
PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2022 NXP B.V.

S E P T E M B E R 2 0 2 2

Marc Gourjon

VERISICC Seminar 2022

FINE-GRAINED

LEAKAGE MODELS

& VERIFICATION OF

SOFTWARE MASKING

1PUBLIC

ACKNOWLEDGEMENTS

These works received funding from the
Federal Ministry of Education and
Research (BMBF) as part of the VE-Jupiter

project (grant number 16ME0231K).

scVerif: https://github.com/scverif/scverif

Gadgets: https://github.com/scverif/gadgets

Contract: https://eprint.iacr.org/2022/565.pdf

Kyber: https://eprint.iacr.org/2021/483.pdf

https://github.com/scverif/scverif
https://github.com/scverif/gadgets
https://eprint.iacr.org/2022/565.pdf
https://eprint.iacr.org/2021/483.pdf

2PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

3PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

4PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

Goal: side-channel security

for physical execution on CPU

resilience against

physical adversary

5PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

Goal: side-channel security

for physical execution on CPU

resilience against

physical adversary

In this talk

- precise modeling of leakage

- verifying resilience

- a bit of tooling

6PUBLIC

POWER SIDE -CHANNELS

• Physical computation on CPU

− Electrical charge flowing

− Charge = State = bit = {1,0} = key?

7PUBLIC

POWER SIDE -CHANNELS

• Physical computation on CPU

− Electrical charge flowing

− Charge = State = bit = {1,0} = key?

𝑝 ⊕ 𝑘

HW(𝒑⊕ 𝒌)

8PUBLIC

POWER SIDE -CHANNELS

• Physical computation on CPU

− Electrical charge flowing

− Charge = State = bit = {1,0} = key?

𝑝 ⊕ 𝑘

HW(𝒑⊕ 𝒌)

Secret

data

Public

Input

Secret

Output

Public

Output

𝒌 𝒑

𝑝⊕ 𝑘

Device

Implementation

9PUBLIC

POWER SIDE -CHANNELS

• Physical computation on CPU

− Electrical charge flowing

− Charge = State = bit = {1,0} = key?

𝑝 ⊕ 𝑘

HW(𝒑⊕ 𝒌)

Secret

data

Public

Input

Secret

Output

Public

Output

Model &

Assumptions

Information on

secret data

𝒌 𝒑

𝑝⊕ 𝑘

Device

Implementation

𝒌

1 0PUBLIC

MASKING

• Split all secret (dependent) data

− 𝑘 = 𝑘0 ⊕𝑘1 ⊕⋯⊕𝑘𝑛−1

− Information theoretical security

guarantee

▪ Prove no information on any secret key

can be retrieved under certain assumption

→ Adversaries must recover at least d < 𝑛
shares

Secret

data

Public

Input

Secret

Output

Public

Output

Information on

secret data

𝒌𝟎… 𝒌𝒏−𝟏 𝒑

𝑝⊕ 𝑘0

Device

Implementation

𝒌

𝑝 ⊕ 𝑘𝑛−1

1 1PUBLIC

MASKING

• Split all secret (dependent) data

− 𝑘 = 𝑘0 ⊕𝑘1 ⊕⋯⊕𝑘𝑛−1

− Information theoretical security

guarantee

▪ Prove no information on any secret key

can be retrieved under certain assumption

→ Adversaries must recover at least d < 𝑛
shares

Secret

data

Public

Input

Secret

Output

Public

Output

Information on

secret data

𝒌𝟎… 𝒌𝒏−𝟏 𝒑

𝑝⊕ 𝑘0

Device

Implementation

𝒌

𝑝 ⊕ 𝑘𝑛−1 Model &

Assumptions

1 2PUBLIC

MASKED GADGETS & PROVABLE SECURITY (1)

masked AND 𝑧 = 𝑥 ∧ 𝑦
Inputs: 𝑥0, 𝑥1, … , 𝑥𝑛−1 , 𝑦0, 𝑦1, … , 𝑦𝑛−1

For 𝑖 = 0 to 𝑛 − 1
𝒛𝒊 ← 𝒙𝒊 ∧ 𝒚𝒊

For 𝑖 = 0 to 𝑛 − 1
For 𝑗 = 𝑖 + 1 to 𝑛 − 1

𝒓 ← 𝟎, 𝟏

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊

𝒛𝒊 ← 𝒛𝒊 ⊕𝒓
𝒛𝒋 ← 𝒛𝒋 ⊕𝒓′

Return (𝑧0, 𝑧1, … , 𝑧𝑛−1)

𝑑th -Order probing security

Any set of 𝑑 observations an attacker could make must be

independent of secrets => must perform at least a d+1 order attack

𝑛 > 𝑑

Proven secure!

1 3PUBLIC

MASKED GADGETS & PROVABLE SECURITY (1)

masked AND 𝑧 = 𝑥 ∧ 𝑦
Inputs: 𝑥0, 𝑥1, … , 𝑥𝑛−1 , 𝑦0, 𝑦1, … , 𝑦𝑛−1

For 𝑖 = 0 to 𝑛 − 1
𝒛𝒊 ← 𝒙𝒊 ∧ 𝒚𝒊

For 𝑖 = 0 to 𝑛 − 1
For 𝑗 = 𝑖 + 1 to 𝑛 − 1

𝒓 ← 𝟎, 𝟏

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊

𝒛𝒊 ← 𝒛𝒊 ⊕𝒓
𝒛𝒋 ← 𝒛𝒋 ⊕𝒓′

Return (𝑧0, 𝑧1, … , 𝑧𝑛−1)

𝑑th -Order probing security

Any set of 𝑑 observations an attacker could make must be

independent of secrets => must perform at least a d+1 order attack

𝑛 > 𝑑

Proven secure!

1 4PUBLIC

MASKED GADGETS & PROVABLE SECURITY (1)

masked AND 𝑧 = 𝑥 ∧ 𝑦
Inputs: 𝑥0, 𝑥1, … , 𝑥𝑛−1 , 𝑦0, 𝑦1, … , 𝑦𝑛−1

For 𝑖 = 0 to 𝑛 − 1
𝒛𝒊 ← 𝒙𝒊 ∧ 𝒚𝒊

For 𝑖 = 0 to 𝑛 − 1
For 𝑗 = 𝑖 + 1 to 𝑛 − 1

𝒓 ← 𝟎, 𝟏

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊

𝒛𝒊 ← 𝒛𝒊 ⊕𝒓
𝒛𝒋 ← 𝒛𝒋 ⊕𝒓′

Return (𝑧0, 𝑧1, … , 𝑧𝑛−1)

𝑑th -Order probing security

Any set of 𝑑 observations an attacker could make must be

independent of secrets => must perform at least a d+1 order attack

𝑛 > 𝑑

Proven secure!

1 5PUBLIC

MASKED GADGETS & PROVABLE SECURITY (1)

masked AND 𝑧 = 𝑥 ∧ 𝑦
Inputs: 𝑥0, 𝑥1, … , 𝑥𝑛−1 , 𝑦0, 𝑦1, … , 𝑦𝑛−1

For 𝑖 = 0 to 𝑛 − 1
𝒛𝒊 ← 𝒙𝒊 ∧ 𝒚𝒊

For 𝑖 = 0 to 𝑛 − 1
For 𝑗 = 𝑖 + 1 to 𝑛 − 1

𝒓 ← 𝟎, 𝟏

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊

𝒛𝒊 ← 𝒛𝒊 ⊕𝒓
𝒛𝒋 ← 𝒛𝒋 ⊕𝒓′

Return (𝑧0, 𝑧1, … , 𝑧𝑛−1)

𝑑th -Order probing security

Any set of 𝑑 observations an attacker could make must be

independent of secrets => must perform at least a d+1 order attack

𝑛 > 𝑑

Proven secure!

1 6PUBLIC

MASKED GADGETS & PROVABLE SECURITY (2)

masked AND 𝑧 = 𝑥 ∧ 𝑦
Inputs: 𝑥0, 𝑥1, … , 𝑥𝑛−1 , 𝑦0, 𝑦1, … , 𝑦𝑛−1

For 𝑖 = 0 to 𝑛 − 1
𝒛𝒊 ← 𝒙𝒊 ∧ 𝒚𝒊

For 𝑖 = 0 to 𝑛 − 1
For 𝑗 = 𝑖 + 1 to 𝑛 − 1

𝒓 ← 𝟎, 𝟏

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊

𝒛𝒊 ← 𝒛𝒊 ⊕𝒓
𝒛𝒋 ← 𝒛𝒋 ⊕𝒓′

Return (𝑧0, 𝑧1, … , 𝑧𝑛−1)

Leakage model := What is observable via side-channel

• Computational / value leakage

• Different & more observations possible in practice

1 7PUBLIC

MASKING IN REAL APPLICATIONS

• Application to entire ciphers (e.g., Kyber)

1 8PUBLIC

MASKING IN REAL APPLICATIONS

• Application to entire ciphers (e.g., Kyber)

masked AND

1 9PUBLIC

MASKING IN REAL APPLICATIONS

• Application to entire ciphers (e.g., Kyber)

masked AND
A2B

2 0PUBLIC

MASKING IN REAL APPLICATIONS

• Application to entire ciphers (e.g., Kyber)

• Hand-crafted compositions, specialized algorithms for efficient gadgets

masked AND
A2B

2 1PUBLIC

IMPLEMENTATION DIFFICULTIES

• Compilers will break security

→ Assembly programming

2 2PUBLIC

IMPLEMENTATION DIFFICULTIES

• Compilers will break security

→ Assembly programming Beware of link time optimizations

2 3PUBLIC

IMPLEMENTATION DIFFICULTIES

• Compilers will break security

→ Assembly programming

• Functional correctness

• Adhere to observables intermediates in security proof

• Adhere to proven composition

• Randomness (re-use)

Beware of link time optimizations

2 4PUBLIC

IMPLEMENTATION DIFFICULTIES

• Compilers will break security

→ Assembly programming

• Functional correctness

• Adhere to observables intermediates in security proof

• Adhere to proven composition

• Randomness (re-use)

Beware of link time optimizations

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊 ?

2 5PUBLIC

IMPLEMENTATION DIFFICULTIES

• Compilers will break security

→ Assembly programming

• Functional correctness

• Adhere to observables intermediates in security proof

• Adhere to proven composition

• Randomness (re-use)

• Device-specific leakage

≠

Beware of link time optimizations

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊 ?

2 6PUBLIC

MORE REALIST IC POWER LEAKAGE

• Side-Channel = physical phenomenon

− Not just computation leakage

− Much more observations

• Gap in provable security

− Any leakage observable in practice which is

not captured by a proof of security

𝑝 ⊕ 𝑘

HW(𝒑⊕ 𝒌)

HD(𝒑, 𝒌)

HW(𝒌)

2 7PUBLIC

Problem: Same program has different

A

THE GAP BETWEEN PROVABLE RESIL IENCE & PHYSICAL S IDE -CHANNELS

DEVICE-SPECIF IC LEAKAGE

masked_kyber.s

B

Provably secure!

2 8PUBLIC

Problem: Same program has different

A

THE GAP BETWEEN PROVABLE RESIL IENCE & PHYSICAL S IDE -CHANNELS

DEVICE-SPECIF IC LEAKAGE

RESILIENT

masked_kyber.s

B

Provably secure!

phy. adversary

2 9PUBLIC

Problem: Same program has different

A

THE GAP BETWEEN PROVABLE RESIL IENCE & PHYSICAL S IDE -CHANNELS

DEVICE-SPECIF IC LEAKAGE

RESILIENT

INSECURE

masked_kyber.s

B

Provably secure!

phy. adversary

phy. adversary

3 0PUBLIC

Problem: Same program has different

A

THE GAP BETWEEN PROVABLE RESIL IENCE & PHYSICAL S IDE -CHANNELS

DEVICE-SPECIF IC LEAKAGE

RESILIENT

INSECURE

masked_kyber.s

B

…
xor x1, x2, x3
and x4, x5, x6
…

…
xor x1, x2, x3
and x4, x5, x6
…

Provably secure!

phy. adversary

phy. adversary

3 1PUBLIC

Problem: Same program has different

A

THE GAP BETWEEN PROVABLE RESIL IENCE & PHYSICAL S IDE -CHANNELS

DEVICE-SPECIF IC LEAKAGE

RESILIENT

INSECURE

masked_kyber.s

B

…
xor x1, x2, x3
and x4, x5, x6
…

…
xor x1, x2, x3
and x4, x5, x6
…

HD(x2, x3)
HD(x5, x6)

Provably secure!

phy. adversary

phy. adversary

3 2PUBLIC

Problem: Same program has different

A

THE GAP BETWEEN PROVABLE RESIL IENCE & PHYSICAL S IDE -CHANNELS

DEVICE-SPECIF IC LEAKAGE

RESILIENT

INSECURE

masked_kyber.s

B

…
xor x1, x2, x3
and x4, x5, x6
…

…
xor x1, x2, x3
and x4, x5, x6
…

HD(x2, x3)
HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

Provably secure!

phy. adversary

phy. adversary

3 3PUBLIC

Problem: Same program has different microarchitecture

Cause: Processor’s implementation → microarchitecture

A

THE GAP BETWEEN PROVABLE RESIL IENCE & PHYSICAL S IDE -CHANNELS

DEVICE-SPECIF IC LEAKAGE

RESILIENT

INSECURE

masked_kyber.s

B

…
xor x1, x2, x3
and x4, x5, x6
…

…
xor x1, x2, x3
and x4, x5, x6
…

HD(x2, x3)
HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

Provably secure!

phy. adversary

phy. adversary

3 4PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

…
xor x1, x2, x3
and x4, x5, x6
…

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

3 5PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

3 6PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

3 7PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

3 8PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

; x5

; x6

3 9PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

Composable Masking Schemes in the Presence of Physical

Defaults & the Robust Probing Model. Sebastian Faust, Vincent

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier

Standaert. CHES 2018.

; x5

; x6

4 0PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

xor rD, rN, rM
leak HD(rN, rM)

and rD, rN, rM
leak HD(rN, rM)

; x5

; x6

4 1PUBLIC

DEVICE-SPECIF IC LEAKAGE (2)

MICROARCHITECTURE

RF Port
B

WB

AND XOR

RF Port
A

A

RF Port
B

WB

AND XOR

RF Port
A

B

RF Port
D

RF Port
C

HD(x2, x3)HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

x2

x3

x5

x6

x2

x3

xor rD, rN, rM
leak HD(rN, rM)

and rD, rN, rM
leak HD(rN, rM)

xor rD, rN, rM
leak HD(rN, previous(rN))
leak HD(rM, previous(rM))

and rD, rN, rM
leak HD(rN, previous(rN))
leak HD(rM, previous(rM))

; x5

; x6

4 2PUBLIC

EXPLICIT LEAKAGE

• leak(HD(value_1, value_2));

• leak(value_1, value_2);

• Remainder of DSL does not expose leakage

• May effect efficiency of hardened implementations

Any function of terms in leak

4 3PUBLIC

EXPLICIT LEAKAGE

• leak(HD(value_1, value_2));

• leak(value_1, value_2);

• Remainder of DSL does not expose leakage

• May effect efficiency of hardened implementations

HD(value_1, value_2)

Any function of terms in leak

4 4PUBLIC

EXPLICIT LEAKAGE

• leak(HD(value_1, value_2));

• leak(value_1, value_2);

• Remainder of DSL does not expose leakage

• May effect efficiency of hardened implementations

HD(value_1, value_2)

HD(value_1, value_2)

Any function of terms in leak

4 5PUBLIC

EXPLICIT LEAKAGE

• leak(HD(value_1, value_2));

• leak(value_1, value_2);

• Remainder of DSL does not expose leakage

• May effect efficiency of hardened implementations

HD(value_1, value_2)

HD(value_1, value_2)

HW(value_1)

Any function of terms in leak

4 6PUBLIC

EXPLICIT LEAKAGE

• leak(HD(value_1, value_2));

• leak(value_1, value_2);

• Remainder of DSL does not expose leakage

• May effect efficiency of hardened implementations

HD(value_1, value_2)

HD(value_1, value_2)

HW(value_1)

HD(MSB(value_1),
LSB(value_2))

Any function of terms in leak

4 7PUBLIC

EXPLICIT LEAKAGE

• leak(HD(value_1, value_2));

• leak(value_1, value_2);

• Remainder of DSL does not expose leakage

• May effect efficiency of hardened implementations

HD(value_1, value_2)

HD(value_1, value_2)

HW(value_1)

HD(MSB(value_1),
LSB(value_2))

Any function of terms in leak HD((value_1 >> 24),
(value_2 & 0xFF))

4 8PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE IN GENOA (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

4 9PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE IN GENOA (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

leak(HD(X(rs1), X(rs2))); // leakage between operands

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

5 0PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE IN GENOA (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

leak(HD(X(rs1), X(rs2))); // leakage between operands
leak(X(rs1), X(rs2)); // leakage between operands

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

5 1PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE IN GENOA (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

leak(HD(X(rs1), X(rs2))); // leakage between operands
leak(X(rs1), X(rs2)); // leakage between operands
leak(X(rd), result); // transition leakage, e.g., HD

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

5 2PUBLIC

• Formal leakage model in GENOA := SAIL DSL [1] + leak [2]

MODELING LEAKAGE IN GENOA (1)

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

leak(HD(X(rs1), X(rs2))); // leakage between operands
leak(X(rs1), X(rs2)); // leakage between operands
leak(X(rd), result); // transition leakage, e.g., HD

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction,

Implementation and Verification. Gilles Barthe, Marc Gourjon,

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth.

CHES 2021.

5 3PUBLIC

MODELING LEAKAGE IN GENOA (2)

LEAKAGE STATE

…
xor x1, x2, x3

and x4, x5, x6

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

5 4PUBLIC

MODELING LEAKAGE IN GENOA (2)

LEAKAGE STATE

…
xor x1, x2, x3

and x4, x5, x6

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

rf_pA = rs1_val; // leakage state to remember operand 1

X(rd) = result;
return RETIRE_SUCCESS

}

B

5 5PUBLIC

MODELING LEAKAGE IN GENOA (2)

LEAKAGE STATE

…
xor x1, x2, x3

and x4, x5, x6

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA); // leak of rs1 & previous rs1

rf_pA = rs1_val; // leakage state to remember operand 1

X(rd) = result;
return RETIRE_SUCCESS

}

B

5 6PUBLIC

MODELING LEAKAGE IN GENOA (2)

LEAKAGE STATE

…
xor x1, x2, x3

rf_pA = x2

and x4, x5, x6
leak (x5, rf_pA)

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA); // leak of rs1 & previous rs1

rf_pA = rs1_val; // leakage state to remember operand 1

X(rd) = result;
return RETIRE_SUCCESS

}

B

5 7PUBLIC

MODELING LEAKAGE IN GENOA (2)

LEAKAGE STATE

…
xor x1, x2, x3

rf_pA = x2

and x4, x5, x6
leak (x5, rf_pA)

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA); // leak of rs1 & previous rs1
leak(X(rs2), rf_pB);

rf_pA = rs1_val; // leakage state to remember operand 1
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

5 8PUBLIC

MODELING LEAKAGE IN GENOA (2)

LEAKAGE STATE

…
xor x1, x2, x3

rf_pA = x2

and x4, x5, x6
leak (x5, rf_pA)

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA); // leak of rs1 & previous rs1
leak(X(rs2), rf_pB);

rf_pA = rs1_val; // leakage state to remember operand 1
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), X(rs2));

X(rd) = result;
return RETIRE_SUCCESS

}

AB

5 9PUBLIC

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE IN GENOA (3)

CONTRACT

A

6 0PUBLIC

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE IN GENOA (3)

CONTRACT

A
…
xor x1, x2, x3
and x4, x5, x6
…

6 1PUBLIC

…
xor x1, x2, x3
xor x0, x0, x0
and x4, x5, x6
…

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE IN GENOA (3)

CONTRACT

A
…
xor x1, x2, x3
and x4, x5, x6
…

6 2PUBLIC

…
xor x1, x2, x3
xor x0, x0, x0
and x4, x5, x6
…

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE IN GENOA (3)

CONTRACT

A
…
xor x1, x2, x3
and x4, x5, x6
…

6 3PUBLIC

…
xor x1, x2, x3
xor x0, x0, x0
and x4, x5, x6
…

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE IN GENOA (3)

CONTRACT

A
…
xor x1, x2, x3
and x4, x5, x6
…

6 5PUBLIC

GENOA POWER CONTRACT

• Contract enables to execute entire programs

symbolically

• See License in Listing L

// execute a decoded instruction
function clause execute (RTYPE(rs2, rs1, rd, op)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2);

common_leakage(rs1_val, rs2_val);

let result = match op { // match-case
RISCV_ADD => rs1_val + rs2_val, // compute ADD operation

...
RISCV_AND => rs1_val & rs2_val,

};

overwrite_leakage(rd, result);

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

6 6PUBLIC

GENOA POWER CONTRACT

• Contract enables to execute entire programs

symbolically

• See License in Listing L

// decode or encode an ADD instruction
// add rd rs1 rs2 ==> RTYPE(rs2, rs1, rd, RISCV_ADD)
mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)

<-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

// execute a decoded instruction
function clause execute (RTYPE(rs2, rs1, rd, op)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2);

common_leakage(rs1_val, rs2_val);

let result = match op { // match-case
RISCV_ADD => rs1_val + rs2_val, // compute ADD operation

...
RISCV_AND => rs1_val & rs2_val,

};

overwrite_leakage(rd, result);

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

6 7PUBLIC

GENOA POWER CONTRACT

• Contract enables to execute entire programs

symbolically

• See License in Listing L

// decode or encode an ADD instruction
// add rd rs1 rs2 ==> RTYPE(rs2, rs1, rd, RISCV_ADD)
mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)

<-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

// execute a decoded instruction
function clause execute (RTYPE(rs2, rs1, rd, op)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2);

common_leakage(rs1_val, rs2_val);

let result = match op { // match-case
RISCV_ADD => rs1_val + rs2_val, // compute ADD operation

...
RISCV_AND => rs1_val & rs2_val,

};

overwrite_leakage(rd, result);

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

function common_leakage(rs1_val, rs2_val) = {
leak(rs1_val, rs2_val, rf_pA, rf_pB,
mem_last_addr, mem_last_read);
rf_pA = rs1_val;
rf_pB = rs2_val; /* update read ports */
mem_last_read = 0; /* clear data memory port */

}

6 8PUBLIC

GENOA POWER CONTRACT

• Contract enables to execute entire programs

symbolically

• See License in Listing L

// decode or encode an ADD instruction
// add rd rs1 rs2 ==> RTYPE(rs2, rs1, rd, RISCV_ADD)
mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)

<-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

// execute a decoded instruction
function clause execute (RTYPE(rs2, rs1, rd, op)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2);

common_leakage(rs1_val, rs2_val);

let result = match op { // match-case
RISCV_ADD => rs1_val + rs2_val, // compute ADD operation

...
RISCV_AND => rs1_val & rs2_val,

};

overwrite_leakage(rd, result);

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

function step_ibex (op : bits(32)) -> bool = {
nextPC = PC + 4;

let instruction = encdec(op);
let ret = execute(instruction);

let success : bool =
match ret {

RETIRE_SUCCESS => true,
RETIRE_FAIL => false

};
tick_pc();
return success

}

function common_leakage(rs1_val, rs2_val) = {
leak(rs1_val, rs2_val, rf_pA, rf_pB,
mem_last_addr, mem_last_read);
rf_pA = rs1_val;
rf_pB = rs2_val; /* update read ports */
mem_last_read = 0; /* clear data memory port */

}

6 9PUBLIC

GENOA VS. IL

• Models for scVerif written in IL

− scVerif does not (yet) support Genoa

• Important differences

− No bitvectors

− Hardcoded assembly frontend

▪ No decoding of opcodes

▪ No step function

▪ Symbolic addresses

7 1PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

7 2PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

7 3PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

Goal: side-channel security

for physical execution on CPU

resilience against

physical adversary

7 4PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

masked_AES.s

…
xor x1, x2, x3
and x4, x5, x6
…

7 5PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

masked_AES.s leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

7 6PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

masked_AES.s leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
leak(rN, rM)

7 7PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

masked_AES.s leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
leak(rN, rM)

and rD, rN, rM
leak(rN, rM)

7 8PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
leak(rN, rM)

and rD, rN, rM
leak(rN, rM)

Test_01234.s

7 9PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
leak(rN, rM)

and rD, rN, rM
leak(rN, rM)

Test_01234.s

8 0PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
leak(rN, rM)

and rD, rN, rM
leak(rN, rM)

Test_01234.s

8 1PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
leak(rN, rM)

and rD, rN, rM
leak(rN, rM)

Test_01234.s

8 2PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
leak(rN, rM)

and rD, rN, rM
leak(rN, rM)

Test_01234.s

8 3PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
leak(rN, rM)

and rD, rN, rM
leak(rN, rM)

Test_01234.s

8 4PUBLIC

• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

leak HD(x2, x3)
leak HD(x5, x6)

…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
leak(rN, rM)

and rD, rN, rM
leak(rN, rM)

Test_01234.s

When to stop empirical evaluation?

How to tell if the model is complete?

8 5PUBLIC

PROVABLY COMPLETE LEAKAGE MODELS

program.s

Contract = Model Leakage +

Instruction Semantic

tool to check

model-

completeness

8 6PUBLIC

PROVABLY COMPLETE LEAKAGE MODELS

program.s

Contract = Model Leakage +

Instruction Semantic

tool to check

model-

completeness

8 7PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (1)

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

8 8PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (1)

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state

8 9PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (1)

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

9 0PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (1)

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

Actual leakage

in HW

9 1PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (1)

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

Actual leakage

in HW

Modeled leakage

in Contract

9 2PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (1)

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

Actual leakage

in HW

Modeled leakage

in Contract

Prove that HW leakage can be modeled
from some leak statement in contract

9 3PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (1)

HW COMPLIANCE

• E2E security reduction based on ability to model any HW probe from modeled leakage in

the contract

starting state final state

Actual leakage

in HW

Modeled leakage

in Contract

Prove that HW leakage can be modeled
from some leak statement in contract

9 4PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (2)

CHECKING THE ABIL ITY TO MODEL HW LEAKAGE FROM CONTRACT LEAKS

• Is there a function f(e1,e2) = y such that y = 𝜆𝑔 for all executions of a program?

• Rationale for model reduction:

− If I know e1,e2 which are exposed in the contract, then

− I can simulate the observation of leakage 𝜆𝑔 of gate 𝑔 in HW which an adversary could make

:= {…, leak(e1, e2), …}

:= {…, , …}
𝑗

𝑖

9 5PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (2)

CHECKING THE ABIL ITY TO MODEL HW LEAKAGE FROM CONTRACT LEAKS

• Is there a function f(e1,e2) = y such that y = 𝜆𝑔 for all executions of a program?

• Rationale for model reduction:

− If I know e1,e2 which are exposed in the contract, then

− I can simulate the observation of leakage 𝜆𝑔 of gate 𝑔 in HW which an adversary could make

:= {…, leak(e1, e2), …}

:= {…, , …}
𝑗

𝑖

∃ f(e1,e2) =𝜆𝑔 ?

9 6PUBLIC

VERIFYING COMPLETENESS IN A NUTSHELL (2)

CHECKING THE ABIL ITY TO MODEL HW LEAKAGE FROM CONTRACT LEAKS

• Is there a function f(e1,e2) = y such that y = 𝜆𝑔 for all executions of a program?

• Rationale for model reduction:

− If I know e1,e2 which are exposed in the contract, then

− I can simulate the observation of leakage 𝜆𝑔 of gate 𝑔 in HW which an adversary could make

:= {…, leak(e1, e2), …}

:= {…, , …}
𝑗

𝑖

∃ f(e1,e2) =𝜆𝑔 ?

Provably complete leakage

models for processors

9 7PUBLIC

LEAKAGE MODELS FOR SECURITY RESEARCH

More use-cases for fine-grained leakage model

• Foundation for power leakage emulators

• Statistical evaluation

• Masking centric

• Automated leakage mitigation

• Automated application of countermeasures

masked_program.s

9 8PUBLIC

LEAKAGE MODELS FOR SECURITY RESEARCH

More use-cases for fine-grained leakage model

• Foundation for power leakage emulators

• Statistical evaluation

• Masking centric

• Automated leakage mitigation

• Automated application of countermeasures

masked_program.s

leakage model

scVerif

9 9PUBLIC

LEAKAGE MODELS FOR SECURITY RESEARCH

More use-cases for fine-grained leakage model

• Foundation for power leakage emulators

• Statistical evaluation

• Masking centric

• Automated leakage mitigation

• Automated application of countermeasures

masked_program.s

leakage model

scVerif

resilience against

physical adversary

1 0 1PUBLIC1 0 1

PUBLIC

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V.

ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RES PECTIVE OWNERS. © 2022 NXP B.V.

Verification of Resilience in
Fine-Grained Models

1 0 2PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

1 0 3PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

1 0 4PUBLIC

MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

Goal: side-channel security

for physical execution on CPU

resilience against

probing adversary

1 0 5PUBLIC

SCVERIF - OVERVIEW

model.ilprogram.s

scVerif

annotation.il

maskVerif

1 0 6PUBLIC

SCVERIF - OVERVIEW

model.ilprogram.s

scVerif

annotation.il

maskVerif

Provably Stateful (S)NI
at order 𝑡

or

Insecure due to leakage
in instructions X,… at
lines Y,… in program.s

1 0 7PUBLIC

SCVERIF - OVERVIEW

• Prove security w.r.t. all

device specific leakage at

fixed security order model.ilprogram.s

scVerif

annotation.il

maskVerif

Provably Stateful (S)NI
at order 𝑡

or

Insecure due to leakage
in instructions X,… at
lines Y,… in program.s

1 0 8PUBLIC

SCVERIF - OVERVIEW

• Prove security w.r.t. all

device specific leakage at

fixed security order

• Executable Arm / RISC-V

assembly implementations

model.ilprogram.s

scVerif

annotation.il

maskVerif

Provably Stateful (S)NI
at order 𝑡

or

Insecure due to leakage
in instructions X,… at
lines Y,… in program.s

1 0 9PUBLIC

SCVERIF - OVERVIEW

• Prove security w.r.t. all

device specific leakage at

fixed security order

• Executable Arm / RISC-V

assembly implementations

• Stateful non-interference

model.ilprogram.s

scVerif

annotation.il

maskVerif

Provably Stateful (S)NI
at order 𝑡

or

Insecure due to leakage
in instructions X,… at
lines Y,… in program.s

1 1 0PUBLIC

SCVERIF - OVERVIEW

• Prove security w.r.t. all

device specific leakage at

fixed security order

• Executable Arm / RISC-V

assembly implementations

• Stateful non-interference

• PINI + probing security

model.ilprogram.s

scVerif

annotation.il

maskVerif

Provably Stateful (S)NI
at order 𝑡

or

Insecure due to leakage
in instructions X,… at
lines Y,… in program.s

1 1 1PUBLIC

STATEFUL NON- INTERFERENCE

• Gadget

− Masked secret inputs 𝑥𝑖𝑛

− Randomness 𝑟

− Public input state 𝑠𝑖𝑛 (indep. of 𝑥𝑖𝑛 and 𝑟)

− Secret outputs 𝑦𝑜𝑢𝑡

− Public output state 𝑠𝑜𝑢𝑡

− Exposes internal observable leakage 𝐿

• Stateful 𝑡-Strong Non-Interference

1. Any set of 𝑡𝑖𝑛𝑡 observations on internal leakage 𝐿 in combination with 𝑡𝑜𝑢𝑡 observations on
outputs 𝑠𝑜𝑢𝑡 s.t. 𝑡𝑖𝑛𝑡 + 𝑡𝑜𝑢𝑡 ≤ 𝑡, combined with any number of observations on public output
state 𝑠𝑜𝑢𝑡 can be simulated from just 𝑡 input shares and the input state 𝑠𝑖𝑛.

2. The output state 𝑠𝑜𝑢𝑡 can be simulated from only the input state 𝑠𝑖𝑛.

1 1 2PUBLIC

SECURE COMPOSIT ION WITH STATEFUL (S)NI

• Well known

− Secure + insecure code ⇏ secure

• Side-Channel

− Resilient + Resilient ⇏ Resilient

− Observed knowledge propagates

− Especially residue

1 1 3PUBLIC

SECURE COMPOSIT ION WITH STATEFUL (S)NI

• Well known

− Secure + insecure code ⇏ secure

• Side-Channel

− Resilient + Resilient ⇏ Resilient

− Observed knowledge propagates

− Especially residue

Stateful notions ensure removal of residue

→ Standard (S)NI composition rules restored in stateful setting

1 1 4PUBLIC

SECURE COMPOSIT ION WITH STATEFUL (S)NI

• Well known

− Secure + insecure code ⇏ secure

• Side-Channel

− Resilient + Resilient ⇏ Resilient

− Observed knowledge propagates

− Especially residue

Stateful notions ensure removal of residue

→ Standard (S)NI composition rules restored in stateful setting

annotate andOrder1
…
output public r0
…
output public r7
output public stack

1 1 5PUBLIC

ANNOTATIONS FOR CONCRETE IMPLEMENTATIONS

1 1 6PUBLIC

ANNOTATIONS FOR CONCRETE IMPLEMENTATIONS

𝑟

𝑦𝑜, 𝑦1

𝑥0
(0)
, 𝑥1

(0)

𝑥0
(1)
, 𝑥1

(1)

Pointers to

1 1 7PUBLIC

ANNOTATIONS FOR CONCRETE IMPLEMENTATIONS

𝑟

𝑦𝑜, 𝑦1

𝑥0
(0)
, 𝑥1

(0)

𝑥0
(1)
, 𝑥1

(1)

Pointers to

annotate andOrder1
region mem w32 a[0:1]

1 1 8PUBLIC

ANNOTATIONS FOR CONCRETE IMPLEMENTATIONS

𝑟

𝑦𝑜, 𝑦1

𝑥0
(0)
, 𝑥1

(0)

𝑥0
(1)
, 𝑥1

(1)

Pointers to

annotate andOrder1
region mem w32 a[0:1]
region mem w32 b[0:1]
region mem w32 c[0:1]
region mem w32 rnd[0:0]

1 1 9PUBLIC

ANNOTATIONS FOR CONCRETE IMPLEMENTATIONS

𝑟

𝑦𝑜, 𝑦1

𝑥0
(0)
, 𝑥1

(0)

𝑥0
(1)
, 𝑥1

(1)

Pointers to

annotate andOrder1
region mem w32 a[0:1]
region mem w32 b[0:1]
region mem w32 c[0:1]
region mem w32 rnd[0:0]

init r0 [rnd 0]
init r1 [c 0]
init r2 [a 0]
init r3 [b 0]

1 2 0PUBLIC

ANNOTATIONS FOR CONCRETE IMPLEMENTATIONS

𝑟

𝑦𝑜, 𝑦1

𝑥0
(0)
, 𝑥1

(0)

𝑥0
(1)
, 𝑥1

(1)

Pointers to

annotate andOrder1
region mem w32 a[0:1]
region mem w32 b[0:1]
region mem w32 c[0:1]
region mem w32 rnd[0:0]
region mem w32 stack[-2:-1]
init r0 [rnd 0]
init r1 [c 0]
init r2 [a 0]
init r3 [b 0]
init sp [stack 0]
init lr exit

1 2 1PUBLIC

LOWERING TO MASKVERIF

PARTIAL -EVALUATION

• MaskVerif

− Provides verification algorithms for high-level algorithms

− No addressable memory →just arrays with static indices

− No control-flow

1 2 2PUBLIC

LOWERING TO MASKVERIF

PARTIAL -EVALUATION

• MaskVerif

− Provides verification algorithms for high-level algorithms

− No addressable memory →just arrays with static indices

− No control-flow

• Partial evaluation

− Evaluate control flow

− Resolve memory accesses

1 2 3PUBLIC

LOWERING TO MASKVERIF

PARTIAL -EVALUATION

• MaskVerif

− Provides verification algorithms for high-level algorithms

− No addressable memory →just arrays with static indices

− No control-flow

• Partial evaluation

− Evaluate control flow

− Resolve memory accesses

Annotate andOrder1:

region mem w32 rnd[0:2]

init r0 [rnd 0]

1 2 4PUBLIC

LOWERING TO MASKVERIF

PARTIAL -EVALUATION

• MaskVerif

− Provides verification algorithms for high-level algorithms

− No addressable memory →just arrays with static indices

− No control-flow

• Partial evaluation

− Evaluate control flow

− Resolve memory accesses

Annotate andOrder1:

region mem w32 rnd[0:2]

init r0 [rnd 0]

…

LDR r4, 0x04(r0)

…

1 2 5PUBLIC

LOWERING TO MASKVERIF

PARTIAL -EVALUATION

• MaskVerif

− Provides verification algorithms for high-level algorithms

− No addressable memory →just arrays with static indices

− No control-flow

• Partial evaluation

− Evaluate control flow

− Resolve memory accesses

Annotate andOrder1 rnd[1]

region mem w32 rnd[0:2]

init r0 [rnd 0]

…

LDR r4, 0x04(r0)

…

evaluates to: r4 ← rnd[1]

1 2 6PUBLIC

LOWERING TO MASKVERIF

PARTIAL -EVALUATION

• MaskVerif

− Provides verification algorithms for high-level algorithms

− No addressable memory →just arrays with static indices

− No control-flow

• Partial evaluation

− Evaluate control flow

− Resolve memory accesses

Annotate andOrder1 rnd[1]

region mem w32 rnd[0:2]

init r0 [rnd 0]

…

LDR r4, 0x04(r0)

…

evaluates to: r4 ← rnd[1]

1 2 7PUBLIC

VERIF ICATION FLOW OF SCVERIF

1. Represent program code

using modeled instruction

semantics

2. Partially evaluate using

annotations

3. Verify resulting symbolic

trace (representing the

executed program) with

maskVerif

4. Report verification result to

user

1 2 8PUBLIC

TOOL ASSISTED OPTIMIZATION STRATEGIES FOR EFFICIENT MASKING

• Applied to masked Present S-box

− speedup in dev time, speedup in exec time & program size

+ fine-tuning to device-specific leakage

− scVerif + gadgets publicly available

• Also applied to Kyber modules

− Very large

− still phy. leakage free without conservative choices

• Linear compositions share-wise

• Merging of non-linear gadgets

− Reduce memory access at increased complexity

1 2 9PUBLIC

MASKING IN REAL APPLICATIONS

• Application to entire ciphers (e.g., Kyber)

• Hand-crafted composition, specialized algorithms for efficient gadgets

masked AND
A2B

1 3 0PUBLIC

APPLICATION (2)

1 3 1PUBLIC

LIMITATIONS

• Partial evaluation

− memcpy with symbolic size

• Generic order

1 3 2PUBLIC

LIMITATIONS

• Partial evaluation

− memcpy with symbolic size

• Generic order

• Secret dependent memory accesses

− Masked table lookup ?!

1 3 3PUBLIC

LIMITATIONS

• Partial evaluation

− memcpy with symbolic size

• Generic order

• Secret dependent memory accesses

− Masked table lookup ?!

1 3 4PUBLIC

LIMITATIONS

• Partial evaluation

− memcpy with symbolic size

• Generic order

• Secret dependent memory accesses

− Masked table lookup ?!

LDR rd, a0

1 3 5PUBLIC

VERIFYING LOOK -UP-TABLES WITH SECRET DEPENDENT MEMORY ACCESS

• Replace LDR by virtual LUT instruction

− Express semantic of lookup table without memory access

LDR rD, rIDX

val ← mem[rIDX]

LUT rD, rIDX

val ← f[rIDX]

1 3 6PUBLIC

VERIFYING LOOK -UP-TABLES WITH SECRET DEPENDENT MEMORY ACCESS

• Replace LDR by virtual LUT instruction

− Express semantic of lookup table without memory access

Same leakage as LDR

instruction

Semantic of table lookup

LDR rD, rIDX

val ← mem[rIDX]

LUT rD, rIDX

val ← f[rIDX]

1 3 7PUBLIC

SUMMARY

• Fine-grained models for software masking

− Reliable & accurate

− User-defined arbitrary leakage behavior

− Not sacrificing efficiency

• scVerif

− Fast verification

− Accurate error reports

− Support specialized constructions

− Support highly-efficient masking

1 3 8PUBLIC

LISTING L

LICENSE OF SHOWN CODE -SNIPPETS

RISCV Sail Model

This Sail RISC-V architecture model, comprising all files and directories except for the snapshots of the Lem and Sail libraries in the prover_snapshots
directory (which include copies of their licences), is subject to the BSD two-clause licence below.

Copyright (c) 2017-2021 Prashanth Mundkur, Rishiyur S. Nikhil and Bluespec Inc., Jon French, Brian Campbell, Robert Norton-Wright, Alasdair Armstrong, Thomas
Bauereiss, Shaked Flur, Christopher Pulte, Peter Sewell, Alexander Richardson, Hesham Almatary, Jessica Clarke, Microsoft, for contributions by Robert Norton-
Wright and Nathaniel Wesley Filardo, Peter Rugg and Aril Computer Corp., for contributions by Scott Johnson.

Copyright 2020-2022 - TUHH, TU Graz

All rights reserved.

This software was developed by the above within the Rigorous Engineering of Mainstream Systems (REMS) project, partly funded by EPSRC grant EP/K008528/1, at the
Universities of Cambridge and Edinburgh.

This software was developed by SRI International and the University of Cambridge Computer Laboratory (Department of Computer Science and Technology) under
DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"), and under DARPA contract HR0011-18-C-0016 ("ECATS") as part of the DARPA SSITH research programme.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant
agreement 789108, ELVER).

This software has received funding from the Federal Ministry of Education and Research (BMBF) as part of the VE-Jupiter project grant 16ME0231K.

This work was supported by the Austrian Research Promotion Agency (FFG) through the FERMION project (grant number 867542).

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NXP, THE NXP LOGO AND NXP SECURE CONNECTIONS FOR A SMARTER WORLD ARE TRADEMARKS OF NXP B.V. ALL OTHER PRODUCT OR SERVICE NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. © 2022 NXP B.V.

