
Constant-Time Programming:
Formal Verification & Secure Compilation

Vincent Laporte

2019-09-25 — VeriSiCC Seminar

0

Side channels

1

What this talk is not about

Physical side-channels
I Power consumption
I Electromagnetic emissions
I Acoustic emissions

Micro-architecture issues
I Spectre
I Meltdown

2

Side-channel a�acks (examples)

Lucky Thirteen: man-in-the-middle a�ack against TLS (2013)

The a�acks involve detecting small di�erences in the time at which TLS error messages appear
on the network in response to a�acker-generated ciphertexts.

Cache a�acks against AES (2009)

The a�acks allow an unprivileged process to a�ack other processes running in parallel on
the same processor, despite partitioning methods such as memory protection, sandboxing,
and virtualization.

3

Side-channel a�acks (examples)

Lucky Thirteen: man-in-the-middle a�ack against TLS (2013)

The a�acks involve detecting small di�erences in the time at which TLS error messages appear
on the network in response to a�acker-generated ciphertexts.

Cache a�acks against AES (2009)

The a�acks allow an unprivileged process to a�ack other processes running in parallel on
the same processor, despite partitioning methods such as memory protection, sandboxing,
and virtualization.

3

More generally

Any shared component:

I branch predictor
I stack memory
I event loop in a browser (shared between tabs)
I . . .

may create a communication channel.

How to prevent sensitive data to leak through these channels?

4

A counter-measure: constant-time programming

Thou shalt not branch on secret data
I Bad example (musl-libc): compare sensitive bu�ers of public size

int memcmp(char* a, char* b, int size) {
for (; size && *a == *b; size--, a++, b++);
return size ? *a-*b : 0;

}

I Good example (openVNC)

int ret = 0;
for (int i = 0; i < size; i++) {
ret |= *a++ ^ *b++;

}
return ret;

5

A counter-measure: constant-time programming (2)

Thou shalt not use secret data to compute memory addresses
I Bad implementations of AES use pre-computed in-memory S-boxes

static const uint32_t Ssm0[] = {
0xC66363A5, 0xF87C7C84, . . .

. . .
s0 ^= skey[0];
. . .
v0 = Ssm0[s0 >> 24] ^ . . .

I Good implementations of AES use
I a di�erent algorithm, e.g., bitslicing; or
I dedicated hardware, e.g., AES-NI.

6

Make your own constant-time policy

Depending on what the adversary can observe, forbid some operations on sensitive data.

I Avoid floating-point operations on secrets
I Don’t keep secret data in freed memory
I Don’t use SIMD registers with a lazy FPU
I . . .

7

Pros and cons of “constant-time”

Pros:
I E�ective counter-measure
I Weaker counter-measures are not as e�ective (e.g., CacheBleed)
I Can be implemented at the source level
I Praised by the NIST1: “optimized implementations that address side-channel a�acks (e.g.,

constant-time implementations) are more meaningful than those which do not”

Cons:
I May be tricky to implement correctly
I Might be broken by program transformations (e.g., compilation)

1Submission Requirements and Evaluation Criteria for the Post-�antum Cryptography Standardization Process
8

Outline

Shared components create side channels and leak information

Constant-time programming ensures that the observable use of these shared components
cannot be influenced by sensitive data.

1. How to formally prove that a program is constant-time?
2. Do compilers preserve the constant-time property?

9

Is my program constant-time?

10

FaCT: all well-typed programs are constant-time [PLDI’19, Cauligi et alii]

I A C-like DSL, where variable declarations are annotated as public or secret

I The compiler will produce constant-time LLVM IR (or reject the program).

11

Automatic verification by static analysis

Taint analysis:
I Track which data is sensitive
I Check that each branching condition, accessed memory address, etc is public

Remarks
I There are no implicit flows in constant-time programs
I A precise points-to analysis is required to locate secrets in memory

12

Formal definitions of constant-time

Small steps operational semantics with leakage: a b
`

A hierarchy of leakage models, to specify a wide range of adversaries:

0. No leak: no adversary

1. Execution time of each instruction

2. Current program point, targets of conditional jumps

3. Memory addresses

4. Arguments to (some) arithmetic operators

5. Contents of freed memory

6. . . .

13

Formal definitions of constant-time

Small steps operational semantics with leakage: a b
`

A hierarchy of leakage models, to specify a wide range of adversaries:

0. No leak: no adversary

1. Execution time of each instruction

2. Current program point, targets of conditional jumps

3. Memory addresses

4. Arguments to (some) arithmetic operators

5. Contents of freed memory

6. . . .

13

Security as a non-interference property

Definition (No sensitive leak through side channels)
For any pair of prefixes of executions

i

i0

s0

s00

`0

`00

s1

s01

`1

`01

s2

s02

`2

`02

. . .

. . .

if initial states are equivalent
(same public inputs, i.e., only di�er on sensitive data),
then leakage traces are equal:

i ⌘ i0 =) `0 · `1 · `2 = `00 · `01 · `02

14

Non-interference proof in relational Hoare logic
I Judgments: {P} c1 ⇠ c2 {Q}

I Interpretation:

8 m1 m2 m0
1 m

0
2 ·

8>>><
>>>:

P m1 m2

m1 +c1 m0
1

m2 +c2 m0
2

=) Q m0
1 m

0
2

I Functional equivalence (c1 specification for c2):

{inputsh1i = inputsh2i} c1 ⇠ c2 {result h1i = result h2i}

I Non-interference:

{public-inputsh1i = public-inputsh2i} c ⇠ c {leaksh1i = leaksh2i}

Issue: how to reason about the leakage?

15

Non-interference proof in relational Hoare logic
I Judgments: {P} c1 ⇠ c2 {Q}
I Interpretation:

8 m1 m2 m0
1 m

0
2 ·

8>>><
>>>:

P m1 m2

m1 +c1 m0
1

m2 +c2 m0
2

=) Q m0
1 m

0
2

I Functional equivalence (c1 specification for c2):

{inputsh1i = inputsh2i} c1 ⇠ c2 {result h1i = result h2i}

I Non-interference:

{public-inputsh1i = public-inputsh2i} c ⇠ c {leaksh1i = leaksh2i}

Issue: how to reason about the leakage?

15

Non-interference proof in relational Hoare logic
I Judgments: {P} c1 ⇠ c2 {Q}
I Interpretation:

8 m1 m2 m0
1 m

0
2 ·

8>>><
>>>:

P m1 m2

m1 +c1 m0
1

m2 +c2 m0
2

=) Q m0
1 m

0
2

I Functional equivalence (c1 specification for c2):

{inputsh1i = inputsh2i} c1 ⇠ c2 {result h1i = result h2i}

I Non-interference:

{public-inputsh1i = public-inputsh2i} c ⇠ c {leaksh1i = leaksh2i}

Issue: how to reason about the leakage?

15

Non-interference proof in relational Hoare logic
I Judgments: {P} c1 ⇠ c2 {Q}
I Interpretation:

8 m1 m2 m0
1 m

0
2 ·

8>>><
>>>:

P m1 m2

m1 +c1 m0
1

m2 +c2 m0
2

=) Q m0
1 m

0
2

I Functional equivalence (c1 specification for c2):

{inputsh1i = inputsh2i} c1 ⇠ c2 {result h1i = result h2i}

I Non-interference:

{public-inputsh1i = public-inputsh2i} c ⇠ c {leaksh1i = leaksh2i}

Issue: how to reason about the leakage?

15

Make leakage explicit in the program

I A global (ghost) variable “leaks” models the leakage
I Instrument each critical operation to explicitly update this variable:

if b then p else q �! leaks = b :: leaks; if b then p’ else q’

x = t[i] �! leaks = i :: leaks; x = t[i]

16

Example: constant-time verification of Jasmin programs [S&P 2019]

Jasmin source

fn store2(reg u64 p, reg u64[2] x) {
[p + 0] = x[0];
[p + 8] = x[1];

}

Proof obligation:
p1 = p2 =)
[0; p1; 1; p1 + 8] = [0; p2; 1; p2 + 8]

EasyCrypt model with explicit leakage

proc store2 (p:u64, x:u64 array2) : unit = {
var aux: u64;
leaks ← LeakAddr [0] :: leaks;
aux ← x.[0];
leaks ← LeakAddr [to_uint (p + 0)] :: leaks;
Glob.mem← storeW64Glob.mem (to_uint (p + 0)) aux;
leaks ← LeakAddr [1] :: leaks;
aux ← x.[1];
leaks ← LeakAddr [to_uint (p + 8)] :: leaks;
Glob.mem← storeW64Glob.mem (to_uint (p + 8)) aux;
}

17

Secure compilation

18

Secure compilation

Secure program

Execution

Compiler

I Given secure (source) code, do we get secure execution?
I Is the a�acker model relevant at source level?

19

Compilers may introduce branches (examples)
I Implementation of uint32→float32 when micro-architecture only has int32→float32

Source
float floatofintu(unsigned int x) {
return x;

}

CompCert 3.4

Target
float floatofintu(unsigned int x) {
if (x < 0x80000000) // 2��
return floatofints(x);

else
return 0x1p31 + floatofints(x � 0x80000000);

}

I “Optimization” of branchless selection on a micro-architecture without conditional move
Source
unsigned select(unsigned x, unsigned y, bool b) {
return x + (y � x) × b;

}

clang -O1 -m32 -march=pentium

Target
unsigned select(unsigned x, unsigned y, bool b) {
if (b = 0)
return x;

else
return y;

}

20

Compilers may introduce branches (examples)
I Implementation of uint32→float32 when micro-architecture only has int32→float32

Source
float floatofintu(unsigned int x) {
return x;

}

CompCert 3.4

Target
float floatofintu(unsigned int x) {
if (x < 0x80000000) // 2��
return floatofints(x);

else
return 0x1p31 + floatofints(x � 0x80000000);

}

I “Optimization” of branchless selection on a micro-architecture without conditional move
Source
unsigned select(unsigned x, unsigned y, bool b) {
return x + (y � x) × b;

}

clang -O1 -m32 -march=pentium

Target
unsigned select(unsigned x, unsigned y, bool b) {
if (b = 0)
return x;

else
return y;

}

20

Compilers may introduce memory accesses (examples)

I Register spilling

This should not be an issue: these new memory accesses do not depend on secret data. . .

I Loop hoisting
Source
while (condition) {
x = *ptr;
. . .

}

Target
x = *ptr;
while (condition) {

. . .
}

What if the condition never holds?

21

Compilers may introduce memory accesses (examples)

I Register spilling

This should not be an issue: these new memory accesses do not depend on secret data. . .

I Loop hoisting
Source
while (condition) {
x = *ptr;
. . .

}

Target
x = *ptr;
while (condition) {

. . .
}

What if the condition never holds?

21

Compilers may be proved

I Compilation may transform the leakage trace
I Compilation may nonetheless preserve “constant-time” security

Rest of this talk:

I Formal proof that the CompCert compiler — slightly modified — preserves “constant-time”
security from Clight to x86 assembly.

22

Compilers may be proved

I Compilation may transform the leakage trace
I Compilation may nonetheless preserve “constant-time” security

Rest of this talk:

I Formal proof that the CompCert compiler — slightly modified — preserves “constant-time”
security from Clight to x86 assembly.

22

Correctness proof by simulation

The correctness of a compilation pass can be proved by:

1. finding an invariant linking source states and target states (⇡);
2. proving a diagram like the following:

+

a

↵

b

�

⇡ ⇡

Can we turn the simulation argument into a proof of security preservation?

23

Correctness proof by simulation

The correctness of a compilation pass can be proved by:

1. finding an invariant linking source states and target states (⇡);
2. proving a diagram like the following:

+

a

↵

b

�

⇡ ⇡

Can we turn the simulation argument into a proof of security preservation?

23

Easy case: lock-step leakage preservation

Same simulation diagram, applied to the semantics with leakage:

`

`

a

↵

b

�

⇡ ⇡

Theorem: a compilation pass that satisfies this enhanced simulation diagram:

I is correct;
I preserves constant-time security.

The proof scripts from the original correctness proof can be reused.

24

Same-point relations

Compilation passes transform the leakage: insert, remove, . . .
This is secure provided the transformation cannot be influenced by sensitive data

For each programming language, we define the control-flow state: a view of the execution state
that cannot depend on sensitive data (in constant-time programs):

I program-point
I stack pointer
I stack of return addresses and saved stack pointers

Two execution states a and a0 with equal control-flow are in the same-point relation, wri�en a ⌘ a0.

All these relations satisfy well-formedness conditions:

I initial states are related; final states are only related to final states;
I a ⌘ a0 =) a

`�! b =) a0
`�! b0 =) b ⌘ b0

I a ⌘ a0 =) a
`�! b =) a0

`0�! b0 =) (` = � () `0 = �)

25

Static trace transformation

For a program transformation, if there is a static leakage transformation function F such that the
following diagram holds where C is the control-flow view of the state:

n

`

�

a

↵

b

�

⇡ ⇡

(n, �) = F (C(a), C(↵), `)

then this transformation preserves constant-time.

Special case leakage erasure: � is either ` or � .

26

More general proof schemes

I Dynamic leakage transformation: we need to remember some history of the simulation proof
I and to prove that this history is not tainted by sensitive information

n

`

�

a

↵

b

�

⇡h ⇡h0

(n, �) = F (C(a), C(↵), `, h)

h
0 = H(C(a), C(↵), `, h)

I Constant-time simulation [CSF 2018]: two instances of the simulation diagram
I last resort proof technique
I convenient mostly to prove the soundness of the other techniques

27

CT-CompCert preserves “constant-time” security
Pass Description Modif. Proof

Cshmgen Type elaboration, simplification of control Preservation
Cminorgen Stack allocation Dynamic
Selection Recognition of operators and addr. modes Cmove Erasure
RTLgen Generation of CFG and 3-address code No switch Preservation
Tailcall Tailcall recognition Preservation
Inlining Function inlining Dynamic
Renumber Renumbering CFG nodes Preservation
ConstProp Constant propagation Dynamic
CSE Common subexpression elimination Erasure
Deadcode Redundancy elimination Erasure
UnusedGlob Elimination of unreferenced static defs. Disabled
Allocation Register allocation Erasure
Tunneling Branch tunneling Erasure
Linearize Linearization of CFG CT-simulation
CleanLabels Removal of unreferenced labels Preservation
Debugvar Synthesis of debugging information Preservation
Stacking Laying out stack frames Dynamic
Asmgen Emission of assembly code Ghost Static

28

Conclusions

I Many compilation passes preserve “constant-time” security

I Because they transform leakage traces in simple ways

I This can be proved reusing correctness proofs

I This enables to reason about security and implement counter-measures at the source level

Thanks

29

Conclusions

I Many compilation passes preserve “constant-time” security

I Because they transform leakage traces in simple ways

I This can be proved reusing correctness proofs

I This enables to reason about security and implement counter-measures at the source level

Thanks

29

