EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

A DFA attack on White-box implementations of AES

with external encoding
WhibOx 2019: White-Box Cryptography and Obfuscation, 18-19/05/2019, Darmstadt

Alessandro Amadori, Wil Michiels and Peter Roelse

Department of Mathematics and Computer Science

White-box Cryptography
and
Side Channel Attacks

A very quick introduction

TU/e

3

Advanced Encryption Standard

P
Ko — AddRotndKey
e AES-128is a block cipher SubBytes
. 128-bit plaintext
* Rearranged bits Ky, 11— AddRoundKey
e 10rounds ‘i
Subéytes
Ko T AddRoHndKey

T
c

DFA on AES with Byte External Encodings — by Alessandro Amadori, Wil Michiels and Peter Roelse

TU/e

Attacks in a White-box Scenario

 |In a White-box Attack scenario an attacker:

* has full access to implementation;
e can modify part of the implementation;
* can observe the execution of the algorithm;

* Algebraic attacks on source-code generally require:

* Reverse engineering;
* De-obfuscation;
e Attack-strategies based on the implementation;

TU/e

Side Channel Attacks (DCA/DFA)

e Advantages:

* Can be automated;
* Require little-to-no reverse engineering.

» Differential Computational Analysis (DCA) is the software counterpart of Differential
Power Analysis (DPA).

e Differential Fault Analysis (DFA) introduces faults during execution.

* Inject faults at Round 9 (4 faulty output bytes);

* Set up system:
S(xy @ ko) @ SHX, D ko) =2 (SHx, @ ky) D SHX, Dk,))
Six, Dk, ®DSYX, D k,) = Sx; Dky) DSYX; Dk,)
S(x3 @ k3) @ SYHX; D k3) =3 (SHx, @ k) D SHX, Dk,))

* Solve the system to obtain the round key.

: TU/e

External Encodings

* Input or output of the executable may be encoded

Composition of random non-linear and linear functions
Input is encoded/output is decoded by another party

Prevent from code-lifting

Prevent from some algebraic attacks

F(p)—

Ey

G

—G(c)

TU/e

External encodings as countermeasures to SCA

“Therefore, DFA attacks on encoded outputs are not feasible either.”
Unboxing the White-box, Sanfelix, Mune, de Haas, BlackHat 2016.

“Another potential countermeasure against DCA is the use of external encodings.
This was the primary reason why we were not able to extract the secret key [...]”

Differential Computation Analysis: Hiding your White-Box Designs is Not Enough, Bos, Hubain, Michiels, Teuwen, CHES 2016.

WL",J:"’:'(H'
PHEG 10 prey
M '-f"{” Pf
10
,.:I(“/("’ Wn

_ White.
T UCAIDFRA 'te-box attacks.

Polynomial-based White-Box AES, Ranea, Preneel, Poster at CHES, 2018*.

*Photo Courtesy by Lorenz Panny

TU/e

Attack WB implementations
with simple output
External Encodings with DFA

TU/e

* External encodings proposed by Chow et al.: 128-bit matrix multiplication and
non-linear byte encodings.

Our Model

* Main objective: Use first-order fault injection attack to extract key

e External encoding given by non-linear byte encodings.

))
o o
Round 10
- -
Chow et al.

!

Round 10

Our model

TU/e

10

Our Assumptions

No reverse engineering;
Operations may not be aligned;
For any S-box in/out x there exists at least 1 location in a single execution where
we can change x to any of its possible 256 values
* Masking, internal encodings and embedding
Adversary can guess with good probability the location of an S-box

* E.g. Checking if 4 output bytes have been altered
* Different values for different faults

TU/e

11

Before we start off:

a quick thing
E() — ith output byte encoding
@ — bitwise XOR
X: — ith correct output byte

— ith faulty output byte
S() — AES S-box

MC() — AES MixColumns
lgnore Round 10 ShiftRows

TU/e

12

Outline of the Attack

Step 1: Pre-computation
Step 2: Reconstruction of the 9t round output up to affine bit-functions

Step 3: Reconstruction of the 9t round output up to affine byte-functions

Step 3/4: Reduction of number of variables

Step 4: Complete reconstruction of the 9t round SubBytes output

Step 5: Recovery of the 8t round key

TU/e

13

Step 1: Pre-computation

* Construct bins of plaintexts M,, M,, ..., M5
* Necessary to perform Step 2
* One for every output byte

* Every p in M; satisfies the following properties:
* Forall pin M,, it ciphertext output bytes are unique
* The output values of two other indexes in the same column are fixed

* Example: M;={py Py .., P2ss}

po —¢, =(0x02, 0x34, 0x56, ...)
P, — ¢, =(0xf4, 0x34, 0x56, ...)

P,ss —> C,s5 = (0xc6, 0x34, 0x56, ...)

TU/e

14

Step 2

Inject faults at round 9;
As for DFA, set up the system:

Y Round 9 Round 10 g5
801 (%0) @ 8571 (X,) = 2(8,2 (%) D gt (X)) *HiiH = ekl -
Blba) @800 = gt @et) [s [:
g5 (x5) @ g5 (X3) = 3(£, (x,) @ g (Xy)) I8 R O R B e Nyl rwil O

gi_l (x;) = st (Ei_l (x;) @ ki)

The output of g1 is the input of Round 10.

TU/e

15

Step 2 (cont.)

Using a theorem from the BGE attack, if we have functions g, (®,(g2(.))), we can
derive a non-linear function g;

* g=gog’
* g is an affine unknown function

801 (%) @ g%(Xo) = 2(8, (xq) ® gty(X,))) X, = g, (847 (%) DR(8, (x,) D g, (X,)))

To provide a correct construction:
one byte must assume all possible values
an output byte must stay fixed

* We use the bin M;
* We inject all byte values for every plaintext in M;

Why a second fixed byte?

TU/e

16

Step 2 (cont.)

Faults must be introduced for every plaintext.

The same S-box must be affected
Possible execution misalignments for different plaintexts

This is where the second fixed byte comes in action:

« Comparing faulty outputs on fixed bytes:
« ltis possible to check if two injections affected the same S-Box

* No information about which S-box
 Not necessary

TU/e

Step 3

* Inject faults at Round 9

_ _ - Round9 .

' C(?lrzsn)jg th-?(ie)t oi(eq?(a“)ocgs 1(X,)) {sH H HefHod oo o
Bo Xo) © By \Ag) = 2181 "\Xq) D 8 (A4 sk Har® a |, 2 (ig::rl
2,100) @ g, (X)) = gt) @ g X)) . SR | |MC d : !
g5 (x3) @ g5 H(X5) = 3(g, (%) @ g,7H(X,)) : : - E : : (/—_l: :
- 800 SH H e

gt (%) =G x @ b)

Using another Theorem of BGE attack, if we have a function G, oy o G,* we derive a
linear function

* G=goAt

* Alisan unknown non-zero factor

17 TU/e

18

Step 3 (cont.)

We need to construct a function of the form G, oy 0 G,*
* yisa particular known constant (derived from MC coefficients)

We inject faults affecting 2 different S-boxes in different executions

Gy (% ® Xo) = 2(G, (x, ® X)) Gy (% ® Xo) = 273(G, L (x, ® X,))
. G,(2(G, M () and G,(213(G,1()) mwmmmp G,(223(G, (),
b

* yisunknown but computable! (check the eigenvalues).
* For some indexes, we can infer the targeted S-Boxes.
* Any pair of positions and output bytes works!

We construct an encoded output of Round 9 vy, such that

* viEex)
y yi=Ay; © b,
* y,isthe non-encoded output of Round 9

TU/e

Step 3/4

Knowing that :

e G =goM\Y
* vy, =g '(x)and
. Gyt @ Xo) = 2(6, {x, X,

Gl ®X,) = G, x, ®X,)
G, (x; @ X3) = 3(G, (x, ® X,))

We construct a dependency among A,

Aoty @Y,)
A 2_1 (v, @Y,)
Aty DY,)

i 7\11_1 = Cl}\vo-l’ }\\/2 = Cz}\vo-l’ 7\43 = C37\10_1.

c,, C,, €3 are computable.

2(A My, @Y,)
Aty @©Y,)
3(A My, @Vy)

19

TU/e

20

Rouwnd9
5o H el e i

z 9

S }-* 1 = *’i k! }
. SR MC @.1 . .

/?}HzlS — m : q15 yli(;—-l'li(ﬂiil‘-fﬂls

We obtain an “encoded” S-Box output of round 9 (z,, 7,,..., z,5) from (y,, v,
.., Y15) by reverting AES operations (without considering key addition).

Inject faults at Round 8:
STy L2y @ By) @ S kg1 Zy ® By) = 2(S1(N, 12, ® By) @ SHALLZ, @ By))
Stz ®B,) DS Ag1Z, ®B,) = S, 1z, ® By ®SLUALZ, © B,
Sy z, @ By) © S Ay, 17, ® By) = 3(SH A2, @ By) © SR, 17, © By))

The unknowns are 7»{1 and f3,

They contain the remaining randomness

TU/e

21

Step 4 (cont.)

Exhaustive search is unfeasible,
* 2% operations
We use a MITM approach with hash tables:
o SYA,tz, @By D SHALTZ, @ B,) In every equation

Consider
271 (S Yy 1zy @ By) @ SHALZ, @ By)) =SHA, 2, @ By) © SHA,1Z, D By)

For all A and 3 we compute S Az, ®B) D SHLZ, D B)
Store them in an Hash Table

For all A and 3 we compute 271 (S(L z, @ B) @ SYLZ, D B))

* Check if we have a match in the hash table
If yes: (A, B, A, B) is a solution
* (AL Bo, AL, By) must belong to the set of solutions

We apply this process for @ faults

TU/e

22

Step 4 (cont.)

* Higher @ — more accuracy
* ®= 8 only one solution is found (in about 5 min)

* Ifinjecting at the wrong spot: No solution for the system.

* After retrieving all the A, and the (3

* We are able to decode the output of the Round 9 S-box.
* From encoded Round 9 S-Box output (z,, z,, ..., Z,5) compute z, = A1z, @ B,

TU/e

Round8
W L a5 o 4 =0 ¢
V‘s’iaH Z} *'—"@< . —

W5

LE

* From the decoded Round 9 S-box output (z,, z, ..., ;) compute the
non-encoded Round 8 S-Box output (wy, Wy, ..., W,c) as in Step 4.

* Inject faults at Round 7: set up and solve the standard equations
SHwy @ ky) DSHW,Dky) =2(SHwy3 @ ky3) @ SHW 5D ky3))
SHwyo @ k) @ SHW,o D kyp) SHwy; @ kyg) D SHW 3 @ ky3)
SHw, D k,) DSHW,Dk,) 3(SYHwys @ ki3) @ SHW ;5@ ky3))
* Obtain the values for k

* MITM-approach is very efficient.

* Round 8 key is MC(k)!

* Revert the Key-Scheduling algorithm to obtain the encryption key.

23

TU/e

24

Step 1:
Step 2:

Step 3:
* Step 3/4:
Step 4:

Step 5

Work load

— ~231 WB encryptions,
— ~ 220 WB encryption,

— ~ 219 WB encryptions,
— 0 WSB encryptions,
— 4@ WB encryptions,

— 4@ WB encryptions,

< 232 \WB encryptions
< 2?2 operations

0 operations
218 operations

220 operations
12 operations
a2’ operations

@213 operations

TU/e

25

Summary

We perform the attack stepwise:

e Construct last round up to some function
* Remove the randomness and retrieve non-encoded state
* Extract round-8 key

Open Problems/Future work:

* Work on assumptions

* Consider stronger external encodings
* Study what external encodings are safe

* Reduce complexities

TU/e

Thank you!

Any Questions?

TU/e

