
White-Box and Asymmetrically
Hard Crypto Design

Alex Biryukov
University of Luxembourg

slides from Whibox’19 workshop

18-May-2019

Plan of the talk

• The ASASA story

• Resource Hardness Framework

• Other ideas

Structural cryptanalysis of SASAS*

• Scheme with unknown keyed S-boxes and Affine mappings
• For 128-bit block, 8-bit S-boxes, secret key-size is 217 bits

*Biryukov, Shamir, Structural Cryptanalysis of SASAS, Eurocrypt’2001

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

Structural cryptanalysis of SASAS*

• For 128-bit block, 8-bit S-boxes, secret key-size is 217 bits
• Multiset attack complexity is 216 chosen texts and 228 time

*Biryukov, Shamir, Structural Cryptanalysis of SASAS, Eurocrypt’2001

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

Structural cryptanalysis of SASAS

• What this has to do with WBC?

Structural cryptanalysis of SASAS

• Many early obfuscations were broken because
SASAS and shorter ciphers are structurally
very weak (and simple ASA was used in many
WBC schemes)

• Strong diffusion in ciphers prevents from
building tables with more rounds since lookup
tables explode

The ASASA attempt*

• One scheme we couldn’t break in 2001 was ASASA (with bijective S-boxes)

• (ASASA with non-bij. S-boxes was proposed as PK scheme by
PatarinGoubin’97 and broken by Ding-Feng’99, Biham’00)

*Biryukov, Bouillaguet,Khovratovich, Cryptographic Schemes based on ASASA.., AC’2014

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

The ASASA attempt*

• Defined strong and weak white box crypto in [BBK’14] a la [Wyseur’09]

(Strong WBC=PK, i.e. no ability to decrypt, was the main goal of the paper,
also now called one-wayness (OW))

• Built strong and weak WBC from ASASA

• Strong WBC was based on multivariate crypto, expanding S-boxes+noise

*Biryukov, Bouillaguet,Khovratovich, Cryptographic Schemes based on ASASA.., AC’2014

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

The ASASA attempt*

• Built strong and weak WBC from ASASA

• Strong WBC was based on multivariate crypto, expanding S-boxes+noise

• Strong and some weak WBC broken in 3 nice cryptanalytic papers
[GPT’15,DDKL’15,MDFK’15]

*Biryukov, Bouillaguet,Khovratovich, Cryptographic Schemes based on ASASA.., AC’2014

https://link.springer.com/chapter/10.1007/3-540-44987-6_24

The ASASA attempt

A few more details on our weak WBC scheme

• SPN, recursive approach, assuming ASASA or
ASASASA mini-ciphers are secure against
decomposition

The ASASA attempt

• ASASASA instances still unbroken

• Overall approach is valid, just needs more rounds r,
description size grows linearly with r.

The ASASA attempt

• ASASASA instances still unbroken

• Overall approach is valid, just needs more rounds.

• Motivated more reseach on weak-WBC and nice constructions

 SPACE [BI15], PuppyCipher [FKKM16], SPNBox [BIT16]

Weak white-box

• "We note that a white-box implementation
can be useful as it forces the user to use the
software at hand“, -Marc Joye’08

Weak white-box

• Incompressibility ≈ Space-hardness ≈ Code-hardness

• Generalize: Resource R-hardness

Force to use implementation with special properties:

• Inefficient in resource R

• Password-protected (access control)

• Tagged/watermarked (tracing)

Resource Hardness Framework*

Efficiency metrics for crypto algorithms:

• Speed (Time complexity, parallel or sequential)

• Code-size (ROM)

• Memory complexity (RAM)

Sometimes inefficiency of algorithms in these metrics is
required

*Biryukov, Perrin, “Symmetrically and Asymmetrically Hard Cryptography, Asiacrypt’17

Resource Hardness Framework

Sometimes inefficiency of crypto algorithms in these
metrics is required (several research areas that do not
always talk to each other)

• Weak whitebox-crypto (code size hardness)

• Password hashing (memory hardness)

• Key derivation functions (KDF) (time hardness)

• Big key encryption (code size hardness)

• Time-lock puzzles, PoSW, VDFs (sequential time
hardness)

• Proof-of-X (all kinds of hardness)

Resource Hardness Framework

Symmetric vs Asymmetric Resource hardness:

• Symmetric – computation is R hard for all the
users

• Asymmetric – computation is easy for
“privileged” users knowing the secret K

Resource Hardness Framework

Resource Hardness Framework

 *Generalized from definition of incompressibility from [FKKM16]

Resource Hardness Framework

Resource Hardness Framework

• How to achieve required R-hardness?

• The framework allows us to construct
primitives with any hardness type:

 the idea of plugs with specific hardness type

Plugs: Time-Hardness

Symmetric:

• IterHash (t,n) – iterates t-bit hash n times (n < 2t/2 to avoid
cycles)

Asymmetric

• RSAlock(t,n) (time-lock) n squarings mod N, N=pq ≈ 2t

Secret owner first computes e=2n mod (p-1)(q-1)

Then he computes xe mod N (or CRT)

Plugs: Code-Hardness

Symmetric:
• BigLUT (t,v) – a table with 2t random v-bit entries

Asymmetric
• BcCounter(t,v) = Ek(0

v-t||x), Ek is a v-bit block cipher
with secret key k, |k|≥ v

 Secret owner knows k

Hardness for the common user:

Plugs: Code-Hardness

Symmetric:

• BigLUT (t,v) – a table with 2t random v-bit entries

Asymmetric

• BcCounter(t,v) = Ek(0
v-t||x), Ek is a v-bit block cipher with secret key k,

 |k|≥ v, |x|=t, t < v

 Secret owner knows k

Improvement for small t: (parallel application of l tables |x| = v)

Hardness for the common user:

Plugs: Memory-Hardness

Symmetric:

• Argon2(t,M) with input size t and memory size M

 (memory hard password hashing function)

Asymmetric

• Diodon (more details later)

Our collection of R-hard plugs

Modes of Plug Usage

The plugs can be used in different modes

• Plug-then-randomize (PTR)

• Hard block cipher mode (HBC)

• Hard sponge mode (HSp)

Mode: Plug-then-Randomize

Here F is a random (permutation) oracle

Iterate to increase hardness:

Mode: Hard block cipher

• Given related-key-secure n-bit block cipher Ek, k≥n

Example: Time-hard block cipher Skipper

• The plug is: Skipper is:

Hard Sponge Mode (HSp)

• Sponges can be used to construct hash
functions, stream ciphers, MACs and AE

Hard Sponge Mode (HSp)

• Iteratively use Plug-then-Randomize mode

• In the paper: Code-hard hash function based on
Keccak which we called Whale.

Example: Memory-Hard function Diodon

Example: Memory-Hard function Diodon

Resource hardness Framework

np – bits in RSA modulus; t,u –input/output sizes; M,L-
upper/lower chain length

Resource hardness Framework

Open problem: Diodon is based on scrypt which has
lousy linear TM-tradeoff. Also slow due to RSA. Improve?

 Few other things

R-hardness and code obfuscation

Using obfuscation idea from [BK’16*]:

• Compiler that runs some resource hard function F(pwd,x)

• Computes R-hard bits F(pwd,x) = bi and then makes code
transformations:

*Biryukov, Khovratovich, Egalitarian Computing, Usenix’16

R-hardness and code obfuscation

Using obfuscation idea from [BK’16]:

• Compiler that runs some resource hard function F(pwd,x)

• Computes R-hard bits F(pwd,x) = bi and then makes code
transformations:

• The user will have to run R-hard function F(pwd,x) at least once

R-hardness and code obfuscation

Using obfuscation idea from [BK’16]:
• Compiler that runs some resource hard function F(pwd,x)
• Computes R-hard bits F(pwd,x) = bi and then makes code

transformations:

• This could work well for previously unseen code.

R-hardness and code obfuscation

Using obfuscation idea from [BK’16]:

• Compiler that runs some resource hard function F(pwd,x)

• Computes R-hard bits F(pwd,x) = bi and then makes code
transformation:

Would this approach work to make
Incompressible, password protected INC-AES ?

R-hardness and code obfuscation

• Not really. Unless we already have K-
unextractable/unbreakable UBK-AES.

• However it shows hope that at least in some
cases UBK => INC

Related topics

Related research topics

• Code Obfuscation (for structure hiding)

• Cross-pollination with GreyBox crypto (for
value hiding)

• IO

• Malicious crypto – adversarial crypto design

• PK crypto based on new ideas

Open problems

• Can we design a WBC-friendly cipher?

• Would Even-Mansour cipher be a good
candidate?

• Design Diodon-like asymmetric memory hard
functions with non-linear TM tradeoffs and
faster operations

• INC-PWD-AES?

End

 (and we are hiring postdocs on

 WBC and other topics)

 cryptolux.org

