

A DFA attack on White-box implementations of AES with external encoding

WhibOx 2019: White-Box Cryptography and Obfuscation, 18-19/05/2019, Darmstadt

Alessandro Amadori, Wil Michiels and Peter Roelse

Department of Mathematics and Computer Science

White-box Cryptography and Side Channel Attacks

A very quick introduction

Advanced Encryption Standard

- AES-128 is a block cipher
 - 128-bit plaintext
 - 128-bit key
 - Rearranged bits
 - 10 rounds

Attacks in a White-box Scenario

- In a White-box Attack scenario an attacker:
 - has full access to implementation;
 - can modify part of the implementation;
 - can observe the execution of the algorithm;

- Algebraic attacks on source-code generally require:
 - Reverse engineering;
 - De-obfuscation;
 - Attack-strategies based on the implementation;

Side Channel Attacks (DCA/DFA)

- Advantages:
 - Can be automated;
 - Require little-to-no reverse engineering.
- Differential Computational Analysis (DCA) is the software counterpart of Differential Power Analysis (DPA).
- Differential Fault Analysis (DFA) introduces faults during execution.
 - Inject faults at Round 9 (4 faulty output bytes);
 - Set up system:

 $\begin{array}{l} S^{-1}(x_0 \oplus k_0) \oplus S^{-1}(X_0 \oplus k_0) = 2 \ (\ S^{-1}(x_1 \oplus k_1) \oplus S^{-1}(X_1 \oplus k_1) \) \\ S^{-1}(x_2 \oplus k_2) \oplus S^{-1}(X_2 \oplus k_2) = S^{-1}(x_1 \oplus k_1) \oplus S^{-1}(X_1 \oplus k_1) \\ S^{-1}(x_3 \oplus k_3) \oplus S^{-1}(X_3 \oplus k_3) = 3 \ (\ S^{-1}(x_1 \oplus k_1) \oplus S^{-1}(X_1 \oplus k_1) \) \end{array}$

• Solve the system to obtain the round key.

External Encodings

- Input or output of the executable may be encoded
 - Composition of random non-linear and linear functions
 - Input is encoded/output is decoded by another party
 - Prevent from code-lifting
 - Prevent from some algebraic attacks

External encodings as countermeasures to SCA

• "Therefore, DFA attacks on encoded outputs are not feasible either."

Unboxing the White-box, Sanfelix, Mune, de Haas, BlackHat 2016.

• "Another potential countermeasure against DCA is the use of external encodings. This was the primary reason why we were not able to extract the secret key [...]"

Differential Computation Analysis: Hiding your White-Box Designs is Not Enough, Bos, Hubain, Michiels, Teuwen, CHES 2016.

several techniques are combined to prevent known white-box attacks: wn middle subcy

Polynomial-based White-Box AES, Ranea, Preneel, Poster at CHES, 2018*.

*Photo Courtesy by Lorenz Panny

Attack WB implementations with simple output External Encodings with DFA

Our Model

- External encodings proposed by Chow et al.: 128-bit matrix multiplication and non-linear byte encodings.
- Main objective: Use first-order fault injection attack to extract key
 - External encoding given by non-linear byte encodings.

Chow et al.

Our Assumptions

- No reverse engineering;
- Operations may not be aligned;
- For any S-box in/out x there exists at least 1 location in a *single* execution where we can change x to any of its possible 256 values
 - Masking, internal encodings and embedding
- Adversary can guess with good probability the location of an S-box
 - E.g. Checking if 4 output bytes have been altered
 - Different values for different faults

Before we start off:

a quick thing

- $E_i() \rightarrow i^{th}$ output byte encoding
- \oplus \rightarrow bitwise XOR
- $\bullet \quad x_i \qquad \longrightarrow i^{th} \, correct \, output \, byte$
- $X_i \rightarrow i^{th}$ faulty output byte
- S() \rightarrow AES S-box
- MC() \rightarrow AES MixColumns
- Ignore Round 10 ShiftRows

Outline of the Attack

- Step 1: Pre-computation
- Step 2: Reconstruction of the 9th round output up to affine bit-functions
- Step 3: Reconstruction of the 9th round output up to affine byte-functions
 - Step 3/4: Reduction of number of variables
- Step 4: Complete reconstruction of the 9th round SubBytes output
- Step 5: Recovery of the 8th round key

Step 1: Pre-computation

- Construct bins of plaintexts M₀, M₁, ..., M₁₅
 - Necessary to perform Step 2
 - One for every output byte
 - Every *p* in *M*_i satisfies the following properties:
 - For all p in M_{i} , ith ciphertext output bytes are unique
 - The output values of two other indexes in the same column are fixed
 - Example: $M_0 = \{p_0, p_1, ..., p_{255}\}$

$$p_{0} \rightarrow c_{0} = (0x02, 0x34, 0x56, ...)$$

$$p_{1} \rightarrow c_{1} = (0xf4, 0x34, 0x56, ...)$$
...
$$p_{255} \rightarrow c_{255} = (0xc6, 0x34, 0x56, ...)$$

Step 2

- Inject faults at round 9;
- As for DFA, set up the system:

 $g_{0}^{-1}(x_{0}) \oplus g_{0}^{-1}(X_{0}) = 2(g_{1}^{-1}(x_{1}) \oplus g_{1}^{-1}(X_{1}))$ $g_{2}^{-1}(x_{2}) \oplus g_{2}^{-1}(X_{2}) = g_{1}^{-1}(x_{1}) \oplus g_{1}^{-1}(X_{1})$ $g_{3}^{-1}(x_{3}) \oplus g_{3}^{-1}(X_{3}) = 3(g_{1}^{-1}(x_{1}) \oplus g_{1}^{-1}(X_{1}))$

- $g_i^{-1}(x_i) = S^{-1}(E_i^{-1}(x_i) \oplus k_i)$
- The output of g_i^{-1} is the input of Round 10.

Step 2 (cont.)

- Using a theorem from the BGE attack, if we have functions $g_i (\bigoplus_{\alpha} (g^{-1}_i(.)))$, we can derive a non-linear function g_i
 - $g_i = g_i \circ g_i^{-1}$
 - g_i is an affine unknown function
- $g_0^{-1}(x_0) \oplus g_0^{-1}(X_0) = 2(g_1^{-1}(x_1) \oplus g_0^{-1}(X_1)) \longrightarrow X_0 = g_0(g_0^{-1}(x_0) \oplus 2(g_1^{-1}(x_1) \oplus g_1^{-1}(X_1)))$

To provide a correct construction:

- one byte must assume all possible values
- an output byte must stay fixed
- We use the bin **M**_i
 - We inject all byte values for every plaintext in **M**_i
- Why a second fixed byte?

.

Step 2 (cont.)

- Faults must be introduced for every plaintext.
 - The same S-box must be affected
 - Possible execution misalignments for different plaintexts
- This is where the second fixed byte comes in action:
 - Comparing faulty outputs on fixed bytes:
 - It is possible to check if two injections affected the same S-Box
 - No information about which S-box
 - Not necessary

Step 3

- Inject faults at Round 9
 - Consider the set of equations $g_0^{-1}(x_0) \oplus g_0^{-1}(X_0) = 2(g_1^{-1}(x_1) \oplus g_1^{-1}(X_1))$ $g_2^{-1}(x_2) \oplus g_2^{-1}(X_2) = g_1^{-1}(x_1) \oplus g_1^{-1}(X_1)$ $g_3^{-1}(x_3) \oplus g_3^{-1}(X_3) = 3(g_1^{-1}(x_1) \oplus g_1^{-1}(X_1))$ $x_i = g_i^{-1}(x_i)$ $g_i^{-1}(x_i) = G_i^{-1}(x_i \oplus b_i)$

Using another Theorem of BGE attack, if we have a function $G_i \circ \gamma \circ G_i^{-1}$ we derive a linear function g_i

- $G_i = g_i \circ \lambda_i^{-1}$
- λ_i^{-1} is an unknown non-zero factor

Step 3 (cont.)

- We need to construct a function of the form $G_i \circ \gamma \circ G_i^{-1}$
 - γ is a particular known constant (derived from MC coefficients)
- We inject faults affecting 2 different S-boxes in different executions

 - γ is unknown but computable! (check the eigenvalues).
 - For some indexes, we can infer the targeted S-Boxes. ٠
 - Any pair of positions and output bytes works! ٠
- We construct an encoded output of Round 9 y_i such that ٠
 - $y_i = g_i^{-1}(x_i)$
 - $\mathbf{v}_i = \lambda_i \mathbf{v}_i \oplus \mathbf{b}_i$
 - y_i is the non-encoded output of Round 9

Step 3/4

Knowing that :

•

- $G_i = g_i \circ \lambda_i^{-1}$,
- $y_i = g_i^{-1}(x_i)$ and

$$G_0^{-1}(\mathsf{X}_0 \oplus \mathsf{X}_0) = 2(G_1^{-1}(\mathsf{X}_1 \oplus \mathsf{X}_1))$$

$$G_2^{-1}(\mathsf{X}_2 \oplus \mathsf{X}_2) = G_1^{-1}(\mathsf{X}_1 \oplus \mathsf{X}_1)$$

$$G_3^{-1}(\mathsf{X}_3 \oplus \mathsf{X}_3) = 3(G_1^{-1}(\mathsf{X}_1 \oplus \mathsf{X}_1))$$

We construct a dependency among λ_i

$$\lambda_{0}^{-1} (\mathbf{y}_{0} \oplus \mathbf{Y}_{0}) = 2 (\lambda_{1}^{-1} (\mathbf{y}_{1} \oplus \mathbf{Y}_{1}))$$
$$\lambda_{2}^{-1} (\mathbf{y}_{2} \oplus \mathbf{Y}_{2}) = \lambda_{1}^{-1} (\mathbf{y}_{1} \oplus \mathbf{Y}_{1})$$
$$\lambda_{3}^{-1} (\mathbf{y}_{3} \oplus \mathbf{Y}_{3}) = 3 (\lambda_{1}^{-1} (\mathbf{y}_{1} \oplus \mathbf{Y}_{1}))$$

•
$$\lambda_1^{-1} = c_1 \lambda_0^{-1}, \ \lambda_2 = c_2 \lambda_0^{-1}, \ \lambda_3 = c_3 \lambda_0^{-1}.$$

• c₁, c₂, c₃ are computable.

- We obtain an "encoded" S-Box output of round 9 (z₀, z₁,..., z₁₅) from (y₀, y₁, ..., y₁₅) by reverting AES operations (without considering key addition).
- Inject faults at Round 8:

 $\begin{aligned} S^{-1}(\lambda_0^{-1} z_0 \oplus \beta_0) \oplus S^{-1}(\lambda_0^{-1} Z_0 \oplus \beta_0) &= 2(S^{-1}(\lambda_4^{-1} z_1 \oplus \beta_1) \oplus S^{-1}(\lambda_4^{-1} Z_1 \oplus \beta_1)) \\ S^{-1}(\lambda_8^{-1} z_2 \oplus \beta_2) \oplus S^{-1}(\lambda_8^{-1} Z_2 \oplus \beta_2) &= S^{-1}(\lambda_4^{-1} z_1 \oplus \beta_1) \oplus S^{-1}(\lambda_4^{-1} Z_1 \oplus \beta_1) \\ S^{-1}(\lambda_{12}^{-1} z_3 \oplus \beta_3) \oplus S^{-1}(\lambda_{12}^{-1} Z_3 \oplus \beta_3) &= 3(S^{-1}(\lambda_4^{-1} z_1 \oplus \beta_1) \oplus S^{-1}(\lambda_4^{-1} Z_1 \oplus \beta_1)) \end{aligned}$

- The unknowns are λ_i^{-1} and β_i
 - They contain the remaining randomness

Step 4 (cont.)

- Exhaustive search is unfeasible,
 - 2⁶⁴ operations
- We use a MITM approach with hash tables:
 - $S^{-1}(\lambda_4^{-1}Z_1 \oplus \beta_1) \oplus S^{-1}(\lambda_4^{-1}Z_1 \oplus \beta_1)$ in every equation
- Consider

 $2^{-1}(\mathsf{S}^{-1}(\lambda_0^{-1}\mathsf{Z}_0\oplus\beta_0)\oplus\mathsf{S}^{-1}(\lambda_0^{-1}\mathsf{Z}_0\oplus\beta_0))=\mathsf{S}^{-1}(\lambda_4^{-1}\mathsf{Z}_1\oplus\beta_1)\oplus\mathsf{S}^{-1}(\lambda_4^{-1}\mathsf{Z}_1\oplus\beta_1)$

- For all λ and β we compute S⁻¹($\lambda z_1 \oplus \beta$) \oplus S⁻¹($\lambda Z_1 \oplus \beta$)
 - Store them in an Hash Table
- For all λ and β we compute 2⁻¹ (S⁻¹($\lambda z_0 \oplus \beta$) \oplus S⁻¹($\lambda Z_0 \oplus \beta$))
 - Check if we have a match in the hash table
 - If yes: $(\lambda, \beta, \lambda, \beta)$ is a solution
 - $(\lambda_0^{-1}, \beta_0, \lambda_4^{-1}, \beta_1)$ <u>must</u> belong to the set of solutions
- We apply this process for *w* faults

Step 4 (cont.)

- Higher $\omega \rightarrow$ more accuracy
 - ω = 8 only one solution is found (in about 5 min)
- If injecting at the wrong spot: No solution for the system.
- After retrieving all the λ_i^{-1} and the β_i :
 - We are able to decode the output of the Round 9 S-box.
 - From encoded Round 9 S-Box output ($z_0, z_1, ..., z_{15}$) compute $z_i = \lambda_i^{-1} z_i \oplus \beta_i$

- From the decoded Round 9 S-box output (z₀, z₁, ..., z₁₅) compute the non-encoded Round 8 S-Box output (w₀, w₁, ..., w₁₅) as in Step 4.
- Inject faults at Round 7: set up and solve the standard equations $\begin{array}{l} S^{-1}(w_0 \oplus k_0) & \oplus S^{-1}(W_0 \oplus k_0) &= 2(S^{-1}(w_{13} \oplus k_{13}) \oplus S^{-1}(W_{13} \oplus k_{13})) \\ S^{-1}(w_{10} \oplus k_{10}) \oplus S^{-1}(W_{10} \oplus k_{10}) &= S^{-1}(w_{13} \oplus k_{13}) \oplus S^{-1}(W_{13} \oplus k_{13}) \\ S^{-1}(w_7 \oplus k_7) & \oplus S^{-1}(W_7 \oplus k_7) &= 3(S^{-1}(w_{13} \oplus k_{13}) \oplus S^{-1}(W_{13} \oplus k_{13})) \end{array}$
 - Obtain the values for k
 - MITM-approach is very efficient.
 - Round 8 key is MC(k)!
 - Revert the Key-Scheduling algorithm to obtain the encryption key.

Work load

- Step 1:
- Step 2:
- Step 3:
 - Step 3/4:
- Step 4:
- Step 5

- \rightarrow ~2³¹ WB encryptions,
 - \rightarrow ~ 2²⁰ WB encryption,
 - \rightarrow ~ 2¹⁰ WB encryptions,
- \rightarrow 0 WB encryptions,
 - $\rightarrow 4\omega$ WB encryptions,
 - $\rightarrow 4\omega'$ WB encryptions,

- 0 operations
- 2¹⁸ operations
- 2²⁰ operations
- 12 operations
- ω2¹⁹ operations
- $\omega' 2^{13}$ operations

< 2³² WB encryptions < 2²² operations

Summary

- We perform the attack stepwise:
 - Construct last round up to some function
 - Remove the randomness and retrieve non-encoded state
 - Extract round-8 key
- Open Problems/Future work:
 - Work on assumptions
 - Consider stronger external encodings
 - Study what external encodings are safe
 - Reduce complexities

Thank you! Any Questions?

