A DFA attack on White-box implementations of AES with external encoding

WhibOx 2019: White-Box Cryptography and Obfuscation, 18-19/05/2019, Darmstadt

Alessandro Amadori, Wil Michiels and Peter Roelse
White-box Cryptography and Side Channel Attacks

A very quick introduction
AES-128 is a block cipher
- 128-bit plaintext
- 128-bit key
- Rearranged bits
- 10 rounds
Attacks in a White-box Scenario

- In a White-box Attack scenario an attacker:
 - has full access to implementation;
 - can modify part of the implementation;
 - can observe the execution of the algorithm;

- Algebraic attacks on source-code generally require:
 - Reverse engineering;
 - De-obfuscation;
 - Attack-strategies based on the implementation;
Side Channel Attacks (DCA/DFA)

- Advantages:
 - Can be automated;
 - Require little-to-no reverse engineering.
- Differential Computational Analysis (DCA) is the software counterpart of Differential Power Analysis (DPA).
- Differential Fault Analysis (DFA) introduces faults during execution.
 - Inject faults at Round 9 (4 faulty output bytes);
 - Set up system:
 \[
 \begin{align*}
 S^{-1}(x_0 \oplus k_0) \oplus S^{-1}(X_0 \oplus k_0) &= 2 \ (S^{-1}(x_1 \oplus k_1) \oplus S^{-1}(X_1 \oplus k_1)) \\
 S^{-1}(x_2 \oplus k_2) \oplus S^{-1}(X_2 \oplus k_2) &= S^{-1}(x_1 \oplus k_1) \oplus S^{-1}(X_1 \oplus k_1) \\
 S^{-1}(x_3 \oplus k_3) \oplus S^{-1}(X_3 \oplus k_3) &= 3 \ (S^{-1}(x_1 \oplus k_1) \oplus S^{-1}(X_1 \oplus k_1))
 \end{align*}
 \]
 - Solve the system to obtain the round key.
External Encodings

- Input or output of the executable may be encoded
 - Composition of random non-linear and linear functions
 - Input is encoded/output is decoded by another party
- Prevent from code-lifting
- Prevent from some algebraic attacks
External encodings as countermeasures to SCA

- “Therefore, DFA attacks on encoded outputs are not feasible either.”

 Unboxing the White-box, Sanfelix, Mune, de Haas, BlackHat 2016.

- “Another potential countermeasure against DCA is the use of external encodings. This was the primary reason why we were not able to extract the secret key [...]”

Photo Courtesy by Lorenz Panny
Attack WB implementations with simple output
External Encodings with DFA
Our Model

- External encodings proposed by Chow et al.: 128-bit matrix multiplication and non-linear byte encodings.
- Main objective: Use first-order fault injection attack to extract key
- External encoding given by non-linear byte encodings.
Our Assumptions

- No reverse engineering;
- Operations may not be aligned;
- For any S-box in/out x there exists at least 1 location in a *single* execution where we can change x to any of its possible 256 values
 - Masking, internal encodings and embedding
- Adversary can guess with good probability the location of an S-box
 - E.g. Checking if 4 output bytes have been altered
 - Different values for different faults
Before we start off:

a quick thing

- \(E_i() \rightarrow i^{th} \) output byte encoding
- \(\oplus \rightarrow \) bitwise XOR
- \(x_i \rightarrow i^{th} \) correct output byte
- \(X_i \rightarrow i^{th} \) faulty output byte
- \(S() \rightarrow \) AES S-box
- \(MC() \rightarrow \) AES MixColumns
- Ignore Round 10 ShiftRows
Outline of the Attack

• Step 1: Pre-computation

• Step 2: Reconstruction of the 9th round output up to affine bit-functions

• Step 3: Reconstruction of the 9th round output up to affine byte-functions
 • Step 3/4: Reduction of number of variables

• Step 4: Complete reconstruction of the 9th round SubBytes output

• Step 5: Recovery of the 8th round key
Step 1: Pre-computation

• Construct bins of plaintexts M_0, M_1, \ldots, M_{15}
 • Necessary to perform Step 2
 • One for every output byte
 • Every p in M_i satisfies the following properties:
 • For all p in M_i, ith ciphertext output bytes are unique
 • The output values of two other indexes in the same column are fixed

• Example: $M_0 = \{p_0, p_1, \ldots, p_{255}\}$

\[
\begin{align*}
p_0 & \rightarrow c_0 = (0x02, 0x34, 0x56, \ldots) \\
p_1 & \rightarrow c_1 = (0xf4, 0x34, 0x56, \ldots) \\
& \ldots \\
p_{255} & \rightarrow c_{255} = (0xc6, 0x34, 0x56, \ldots)
\end{align*}
\]
Step 2

- Inject faults at round 9;
- As for DFA, set up the system:

\[
g_0^{-1}(x_0) \oplus g_0^{-1}(X_0) = 2 (g_1^{-1}(x_1) \oplus g_1^{-1}(X_1))
\]

\[
g_2^{-1}(x_2) \oplus g_2^{-1}(x_2) = g_1^{-1}(x_1) \oplus g_1^{-1}(x_1)
\]

\[
g_3^{-1}(x_3) \oplus g_3^{-1}(x_3) = 3 (g_1^{-1}(x_1) \oplus g_1^{-1}(X_1))
\]

- \(g_i^{-1}(x_i) = S^{-1}(E_i^{-1}(x_i) \oplus k_i)\)

- The output of \(g_i^{-1}\) is the input of Round 10.
Step 2 (cont.)

• Using a theorem from the BGE attack, if we have functions $g_i(\oplus_\alpha(g^{-1}_i(.)))$, we can derive a non-linear function g_i
 • $g_i = g_i \circ g_i^{-1}$
 • g_i is an affine unknown function

• $g_0^{-1}(x_0) \oplus g_0^{-1}(X_0) = 2(g_1^{-1}(x_1) \oplus g_1^{-1}(X_1))$

• To provide a correct construction:
 • one byte must assume all possible values
 • an output byte must stay fixed

• We use the bin M_i
 • We inject all byte values for every plaintext in M_i

• Why a second fixed byte?
Step 2 (cont.)

• Faults must be introduced for every plaintext.
 • The same S-box must be affected
 • Possible execution misalignments for different plaintexts

• This is where the second fixed byte comes in action:
 • Comparing faulty outputs on fixed bytes:
 • It is possible to check if two injections affected the same S-Box

 • No information about which S-box
 • Not necessary
Step 3

- Inject faults at Round 9
- Consider the set of equations

\[
g_0^{-1}(x_0) \oplus g_0^{-1}(X_0) = 2(g_1^{-1}(x_1) \oplus g_1^{-1}(X_1))
\]
\[
g_2^{-1}(x_2) \oplus g_2^{-1}(X_2) = g_1^{-1}(x_1) \oplus g_1^{-1}(X_1)
\]
\[
g_3^{-1}(x_3) \oplus g_3^{-1}(X_3) = 3(g_1^{-1}(x_1) \oplus g_1^{-1}(X_1))
\]

\[x_i = g_i^{-1}(x_i)\]

\[g_i^{-1}(x_i) = G_i^{-1}(x_i \oplus b_i)\]

Using another Theorem of BGE attack, if we have a function \(G_i \circ \gamma \circ G_i^{-1}\) we derive a linear function \(g_i\)

- \(G_i = g_i \circ \lambda_i^{-1}\)
- \(\lambda_i^{-1}\) is an unknown non-zero factor
Step 3 (cont.)

- We need to construct a function of the form $G_i \circ \gamma \circ G_i^{-1}$
 - γ is a particular known constant (derived from MC coefficients)

- We inject faults affecting 2 different S-boxes in different executions

 $G_i^{-1}(x_0 \oplus X_0) = 2(G_i^{-1}(x_1 \oplus X_1))$

 $G_i^{-1}(x_0 \oplus X_0) = 2^{-13}(G_i^{-1}(x_1 \oplus X_1))$

- $G_i^0(2(G_i^{-1}(.)))$ and $G_i^0(2^{-13}(G_i^{-1}(.)))$

- γ is unknown but computable! (check the eigenvalues).
- For some indexes, we can infer the targeted S-Boxes.
- Any pair of positions and output bytes works!

- We construct an encoded output of Round 9 y_i such that

 $y_i = g_i^{-1}(x_i)$

 $y_i = \lambda_i y_i \oplus b_i$

 y_i is the non-encoded output of Round 9
Step 3/4

Knowing that:

- $G_i = g_i \circ \lambda_i^{-1}$,
- $y_i = g_i^{-1}(x_i)$ and
-

\[
\begin{align*}
G_0^{-1}(x_0 \oplus X_0) &= 2(G_1^{-1}(x_1 \oplus X_1)) \\
G_2^{-1}(x_2 \oplus X_2) &= G_1^{-1}(x_1 \oplus X_1) \\
G_3^{-1}(x_3 \oplus X_3) &= 3(G_1^{-1}(x_1 \oplus X_1))
\end{align*}
\]

We construct a dependency among λ_i

- $\lambda_0^{-1}(y_0 \oplus Y_0) = 2 (\lambda_1^{-1}(y_1 \oplus Y_1))$
- $\lambda_2^{-1}(y_2 \oplus Y_2) = \lambda_1^{-1}(y_1 \oplus Y_1)$
- $\lambda_3^{-1}(y_3 \oplus Y_3) = 3 (\lambda_1^{-1}(y_1 \oplus Y_1))$

- $\lambda_1^{-1} = c_1 \lambda_0^{-1}$, $\lambda_2 = c_2 \lambda_0^{-1}$, $\lambda_3 = c_3 \lambda_0^{-1}$.
- c_1, c_2, c_3 are computable.
We obtain an “encoded” S-Box output of round 9 \((z_0, z_1, ..., z_{15})\) from \((y_0, y_1, ..., y_{15})\) by reverting AES operations (without considering key addition).

Inject faults at Round 8:

\[
\begin{align*}
S^{-1}(\lambda_0^{-1}z_0 \oplus \beta_0) \oplus S^{-1}(\lambda_0^{-1}Z_0 \oplus \beta_0) &= 2(S^{-1}(\lambda_4^{-1}z_1 \oplus \beta_1) \oplus S^{-1}(\lambda_4^{-1}Z_1 \oplus \beta_1)) \\
S^{-1}(\lambda_8^{-1}z_2 \oplus \beta_2) \oplus S^{-1}(\lambda_8^{-1}Z_2 \oplus \beta_2) &= S^{-1}(\lambda_4^{-1}z_1 \oplus \beta_1) \oplus S^{-1}(\lambda_4^{-1}Z_1 \oplus \beta_1) \\
S^{-1}(\lambda_{12}^{-1}z_3 \oplus \beta_3) \oplus S^{-1}(\lambda_{12}^{-1}Z_3 \oplus \beta_3) &= 3(S^{-1}(\lambda_4^{-1}z_1 \oplus \beta_1) \oplus S^{-1}(\lambda_4^{-1}Z_1 \oplus \beta_1))
\end{align*}
\]

The unknowns are \(\lambda_i^{-1}\) and \(\beta_i\)

- They contain the remaining randomness
Step 4 (cont.)

- Exhaustive search is unfeasible,
 - 2^{64} operations
- We use a MITM approach with hash tables:
 - $S^{-1}(\lambda_{4}^{-1}z_{1} \oplus \beta_{1}) \oplus S^{-1}(\lambda_{4}^{-1}Z_{1} \oplus \beta_{1})$ in every equation

- Consider

 $2^{-1}(S^{-1}(\lambda_{0}^{-1}z_{0} \oplus \beta_{0}) \oplus S^{-1}(\lambda_{0}^{-1}Z_{0} \oplus \beta_{0})) = S^{-1}(\lambda_{4}^{-1}z_{1} \oplus \beta_{1}) \oplus S^{-1}(\lambda_{4}^{-1}Z_{1} \oplus \beta_{1})$

- For all λ and β we compute $S^{-1}(\lambda z_{1} \oplus \beta) \oplus S^{-1}(\lambda Z_{1} \oplus \beta)$
 - Store them in an Hash Table
- For all λ and β we compute $2^{-1}(S^{-1}(\lambda z_{0} \oplus \beta) \oplus S^{-1}(\lambda Z_{0} \oplus \beta))$
 - Check if we have a match in the hash table
 - If yes: $(\lambda, \beta, \lambda, \beta)$ is a solution
 - $(\lambda_{0}^{-1}, \beta_{0}, \lambda_{4}^{-1}, \beta_{1})$ must belong to the set of solutions

- We apply this process for ω faults
Step 4 (cont.)

- Higher $\omega \rightarrow$ more accuracy
 - $\omega = 8$ only one solution is found (in about 5 min)

- If injecting at the wrong spot: No solution for the system.

- After retrieving all the λ_i^{-1} and the β_i:
 - We are able to decode the output of the Round 9 S-box.
 - From encoded Round 9 S-Box output $(z_0, z_1, \ldots, z_{15})$ compute $z_i = \lambda_i^{-1}z_i \oplus \beta_i$
• From the decoded Round 9 S-box output \((z_0, z_1, \ldots, z_{15})\) compute the non-encoded Round 8 S-Box output \((w_0, w_1, \ldots, w_{15})\) as in Step 4.

• Inject faults at Round 7: set up and solve the standard equations

\[
S^{-1}(w_0 \oplus k_0) \oplus S^{-1}(w_0 \oplus k_0) = 2(S^{-1}(w_{13} \oplus k_{13}) \oplus S^{-1}(W_{13} \oplus k_{13}))
\]
\[
S^{-1}(w_{10} \oplus k_{10}) \oplus S^{-1}(W_{10} \oplus k_{10}) = S^{-1}(w_{13} \oplus k_{13}) \oplus S^{-1}(W_{13} \oplus k_{13})
\]
\[
S^{-1}(w_7 \oplus k_7) \oplus S^{-1}(W_7 \oplus k_7) = 3(S^{-1}(w_{13} \oplus k_{13}) \oplus S^{-1}(W_{13} \oplus k_{13}))
\]

• Obtain the values for \(k\)
 • MITM-approach is very efficient.
 • Round 8 key is \(\text{MC}(k)\).
 • Revert the Key-Scheduling algorithm to obtain the encryption key.
Work load

- Step 1: \(\rightarrow \sim 2^{31}\) WB encryptions, 0 operations
- Step 2: \(\rightarrow \sim 2^{20}\) WB encryption, \(2^{18}\) operations
- Step 3: \(\rightarrow \sim 2^{10}\) WB encryptions, \(2^{20}\) operations
 - Step 3/4: \(\rightarrow 0\) WB encryptions, 12 operations
 \(\omega 2^{19}\) operations
- Step 4: \(\rightarrow 4\omega\) WB encryptions, \(\omega' 2^{13}\) operations
- Step 5

\(< 2^{32}\) WB encryptions
\(< 2^{22}\) operations
Summary

• We perform the attack stepwise:
 • Construct last round up to some function
 • Remove the randomness and retrieve non-encoded state
 • Extract round-8 key

• Open Problems/Future work:
 • Work on assumptions
 • Consider stronger external encodings
 • Study what external encodings are safe
 • Reduce complexities
Thank you!

Any Questions?

I DON'T UNDERSTAND