40

50

12

3

4

5

67

8

Time (s)

Sp
ac

e
(M

by
te

s)



Security considerations

I Unbroken = good, broken = bad?
I Can we combine: small, fast, secure?

I Industry: ”secure” ≈ not broken in ≤ x days
I Only breakable with manual effort
I Refresh implementation before it is broken

I Automated attacks vs. manual effort

I Break one, break all?


	The contest
	Our setup
	Automated attacks
	Classification by attacks
	Performance overview
	Real-world security definition

