
Department of Mathematics and Computer Science

Alessandro Amadori, Wil Michiels and Peter Roelse

WhibOx 2019: White-Box Cryptography and Obfuscation, 18-19/05/2019, Darmstadt

A DFA attack on White-box implementations of AES
with external encoding

White-box Cryptography
and

Side Channel Attacks
A very quick introduction

2

• AES-128 is a block cipher

• 128-bit plaintext

• 128-bit key

• Rearranged bits

• 10 rounds

DFA on AES with Byte External Encodings – by Alessandro Amadori, Wil Michiels and Peter Roelse3

Advanced Encryption Standard

• In a White-box Attack scenario an attacker:

• has full access to implementation;

• can modify part of the implementation;

• can observe the execution of the algorithm;

• Algebraic attacks on source-code generally require:

• Reverse engineering;

• De-obfuscation;

• Attack-strategies based on the implementation;

4

Attacks in a White-box Scenario

• Advantages:

• Can be automated;
• Require little-to-no reverse engineering.

• Differential Computational Analysis (DCA) is the software counterpart of Differential
Power Analysis (DPA).

• Differential Fault Analysis (DFA) introduces faults during execution.

• Inject faults at Round 9 (4 faulty output bytes);
• Set up system:

S-1(x0  k0)  S-1(X0  k0) = 2 (S-1(x1  k1)  S-1(X1  k1))
S-1(x2  k2)  S-1(X2  k2) = S-1(x1  k1)  S-1(X1  k1)
S-1(x3  k3)  S-1(X3  k3) = 3 (S-1(x1  k1)  S-1(X1  k1))

• Solve the system to obtain the round key.

5

Side Channel Attacks (DCA/DFA)

• Input or output of the executable may be encoded
• Composition of random non-linear and linear functions
• Input is encoded/output is decoded by another party

• Prevent from code-lifting
• Prevent from some algebraic attacks

6

External Encodings

• “Therefore, DFA attacks on encoded outputs are not feasible either.”

Unboxing the White-box, Sanfelix, Mune, de Haas, BlackHat 2016.

• “Another potential countermeasure against DCA is the use of external encodings.
This was the primary reason why we were not able to extract the secret key […]”

Differential Computation Analysis: Hiding your White-Box Designs is Not Enough, Bos, Hubain, Michiels, Teuwen, CHES 2016.

Polynomial-based White-Box AES, Ranea, Preneel, Poster at CHES, 2018*.

*Photo Courtesy by Lorenz Panny

7

External encodings as countermeasures to SCA

Attack WB implementations
with simple output

External Encodings with DFA

8

• External encodings proposed by Chow et al.: 128-bit matrix multiplication and
non-linear byte encodings.

• Main objective: Use first-order fault injection attack to extract key

• External encoding given by non-linear byte encodings.

9

Our Model

Chow et al. Our model

• No reverse engineering;

• Operations may not be aligned;

• For any S-box in/out x there exists at least 1 location in a single execution where
we can change x to any of its possible 256 values

• Masking, internal encodings and embedding

• Adversary can guess with good probability the location of an S-box

• E.g. Checking if 4 output bytes have been altered
• Different values for different faults

10

Our Assumptions

• Ei()  ith output byte encoding

•   bitwise XOR

• xi  ith correct output byte

• Xi  ith faulty output byte

• S()  AES S-box

• MC()  AES MixColumns

• Ignore Round 10 ShiftRows

11

Before we start off:
a quick thing

• Step 1: Pre-computation

• Step 2: Reconstruction of the 9th round output up to affine bit-functions

• Step 3: Reconstruction of the 9th round output up to affine byte-functions

• Step 3/4: Reduction of number of variables

• Step 4: Complete reconstruction of the 9th round SubBytes output

• Step 5: Recovery of the 8th round key

12

Outline of the Attack

• Construct bins of plaintexts M0, M1, …, M15
• Necessary to perform Step 2

• One for every output byte

• Every p in Mi satisfies the following properties:
• For all p in Mi, i

th ciphertext output bytes are unique
• The output values of two other indexes in the same column are fixed

• Example: M0 = {p0, p1, …, p255}

p0  c0 = (0x02, 0x34, 0x56, …)
p1  c1 = (0xf4, 0x34, 0x56, …)

…
p255  c255 = (0xc6, 0x34, 0x56, …)

13

Step 1: Pre-computation

• Inject faults at round 9;

• As for DFA, set up the system:

g0
-1(x0)  g0

-1 (X0) = 2(g1
-1 (x1)  g1

-1 (X1))

g2
-1 (x2)  g2

-1 (X2) = g1
-1 (x1)  g1

-1 (X1)

g3
-1 (x3)  g3

-1 (X3) = 3(g1
-1 (x1) g1

-1 (X1))

• gi
-1 (xi) = S-1 (Ei

-1 (xi)  ki)

• The output of gi
-1 is the input of Round 10.

14

Step 2

g0



• Using a theorem from the BGE attack, if we have functions gi ((g-1
i(.))), we can

derive a non-linear function gi

• gi = gi  gi
-1

• gi is an affine unknown function

• g0
-1 (x0)  g-1

0(X0) = 2(g1
-1 (x1)  g-1

1(X1)) X0 = g0 (g0
-1 (x0)  2(g1

-1 (x1)  g1
-1 (X1)))

•
To provide a correct construction:

• one byte must assume all possible values

• an output byte must stay fixed

• We use the bin Mi
• We inject all byte values for every plaintext in Mi

• Why a second fixed byte?
15

Step 2 (cont.)

• Faults must be introduced for every plaintext.

• The same S-box must be affected

• Possible execution misalignments for different plaintexts

• This is where the second fixed byte comes in action:

• Comparing faulty outputs on fixed bytes:
• It is possible to check if two injections affected the same S-Box

• No information about which S-box
• Not necessary

16

Step 2 (cont.)

• Inject faults at Round 9

• Consider the set of equations

g0
-1(x0)  g0

-1(X0) = 2(g1
-1(x1)  g1

-1(X1))
g2

-1(x2) g2
-1(X2) = g1

-1(x1) g1
-1(X1)

g3
-1(x3)  g3

-1(X3) = 3(g1
-1(x1) g1

-1(X1))

xi = gi
-1(xi)

gi
-1 (xi) = Gi

-1(xi  bi)

Using another Theorem of BGE attack, if we have a function Gi   Gi
-1 we derive a

linear function gi

• Gi = gi  i
-1

• i
-1 is an unknown non-zero factor

17

Step 3

• We need to construct a function of the form Gi   Gi
-1

•  is a particular known constant (derived from MC coefficients)

• We inject faults affecting 2 different S-boxes in different executions
G0

-1(x0  X0) = 2(G1
-1 (x1  X1)) G0

-1(x0  X0) = 2-13(G1
-1 (x1  X1))

• G0(2(G1
-1 (.)) and G0(2-13(G1

-1 (.)) G0(2-23(G0
-1 (.)),

•  is unknown but computable! (check the eigenvalues).

• For some indexes, we can infer the targeted S-Boxes.

• Any pair of positions and output bytes works!

• We construct an encoded output of Round 9 yi such that

• yi = gi
-1(xi)

• yi = iyi  bi

• yi is the non-encoded output of Round 9
18

Step 3 (cont.)



Knowing that :

• Gi = gi  i
-1,

• yi = gi
-1(xi) and

• G0
-1(x0  X0) = 2(G1

-1(x1  X1))
G2

-1(x2  X2) = G1
-1(x1  X1)

G3
-1(x3  X3) = 3(G1

-1(x1 X1))

We construct a dependency among i

 0
-1 (y0  Y0) = 2 ( 1

-1 (y1  Y1))
 2

-1 (y2  Y2) =  1
-1 (y1  Y1)

 3
-1 (y3  Y3) = 3 ( 1

-1 (y1Y1))

• 1
-1 = c10

-1, 2 = c20
-1, 3 = c30

-1.

• c1, c2, c3 are computable.

19

Step 3/4

• We obtain an “encoded” S-Box output of round 9 (z0, z1,…, z15) from (y0, y1,
…, y15) by reverting AES operations (without considering key addition).

• Inject faults at Round 8:
S-1(0

-1 z0  0)  S-1(0
-1 Z0  0) = 2(S-1(4

-1z1  1)  S-1(4
-1 Z1  1))

S-1(8
-1 z2  2)  S-1(8

-1 Z2  2) = S-1(4
-1z1  1)  S-1(4

-1 Z1  1)

S-1(12
-1 z3  3)  S-1(12

-1 Z3  3) = 3(S-1(4
-1 z1  1)  S-1(4

-1 Z1  1))

• The unknowns are i
-1 and i

• They contain the remaining randomness

20

Step 4

z0

z1

z15

• Exhaustive search is unfeasible,
• 264 operations

• We use a MITM approach with hash tables:
• S-1(4

-1z1  1)  S-1(4
-1 Z1  1) in every equation

• Consider
2-1 (S-1(0

-1z0  0)  S-1(0
-1Z0  0)) = S-1(4

-1z1  1)  S-1(4
-1Z1  1)

• For all  and  we compute S-1( z1  )  S-1( Z1  )

• Store them in an Hash Table

• For all  and  we compute 2-1 (S-1( z0  )  S-1( Z0  ))
• Check if we have a match in the hash table
• If yes: (, , , ) is a solution
• (0

-1,0, 4
-1, 1) must belong to the set of solutions

• We apply this process for  faults
21

Step 4 (cont.)

• Higher  more accuracy
•  = 8 only one solution is found (in about 5 min)

• If injecting at the wrong spot: No solution for the system.

• After retrieving all the i
-1 and the i:

• We are able to decode the output of the Round 9 S-box.
• From encoded Round 9 S-Box output (z0, z1, … , z15) compute zi = i

-1zi  i

22

Step 4 (cont.)

• From the decoded Round 9 S-box output (z0, z1, … , z15) compute the
non-encoded Round 8 S-Box output (w0, w1, … , w15) as in Step 4.

• Inject faults at Round 7: set up and solve the standard equations
S-1(w0  k0)  S-1(W0  k0) = 2(S-1(w13  k13)  S-1(W13 k13))

S-1(w10  k10)  S-1(W10  k10) = S-1(w13  k13)  S-1(W13  k13)

S-1(w7  k7)  S-1(W7  k7) = 3(S-1(w13  k13)  S-1(W13 k13))

• Obtain the values for k
• MITM-approach is very efficient.
• Round 8 key is MC(k)!
• Revert the Key-Scheduling algorithm to obtain the encryption key.

23

Step 5

w0

w1

w15

• Step 1:  ~231 WB encryptions, 0 operations

• Step 2:  ~ 220 WB encryption, 218 operations

• Step 3:  ~ 210 WB encryptions, 220 operations

• Step 3/4:  0 WB encryptions, 12 operations

• Step 4:  4 WB encryptions, 219 operations

• Step 5  4’ WB encryptions, ’213 operations

24

Work load

< 232 WB encryptions
< 222 operations

• We perform the attack stepwise:
• Construct last round up to some function
• Remove the randomness and retrieve non-encoded state
• Extract round-8 key

• Open Problems/Future work:
• Work on assumptions
• Consider stronger external encodings

• Study what external encodings are safe
• Reduce complexities

25

Summary

Thank you!
Any Questions?

26

