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Lattices and hard problems

Short Vector Problem (SVP)

Given a lattice Λ

Find the vector  that has the smallest nonzero normv
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Lattices and hard problems

Learning With ErrorsLearning With Errors (LWE)

Given the pair s  where(A ∈ ℤm×n
q , b = A +e ∈ ℤm

q )
 is sampled uniformly at randomA

 and s are sampled following a small distribution e χ

Find s

« Linear system solving with noise »
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Signature schemes Public key encryption schemes

Strong hardness properties1

Simple designs (but complex analysis)2

Concrete candidates schemes 
NIST round 2: 12 out of 26 candidates 
NIST round 3: 5 out of 7 candidates  
NIST first standards: 3 
NIST round 4: ? 

3

Lattice-based algorithms
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LWE-based public key encryption in a nutshell
‣ J. W. Bos, C. Costello, M. Naehrig and D. Stebila S&P’15

‣ J. Ding, X. Xie and X. Lin EUROCRYPT’14

‣ C. Peikert PQCRYPTO’14

‣ E. Alkim, L. Ducas, T. Pöppelmann and P. Schwabe USENIX’16
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A Fiat-Shamir with aborts signature in a nutshell

‣ L. Ducas, A. Durmus, T. Lepoint and V. Lyubashevsky CRYPTO’13

‣ V. Lyubashevsky EUROCRYPT’12

‣ S. Bai and D. Galbraith CT-RSA’14 Short Integer Solution (SIS)



Mélissa Rossi Side-channel countermeasures for lattice-based cryptography 5

A Fiat-Shamir with aborts signature in a nutshell

 (A, t = AS modq)

‣ L. Ducas, A. Durmus, T. Lepoint and V. Lyubashevsky CRYPTO’13

‣ V. Lyubashevsky EUROCRYPT’12

‣ S. Bai and D. Galbraith CT-RSA’14 Short Integer Solution (SIS)



Mélissa Rossi Side-channel countermeasures for lattice-based cryptography 5

A Fiat-Shamir with aborts signature in a nutshell

 (A, t = AS modq)(A, t)

‣ L. Ducas, A. Durmus, T. Lepoint and V. Lyubashevsky CRYPTO’13

‣ V. Lyubashevsky EUROCRYPT’12

‣ S. Bai and D. Galbraith CT-RSA’14 Short Integer Solution (SIS)



Mélissa Rossi Side-channel countermeasures for lattice-based cryptography 5

Signature algorithm:
1: do 
2:      
3:      
4:      
5: while Rejected( , ) 
6: return ( )

y $ Y
c ← H(Ay, m)
z ← c ⋅ S+y

z, c S
z, c

A Fiat-Shamir with aborts signature in a nutshell

 (A, t = AS modq)(A, t)

message

‣ L. Ducas, A. Durmus, T. Lepoint and V. Lyubashevsky CRYPTO’13

‣ V. Lyubashevsky EUROCRYPT’12

‣ S. Bai and D. Galbraith CT-RSA’14 Short Integer Solution (SIS)



Mélissa Rossi Side-channel countermeasures for lattice-based cryptography 5

Signature algorithm:
1: do 
2:      
3:      
4:      
5: while Rejected( , ) 
6: return ( )

y $ Y
c ← H(Ay, m)
z ← c ⋅ S+y

z, c S
z, c

A Fiat-Shamir with aborts signature in a nutshell

 (A, t = AS modq)(A, t)

message
(z, c)message

‣ L. Ducas, A. Durmus, T. Lepoint and V. Lyubashevsky CRYPTO’13

‣ V. Lyubashevsky EUROCRYPT’12

‣ S. Bai and D. Galbraith CT-RSA’14 Short Integer Solution (SIS)



Mélissa Rossi Side-channel countermeasures for lattice-based cryptography 5

Verification: 
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Short Integer Solution (SIS)
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A Hash and sign in a nutshell

Generate matrices  such that A, B
A = 0
 has small coefficients{ B
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‣ C.Gentry, C. Peikert and V. Vaikuntanathan STOC’08
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Verification: 
1: if  is short and  
2:      return Valid 
3: else: 
4:      return Invalid

s sA = H(m)

Signature algorithm:

1: compute  such that  
2:  
3: return 

c cA = H(m)
v ← a vector in Λ(B) close to c

s ← c − v

A Hash and sign in a nutshell

A

message

smessage

Generate matrices  such that A, B
A = 0
 has small coefficients{ B

B

‣ C.Gentry, C. Peikert and V. Vaikuntanathan STOC’08

High level idea behind

Falcon (NIST standard) 
GPV, Mitaka

c v
s
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Weak points of lattice-

based cryptography

Timing 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Lattice-based crypto has many side-channel weak points

 (A, t = AS modq) y $ Y

  v ← a vector in Λ(B) close to c
 z ← c ⋅ S+y

while Rejected( , )z, c S
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Usual suspects:  
A. Multiplication with the secret: known   
B. Complex internal sampling distributions (Cumulative Distribution Tables)  
C. Fujisaki-Okamoto transform  
D. NTT, message encoding

× s

Lattice-based crypto has many side-channel weak points

u

y

We will give three examples related to B and C

 (A, t = AS modq) y $ Y

  v ← a vector in Λ(B) close to c
 z ← c ⋅ S+y

while Rejected( , )z, c S nb?
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Timing attacks on internal distributions

Timing attack: the attacker knows the time that the algorithm takes e.g. the number of iterations.
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Many timing attacks  
targeting Gaussian distributions in lattice-based signature 

schemes

‣ J. Bootle, C. Delaplace, T. Espitau, P.-A. Fouque and M. Tibouchi. ASIACRYPT’2018

‣ L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. CHES’2016

‣ T. Espitau, P.-A. Fouque, B. Gérard and M. Tibouchi. ACM-CCS’2017

‣ P. Pessl, L. Groot Bruinderink, and Y. Yarom. ACM-CCS'2017

‣ G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, M. Rossi and M. Tibouchi. ACM-CCS'2019

‣ T. Espitau, P.-A. Fouque, B. Gérard, M. Tibouchi. SAC’2016

‣ P.-A. Fouque, P. Kirchner,,M. Tibouchi, A. Wallet, and Y. Yu. EUROCRYPT’2020
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Timing attacks on internal distributions

Gaussians are often used for two reasons:

Security reductionsPerformance

In lattice-based schemes, we always to sample small coefficients.

It implies computing transcendental functions  and  exp( . ) cosh( . ) Hard to compute efficiently in constant time!

An example presented in the next slide

Timing attack: the attacker knows the time that the algorithm takes e.g. the number of iterations.



Mélissa Rossi Side-channel countermeasures for lattice-based cryptography 12

An example of timing attack on BLISS signature scheme
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An example of timing attack on BLISS signature scheme

Sampling a Bernoulli with parameter 1/cosh(x) :ℬ1/cosh(x)

1:   
2:   
3:   
4:   
5: if  then restart 
6: return 

x ← |x |
a ← ℬexp(−x)
b ← ℬ1/2
c ← ℬexp(−x)
ā ∧ (b ∨ c)

a

Signature algorithm:
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3:      
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1/2 + 1/2 exp(−2 |x | )

➡ computed by sampling two Bernouilli  and ℬ1/cosh(x) ℬexp(−x)

Rejected(z, c, S) =
1

M ⋅ cosh ( ⟨z, Sc⟩
σ2 ) ⋅ exp (− | |Sc | |2

2σ2 )
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Sampling a Bernoulli with parameter 1/cosh(x) :ℬ1/cosh(x)
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a

Correctness

The distribution of  is indeed .a ℬ1/cosh(x)

‣ L. Ducas, A. Durmus, T. Lepoint and V. Lyubashevsky CRYPTO’13
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y $ Y
c ← H(Ay, m)
z ← c ⋅ S+y

z, c S
z, c

1
cosh(x)

=
exp( − |x | )

1/2 + 1/2 exp(−2 |x | )

➡ computed by sampling two Bernouilli  and ℬ1/cosh(x) ℬexp(−x)

Rejected(z, c, S) =
1

M ⋅ cosh ( ⟨z, Sc⟩
σ2 ) ⋅ exp (− | |Sc | |2

2σ2 )
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An example of timing attack on BLISS signature scheme

Sampling a Bernoulli with parameter cosh(x) :ℬ1/cosh(x)
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ā ∧ (b ∨ c)
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ℙ(ā ∧ (b ∨ c)) = 1 − ℙ(ā) ⋅ ℙ(b ∨ c)
= 1 − (1 − ℙ(a)) ⋅ (1 − ℙ(b̄ ∧ c̄))

= 1 − (1 − exp(−x))(1 −
1 − exp(−x)

2 )
=

1 + exp(−2x)
2

➡ Probability of going from step 5 to step 6:

Depends on the input!

Idea of the attack

Here  
 
We select the signatures  corresponding to one iteration inside the 
Bernouilli sampling. 
 

It means that  is large.  
 
Then,  is close to .


➡ Can be solved with a phase retrieval algorithm (machine learning).


Full key recovery in an average of 40h on a powerful personal computer

x = − |⟨z, Sc⟩ |

(z, c)

1 + exp(−2 |⟨z, Sc⟩ | )
2

|⟨z, Sc⟩ | 0
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Power consumption attacks

Many attacks as well

‣ E. Karabulut, A. Aysu. DAC’2021
‣ M. Guerreau, A. Martinellli, T. Ricosset, M. Rossi. TCHES’2022

‣ B.-Y. Sim, A. Park. eprint’2021

‣ R. Primas, P. Pessl, S. Magnard. CHES’2017

‣ P. Ravi, S. Sinha Roy, A. Chattopadhyay, S. Bhasin. CHES’2020

‣ B.-Y Sim, J. Kwon, J. Lee, I.-J. Kim, T. Lee, J. Han, H. Yoon, J. Choo, D.-G. Han. IEEE-ACESS’2020
‣ S. Bhasin, J.-P. D’Anvers, D. Heinz, T. Pöppelmann, M. Van Beirendonck. TCHES’2021

Power consumption attack: the attacker knows the power consumption of the 
device executing the algorithm. He has access to « traces ».
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‣ S. Bhasin, J.-P. D’Anvers, D. Heinz, T. Pöppelmann, M. Van Beirendonck. TCHES’2021

An example presented 
in the next slides

Power consumption attack: the attacker knows the power consumption of the 
device executing the algorithm. He has access to « traces ».

x = 1

x = 1
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Falcon signature scheme

Signature algorithm:
1: compute  such that  
2:  
3: return 

c cA = H(m)
v ← a vector in Λ(B) close to c

s ← c − v
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Falcon signature scheme

Take a close vector but not the closest.

Signature algorithm:
1: compute  such that  
2:  
3: return 

c cA = H(m)
v ← a vector in Λ(B) close to c

s ← c − v

Take the closest vector 
Add a Gaussian random shift  z0

v

Distribution of signatures

c
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Intuition of the power analysis attack of Falcon

Intuition of the attack

If we select the inputs such that the Gaussian shift is zero, we can “see” the hidden basis.

What about high dimensions? There is a negligible amount of zero-shift in all 512 dimensions.

Non shifted signatures in red
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Single trace power analysis of Falcon

We recover one vector of the basis, this is enough to recover the full basis thanks to the structure of the private key.

We focus on one dimension. 
A single trace analysis can provide the information: .shift = 0 or  ≠ 0

Signatures for which  in the first coordinateshift = 0

➡ It is possible to apply a partial hidden parallelepiped recovery.

Performance of the attack

‣L. Ducas, P. Nguyen Asiacrypt’2012
‣P. Nguyen, O. Regev  Eurocrypt’2006
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Decryption failure attacks
‣  J.-P. D’Anvers, Q. Guo, T. Johansson, A. Nilsson, F. Vercauteren, and I. Verbauwhede. PKC’19

‣  Dachman-Soled, L. Ducas, H. Gong and M. Rossi. CRYPTO’2020.
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‣  Dachman-Soled, L. Ducas, H. Gong and M. Rossi. CRYPTO’2020.

Each decryption failure provides an equation on the 
direction of the secret
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➡   Failure probability in IND-CCA setting
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- with timing measurement e.g


- with power analysis e.g. ‣ R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, N. Homma. TCHES’2022

‣ J.-P. D’Anvers, M. Tiepelt, F. Vercauteren, I. Verbauwhede. TIS’2019

Likely in an IND-CPA setting (where the FO transform is bypassed)

➡ Open the door to crafting ciphertexts in order to create failures with 
high probability.

This transform consists in  
recovering the encryption’s 
random coins inside the 
decryption and checking honest 
generation by re-encryption.

Countermeasure are very important to avoid these side-channel assisted decryption failure attacks
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How to remove timing attacks entry points

The entry points include: 
✦ computer-science unfriendly distributions like Gaussians. 
✦ secret-dependent internal distributions. 
✦ numerous operations with the secret. 
✦ nonzero failure probability.
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How to remove timing attacks entry points

The entry points include: 
✦ computer-science unfriendly distributions like Gaussians. 
✦ secret-dependent internal distributions. 
✦ numerous operations with the secret. 
✦ nonzero failure probability.

Here are some provable countermeasure techniques: 

Renyi divergence arguments1

Polynomial approximations2
We want proofs of isochrony!

Isochrony    the execution time can vary but its distribution 
should be independent from any sensitive data. 
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Take two cryptographic schemes 
- One with distribution  
- One with an approximate distribution  with the same support 

Suppose that : 

1.  and  are close enough :  

2. the number of sample queries is bounded  

Then, the bit security will remain almost the same. 

𝒟
𝒟′ 

𝒟 𝒟′ 1 −
𝒟′ 

𝒟 ∞
≤ 2−K

‣ T. Prest ASIACRYPT’17

𝒟 𝒟′ 

‣ S. Bai, A. Langlois, T. Lepoint, D. Stehle, and R. Steinfeld. ASIACRYPT’15

Distributions may be approximated/simplified 
because of the limited number of queries

1) Rényi divergence arguments

‣ T. Prest ASIACRYPT’17
‣ SS. Bai, A. Langlois, T. Lepoint, D. Stehlé, R. Steinfeld ASIACRYPT’15
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2) Polynomial approximation for Gaussians

Degree  polynomial in  
with small coefficients

d ℤ[x]

Transcendental 
function

Polynomial approximation

𝒟′ 

𝒟
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•Taylor expansion 𝒟′ (x) = 𝒟(0) + 𝒟(1)(0) ⋅ x + ⋯ +
𝒟(d)(0)

d!
⋅ xd

𝒟′ 

2) Polynomial approximation for Gaussians



Mélissa Rossi Side-channel countermeasures for lattice-based cryptography 23

•Padé approximants (rational function approximation) 

•Taylor expansion

Two polynomials, higher degrees

𝒟′ (x) = 𝒟(0) + 𝒟(1)(0) ⋅ x + ⋯ +
𝒟(d)(0)

d!
⋅ xd

𝒟′ (x) =
P(x)
Q(x)

𝒟′ 

‣ T. Prest ASIACRYPT’17

2) Polynomial approximation for Gaussians
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•Minimax computations : Sollya software package

•Padé approximants (rational function approximation) 

‣ S. Chevillard, M. Joldes and C. Q. Lauter ICMS’10

‣ R. Zhao, R. Steinfeld and A. Sakzad IEEE’19

•Taylor expansion

Two polynomials, higher degrees

Floating point arithmetics

𝒟′ (x) = 𝒟(0) + 𝒟(1)(0) ⋅ x + ⋯ +
𝒟(d)(0)

d!
⋅ xd

𝒟′ (x) =
P(x)
Q(x)

𝒟′ = arg min
deg(P)≤d (sup

x∈I (1 −
P(x)
𝒟(x) ))

‣ N. Brisebarre and S. Chevillard IEEE’07

𝒟′ 

‣ T. Prest ASIACRYPT’17

2) Polynomial approximation for Gaussians
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𝒟′ = arg min
deg(P)≤d (sup

x∈I (1 −
P(x)
𝒟(x) ))

‣ N. Brisebarre and S. Chevillard IEEE’07

𝒟′ 

‣ T. Prest ASIACRYPT’17

2) Polynomial approximation for Gaussians

‣  GALACTICS […] ACM-CCS’2019. G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, M. Rossi and M. Tibouchi.

•Projections with respect to the Sobolev Norm 

∥f∥∞ ≤ 2 ⋅ ∥f∥S
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𝒟′ 

𝒟

‣  GALACTICS […] ACM-CCS’2019. G. Barthe, S. 
Belaïd, T. Espitau, P.-A. Fouque, M. Rossi and M. 
Tibouchi.

Polynomial approximation
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An example with Fiat-Shamir with aborts
Signature algorithm:

1: do 
2:      
3:      
4:      
5: while Rejected( , ) 
6: return ( )

y $ Y
c ← H(Ay, m)
z ← c ⋅ S+y

z, c S
z, c
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An example with Fiat-Shamir with aborts

Constant timeIsochronous
Rejection sampling theorem

Secret dependent timing

Signature algorithm:
1: do 
2:      
3:      
4:      
5: while Rejected( , ) 
6: return ( )

y $ Y
c ← H(Ay, m)
z ← c ⋅ S+y

z, c S
z, c

For BLISS
Rejected(z, c, S) =

1

M ⋅ cosh ( ⟨z, Sc⟩
σ2 ) ⋅ exp (− | |Sc | |2

2σ2 )

Rejected(z, c, S) =
1
M

⋅ Pcosh−1 ( ⟨z, Sc⟩
σ2 ) ⋅ Pexp−1 (−

| |Sc | |2

2σ2 )

Rényi divergence proof

Polynomial evaluation: simple 
and constant time 

(multiplications and additions)

➡Would you say that it is more or less efficient?
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‣ T. Pornin https://falcon-sign.info/falcon-impl-20190802.pdf

‣  J. Howe, T. Prest, T. Ricosset and M. Rossi. PQ-CRYPTO’2020. 

Examples of application for proving isochrony

Performance penalty factor : +50 %

Performance penalty factor : +13 %
‣  G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, M. Rossi and M. Tibouchi. ACM-CCS’2019. 

Falcon

BLISS

https://github.com/PQClean/PQClean/
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Masking

x0 + x1 + x2 + x3 + x4

x

Each share looks random.  
The only way to recover  is to know all of them. x

Masking order : d = 4.

[[x]] = (x0, x1, x2, x3, x4)
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Masking

x0 + x1 + x2 + x3 + x4

x

Each share looks random.  
The only way to recover  is to know all of them. x

➡  Increase of the noise: Highly complicates the dependancies  
between the secret and the measurement

Masking order : d = 4.
x2 = 1

x3 = 8x1 = 3

x4 = 10x0 = 2

  x = 2 + 3 + 1 + 8 + 10
  = 24

The real secret value is

[[x]] = (x0, x1, x2, x3, x4)
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Boolean and arithmetic masking

x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

x

x0 + x1 + x2 + x3 + x4 mod q

xBoolean masking Arithmetic masking

[[x]]

[[x]] = (x0, x1, x2, x3, x4)
[[y]] = (y0, y1, y2, y3, y4)

[[x]] = (x0, x1, x2, x3, x4)
[[y]] = (y0, y1, y2, y3, y4)
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Boolean and arithmetic masking

x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

x

x0 + x1 + x2 + x3 + x4 mod q

xBoolean masking Arithmetic masking

[[x]]

[[x]] = (x0, x1, x2, x3, x4)
[[y]] = (y0, y1, y2, y3, y4)

[[x]] = (x0, x1, x2, x3, x4)
[[y]] = (y0, y1, y2, y3, y4)

[[x]] ⊕ [[y]] = (x0 ⊕ y0, x1 ⊕ y1, x2 ⊕ y2, x3 ⊕ y3, x4 ⊕ y4)

-linear operations:𝔽2

[[x]] + [[y]] mod q = (x0 + y0 mod q, …, x4 + y4 mod q)

-linear operations:𝔽q

Designs for the multiplication of two shared values ‣ L. Goubin and J. Patarin CHES’1999

‣ S. Chari,  C. Jutla, J. Rao and P. Rohatgi CRYPTO’1999

What about non linear operations?

➡Need for extra randomness to mix shares without introducing any biais.

More information in J.S. Coron’s presentation
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Algorithm

‣ Y. Ishai, A. Sahai and D. Wagner CRYPTO’2003

Masking proof system

‣ G. Barthe, S. Belaıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini. ACM-CCS’2016

How to combine many operations?
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Inputs OutputsAlgorithm

Proofs of masking for each gadget 
+
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Non interference

A gadget is -non-interfering (NI) iff any set of at most  observations can be perfectly 
simulated from at most  shares of each input. 

d d
d

Non Interference

‣ G. Barthe, S. Belaıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini. ACM-CCS’2016
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A gadget is -non-interfering (NI) iff any set of at most  observations can be perfectly 
simulated from at most  shares of each input. 

d d
d

Non Interference

‣ G. Barthe, S. Belaıd, F. Dupressoir, P.-A. Fouque, B. Grégoire, P.-Y. Strub, and R. Zucchini. ACM-CCS’2016
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perfectly simulated from at most  shares of each input.

d d
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Strong Non Interference
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Non interference with public outputs

Signature algorithm:
1: do 
2:      
3:      
4:      
5: while Rejected( , ) 
6: return ( )

y $ Y
c ← H(Ay, m)
z ← c ⋅ S+y

z, c S
z, c
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In addition, since  the value of  of the final iteration 
may be revealed.

Ay = Az − tc mod q Ay3

Non Interference with public outputs

A gadget is -non-interfering (NI) iff any set of at most  observations can be perfectly 
simulated from at most  shares of each input and the public outputs.

d d
d

‣  G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi and M. Tibouchi. EUROCRYPT’2017.
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Non interference with public outputs

Signature algorithm:
1: do 
2:      
3:      
4:      
5: while Rejected( , ) 
6: return ( )

y $ Y
c ← H(Ay, m)
z ← c ⋅ S+y

z, c S
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Under a mild assumption 

The signature ( ) and the message  are public.z, c m1

Besides, by design, the number of iterations may be public.  
Thus the bit corresponding to Rejected( , ) may be revealed.z, c S

2

In addition, since  the value of  of the final iteration 
may be revealed.

Ay = Az − tc mod q Ay3

Non Interference with public outputs

A gadget is -non-interfering (NI) iff any set of at most  observations can be perfectly 
simulated from at most  shares of each input and the public outputs.

d d
d

‣  G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, B. Grégoire, M. Rossi and M. Tibouchi. EUROCRYPT’2017.

Signature algorithm:
1: do 
2:      
3:      
4:      
5: while Rejected( , ) 
6: return ( nb of iterations)

y $ Y
c ← H(Ay, m)
z ← c ⋅ S+y

z, c S
z, c, Ay,

≈
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Small uniform random generation in ℤ/qℤ

Gaussian generation

Rejection sampling

The constructions must use mask conversions

Need for lattice adapted gadgets

‣  G. Barthe, S. Belaïd, T. Espitau, P.-A. Fouque, M. Rossi and M. Tibouchi. ACM-CCS’2019.

Masking for lattice-based cryptography

x

x0 + x1 + x2 + x3 + x4

‣ J.-S. Coron, J. Großschädl and P. K. Vadnala CHES’2014

‣ J.-S. Coron, J. Großschädl, M. Tibouchi, and P. K. Vadnala FSE’2015

‣ J.-S. Coron CHES’2017
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Masking Gaussian sampling

How to mask Gaussian generation?

Fixed center Masked variable center

Fixed standard 
deviation

Masking the CDT 
sampling 

Mitaka’s share by share 
sampling

Masked variable 
standard deviation

Mask the existing convolution and rejection 
sampling techniques.

u

y



Mélissa Rossi Side-channel countermeasures for lattice-based cryptography 35

Gaussian share by share sampling
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z0 z1 z2 z3 such that ∑ zi mod q ∼

Dℤ,c,σ

D 1
B ℤ,c0, 1

d
σ D 1

B ℤ,c3, 1
d

σ⋯
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Gaussian share by share sampling

‣ « Mitaka: A Simpler, Parallelizable, Maskable Variant of Falcon » 
 T. Espitau, P.-A. Fouque, F. Gérard, M. Rossi, A. Takahashi, M. Tibouchi, A. Wallet, Y. Yu EUROCRYPT’2022

z0 z1 z2 z3 such that ∑ zi mod q ∼

Dℤ,c,σ

D 1
B ℤ,c0, 1

d
σ D 1

B ℤ,c3, 1
d

σ⋯

Reject if ∑ (zi mod 1) ≠ 0

Dℤ,∑ ci mod q,σ

This Gaussian share by share sampling is correct and secure.

Gauss share by share
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Unmasked Order 1 Order 2 Order 3 Order 4

1 × 4 × 21 × 37 × 60

Examples of overhead on the number of cycles for qTesla signature scheme

‣  F. Gérard and M. Rossi. CARDIS’2019.

Example of performance
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Automated verification of side-channel protection in the lattice domain

Besides proofs, how to verify automatically the isochrony of lattice-based crypto?

Existing tools ‣B. Rodrigues, F. Magno Quintao Pereira, D. Aranha ACM’2016 
‣ « ct-verif » J. Barcelar Almeida, M. Barbosa, G. Barthe, F. Dupressoir, M. Emmi USENIX’16 
‣ « Dudect » O. Reparaz, J. Balasch, I. Verbauwhede  DATE’17

Intuition:  
๏ generate two random keys 
๏ sign many messages or decrypt many ciphertexts with either of the two keys 
๏ look for statistical differences in the timing among the two keys

Provable countermeasures are not infaillible

Challenges for lattice-based crypto :

How to handle inherent variable execution time ? 
The sensitive values are not only the keys but many intermediate randomness are sensitive
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Automated verification of side-channel protection in the lattice domain
Besides proofs, how to verify automatically the masking of lattice-based crypto?

Challenges: Arithmetic and Boolean masking

Conversions
‣ « Formal verification of Arithmetic Masking in Hardware and Software » 

B. Gigerl, R. Primas, S. Magnard eprint.iacr.org/2022/849

Modeling arithmetic expression with Boolean logic

Partial resolution:

Applied to A2B and B2A

Many existing tools for verifying Boolean masking
‣B. Gigerl, V. Hadzic, R. Primas, S. Mangard, R. Bloem USENIX Security’21 
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Other perspectives

The designs contain many « masking unfriendly » features: Gaussian distributions, uniform small 
distributions, comparison of sensitive values, rejection, prime modulus…


➡ Schemes designs that minimize the masking overhead at a cost of less efficient unmasked version.


 

Masking friendly design
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The designs contain many « masking unfriendly » features: Gaussian distributions, uniform small 
distributions, comparison of sensitive values, rejection, prime modulus…


➡ Schemes designs that minimize the masking overhead at a cost of less efficient unmasked version.


 

Masking friendly design

Fujisaki-Okamoto transform

This transform is needed because it protects against active attacks (IND-CCA2 security) but it 
highly increases the attack surface and introduces new attack entry points.


➡ Is re-encryption (or similar tests) inevitable?

➡ Is it possible to design a fully protected generic Fujisaki-Okamoto transform?


