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MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

Goal: side-channel security

for physical execution on CPU

resilience against 

physical adversary

In this talk

- precise modeling of leakage

- verifying resilience

- a bit of tooling
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MASKED GADGETS & PROVABLE SECURITY (1 )

masked AND 𝑧 = 𝑥 ∧ 𝑦
Inputs: 𝑥0, 𝑥1, … , 𝑥𝑛−1 , 𝑦0, 𝑦1, … , 𝑦𝑛−1

For 𝑖 = 0 to 𝑛 − 1
𝒛𝒊 ← 𝒙𝒊 ∧ 𝒚𝒊

For 𝑖 = 0 to 𝑛 − 1
For 𝑗 = 𝑖 + 1 to 𝑛 − 1

𝒓 ← 𝟎, 𝟏

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊

𝒛𝒊 ← 𝒛𝒊 ⊕𝒓
𝒛𝒋 ← 𝒛𝒋 ⊕𝒓′

Return (𝑧0, 𝑧1, … , 𝑧𝑛−1)

𝑑th -Order probing security

Any set of 𝑑 observations an attacker could make must be 

independent of secrets => must perform at least a d+1 order attack

𝑛 > 𝑑

Proven secure!
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MASKED GADGETS & PROVABLE SECURITY (2 )

masked AND 𝑧 = 𝑥 ∧ 𝑦
Inputs: 𝑥0, 𝑥1, … , 𝑥𝑛−1 , 𝑦0, 𝑦1, … , 𝑦𝑛−1

For 𝑖 = 0 to 𝑛 − 1
𝒛𝒊 ← 𝒙𝒊 ∧ 𝒚𝒊

For 𝑖 = 0 to 𝑛 − 1
For 𝑗 = 𝑖 + 1 to 𝑛 − 1

𝒓 ← 𝟎, 𝟏

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊

𝒛𝒊 ← 𝒛𝒊 ⊕𝒓
𝒛𝒋 ← 𝒛𝒋 ⊕𝒓′

Return (𝑧0, 𝑧1, … , 𝑧𝑛−1)

Leakage model := What is observable via side-channel

• Computational / value leakage

• Different & more observations possible in practice
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MASKING IN  REAL APPLICATIONS

• Application to entire ciphers (e.g., Kyber)

• Hand-crafted compositions, specialized algorithms for efficient gadgets

masked AND
A2B
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IMPLEMENTATION DIFFICULTIES

• Compilers will break security

→ Assembly programming

• Functional correctness

• Adhere to observables intermediates in security proof

• Adhere to proven composition

• Randomness (re-use)

• Device-specific leakage

≠

Beware of link time optimizations

𝒓′ ← 𝒓⊕ 𝒙𝒊 ∧ 𝒚𝒋 ⊕ 𝒙𝒋 ∧ 𝒚𝒊 ?



2 6PUBLIC

MORE REALIST IC POWER LEAKAGE

• Side-Channel = physical phenomenon

− Not just computation leakage

− Much more observations

• Gap in provable security

− Any leakage observable in practice which is 

not captured by a proof of security

𝑝 ⊕ 𝑘

HW(𝒑⊕ 𝒌) 

HD(𝒑, 𝒌) 

HW(𝒌) 
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…
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Problem: Same program has different microarchitecture

Cause: Processor’s implementation → microarchitecture

A

THE GAP BETWEEN PROVABLE RESIL IENCE & PHYSICAL S IDE -CHANNELS

DEVICE-SPECIF IC  LEAKAGE

RESILIENT

INSECURE

masked_kyber.s

B

…
xor x1, x2, x3
and x4, x5, x6
…

…
xor x1, x2, x3
and x4, x5, x6
…

HD(x2, x3)
HD(x5, x6)

HD(x2, x5)
HD(x3, x6)

Provably secure!

phy. adversary

phy. adversary
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DEVICE-SPECIF IC  LEAKAGE (2 )

MICROARCHITECTURE

A

RF Port 
B

WB

AND XOR

RF Port 
A

B

RF Port 
D

RF Port 
C

…
xor x1, x2, x3
and x4, x5, x6
…

Composable Masking Schemes in the Presence of Physical 

Defaults & the Robust Probing Model. Sebastian Faust, Vincent 

Grosso, Santos Merino Del Pozo, Clara Paglialonga, François-Xavier 

Standaert. CHES 2018.
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EXPLICIT  LEAKAGE

• leak( HD(value_1,  value_2) );

• leak(    value_1,  value_2  );

• Remainder of DSL does not expose leakage

• May effect efficiency of hardened implementations

HD(value_1,  value_2)

HD(value_1,  value_2)

HW(value_1)

HD(MSB(value_1),
LSB(value_2))

Any function of terms in leak HD((value_1 >> 24),
(value_2 & 0xFF))
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• Formal leakage model in GENOA :=  SAIL DSL [1] + leak [2]

MODELING LEAKAGE IN  GENOA (1 )

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2

let result = rs1_val ^ rs2_val; // compute XOR operation

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

[1]: ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. Alasdair

Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, 

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, 

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel 

Krishnaswami, and Peter Sewell. POPL 2019.

A

[2]: Masking in Fine-Grained Leakage Models: Construction, 

Implementation and Verification. Gilles Barthe, Marc Gourjon, 

Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, Lars Porth. 

CHES 2021.
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• Formal leakage model in GENOA :=  SAIL DSL [1] + leak [2]

MODELING LEAKAGE IN  GENOA (1 )

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2); // read register rs2
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[2]: Masking in Fine-Grained Leakage Models: Construction, 

Implementation and Verification. Gilles Barthe, Marc Gourjon, 
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MODELING LEAKAGE IN  GENOA (2 )

LEAKAGE STATE

…
xor x1, x2, x3

and x4, x5, x6

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B
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}

B



5 6PUBLIC

MODELING LEAKAGE IN  GENOA (2 )

LEAKAGE STATE

…
xor x1, x2, x3

rf_pA = x2

and x4, x5, x6
leak (x5, rf_pA)

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(   X(rs1), rf_pA); // leak of rs1 & previous rs1

rf_pA = rs1_val; // leakage state to remember operand 1

X(rd) = result;
return RETIRE_SUCCESS

}

B



5 7PUBLIC

MODELING LEAKAGE IN  GENOA (2 )

LEAKAGE STATE

…
xor x1, x2, x3

rf_pA = x2

and x4, x5, x6
leak (x5, rf_pA)

…
// see license in Listing L
// execute a XOR instruction, similar for AND
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(   X(rs1), rf_pA); // leak of rs1 & previous rs1
leak(   X(rs2), rf_pB);

rf_pA = rs1_val; // leakage state to remember operand 1
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B



5 8PUBLIC

MODELING LEAKAGE IN  GENOA (2 )

LEAKAGE STATE

…
xor x1, x2, x3

rf_pA = x2
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…
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let result = rs1_val ^ rs2_val;

leak(   X(rs1), rf_pA); // leak of rs1 & previous rs1
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// execute a XOR instruction
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X(rd) = result;
return RETIRE_SUCCESS

}
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• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(   X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE IN  GENOA (3 )

CONTRACT

A
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• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(   X(rs1), rf_pA,
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X(rd) = result;
return RETIRE_SUCCESS

}
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MODELING LEAKAGE IN  GENOA (3 )

CONTRACT

A
…
xor x1, x2, x3
and x4, x5, x6
…
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…
xor x1, x2, x3
xor x0, x0, x0
and x4, x5, x6
…

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(   X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE IN  GENOA (3 )

CONTRACT

A
…
xor x1, x2, x3
and x4, x5, x6
…
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…
xor x1, x2, x3
xor x0, x0, x0
and x4, x5, x6
…

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(   X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE IN  GENOA (3 )

CONTRACT

A
…
xor x1, x2, x3
and x4, x5, x6
…
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…
xor x1, x2, x3
xor x0, x0, x0
and x4, x5, x6
…

• One contract for many processors

// see license in Listing L
// execute a XOR instruction
execute (XOR(rs2, rs1, rd)) = {

let rs1_val = X(rs1);
let rs2_val = X(rs2);

let result = rs1_val ^ rs2_val;

leak(   X(rs1), rf_pA,
X(rs2), rf_pB);

rf_pA = rs1_val;
rf_pB = rs2_val;

X(rd) = result;
return RETIRE_SUCCESS

}

B

MODELING LEAKAGE IN  GENOA (3 )

CONTRACT

A
…
xor x1, x2, x3
and x4, x5, x6
…
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GENOA POWER CONTRACT

• Contract enables to execute entire programs 

symbolically

• See License in Listing L

// execute a decoded instruction
function clause execute (RTYPE(rs2, rs1, rd, op)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2);

common_leakage(rs1_val, rs2_val);

let result = match op { // match-case
RISCV_ADD  => rs1_val + rs2_val, // compute ADD operation

...
RISCV_AND  => rs1_val & rs2_val,

};

overwrite_leakage(rd, result);

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}
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<-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011
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let result = match op { // match-case
RISCV_ADD  => rs1_val + rs2_val, // compute ADD operation

...
RISCV_AND  => rs1_val & rs2_val,

};

overwrite_leakage(rd, result);

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}
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GENOA POWER CONTRACT

• Contract enables to execute entire programs 

symbolically

• See License in Listing L

// decode or encode an ADD instruction
// add rd rs1 rs2 ==> RTYPE(rs2, rs1, rd, RISCV_ADD)
mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)

<-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

// execute a decoded instruction
function clause execute (RTYPE(rs2, rs1, rd, op)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2);

common_leakage(rs1_val, rs2_val);

let result = match op { // match-case
RISCV_ADD  => rs1_val + rs2_val, // compute ADD operation

...
RISCV_AND  => rs1_val & rs2_val,

};

overwrite_leakage(rd, result);

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

function common_leakage(rs1_val, rs2_val) = {
leak(rs1_val, rs2_val, rf_pA, rf_pB,
mem_last_addr, mem_last_read);
rf_pA = rs1_val;
rf_pB = rs2_val;   /* update read ports      */
mem_last_read = 0; /* clear data memory port */ 

}



6 8PUBLIC

GENOA POWER CONTRACT

• Contract enables to execute entire programs 

symbolically

• See License in Listing L

// decode or encode an ADD instruction
// add rd rs1 rs2 ==> RTYPE(rs2, rs1, rd, RISCV_ADD)
mapping clause encdec = RTYPE(rs2, rs1, rd, RISCV_ADD)

<-> 0b0000000 @ rs2 @ rs1 @ 0b000 @ rd @ 0b0110011

// execute a decoded instruction
function clause execute (RTYPE(rs2, rs1, rd, op)) = {

let rs1_val = X(rs1); // read register rs1
let rs2_val = X(rs2);

common_leakage(rs1_val, rs2_val);

let result = match op { // match-case
RISCV_ADD  => rs1_val + rs2_val, // compute ADD operation

...
RISCV_AND  => rs1_val & rs2_val,

};

overwrite_leakage(rd, result);

X(rd) = result; // write result to rd
return RETIRE_SUCCESS

}

function step_ibex (op : bits(32)) -> bool = {
nextPC = PC + 4;

let instruction = encdec(op);
let ret = execute(instruction);

let success : bool = 
match ret {

RETIRE_SUCCESS => true,
RETIRE_FAIL => false

};
tick_pc();
return success

}

function common_leakage(rs1_val, rs2_val) = {
leak(rs1_val, rs2_val, rf_pA, rf_pB,
mem_last_addr, mem_last_read);
rf_pA = rs1_val;
rf_pB = rs2_val;   /* update read ports      */
mem_last_read = 0; /* clear data memory port */ 

}
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GENOA VS.  IL

• Models for scVerif written in IL

− scVerif does not (yet) support Genoa

• Important differences

− No bitvectors

− Hardcoded assembly frontend

▪ No decoding of opcodes

▪ No step function

▪ Symbolic addresses
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MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

Goal: side-channel security

for physical execution on CPU

resilience against 

physical adversary
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• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

masked_AES.s

…
xor x1, x2, x3
and x4, x5, x6
…
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• Write test, measure, eat, sleep, repeat

A

COMPLETENESS OF LEAKAGE MODELS

EMPIRICAL APPROACH

leak HD(x2, x3)
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…
xor x1, x2, x3
and x4, x5, x6
…

xor rD, rN, rM
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and rD, rN, rM
leak(rN, rM)

Test_01234.s

When to stop empirical evaluation?

How to tell if the model is complete?
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VERIFYING COMPLETENESS IN  A NUTSHELL (2 )

CHECKING THE ABIL ITY TO MODEL HW LEAKAGE FROM CONTRACT LEAKS

• Is there a function f(e1,e2) = y such that y = 𝜆𝑔 for all executions of a program?

• Rationale for model reduction:

− If I know e1,e2 which are exposed in the contract, then

− I can simulate the observation of leakage 𝜆𝑔 of gate 𝑔 in HW which an adversary could make

:= {…, leak( e1, e2 ), …} 

:= {…, , …} 
𝑗

𝑖
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− I can simulate the observation of leakage 𝜆𝑔 of gate 𝑔 in HW which an adversary could make
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:= {…, , …} 
𝑗

𝑖

∃ f(e1,e2) =𝜆𝑔 ?
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VERIFYING COMPLETENESS IN  A NUTSHELL (2 )

CHECKING THE ABIL ITY TO MODEL HW LEAKAGE FROM CONTRACT LEAKS

• Is there a function f(e1,e2) = y such that y = 𝜆𝑔 for all executions of a program?

• Rationale for model reduction:

− If I know e1,e2 which are exposed in the contract, then

− I can simulate the observation of leakage 𝜆𝑔 of gate 𝑔 in HW which an adversary could make

:= {…, leak( e1, e2 ), …} 

:= {…, , …} 
𝑗

𝑖

∃ f(e1,e2) =𝜆𝑔 ?

Provably complete leakage 

models for processors
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LEAKAGE MODELS FOR SECURITY RESEARCH

More use-cases for fine-grained leakage model

• Foundation for power leakage emulators

• Statistical evaluation

• Masking centric

• Automated leakage mitigation

• Automated application of countermeasures

masked_program.s

leakage model

scVerif

resilience against 

physical adversary
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Fine-Grained Models
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MODEL-BASED SECURITY ASSESSMENT

masked_program.s
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MODEL-BASED SECURITY ASSESSMENT

masked_program.s

leakage model

Verify side-channel security

Goal: side-channel security

for physical execution on CPU

resilience against 

probing adversary
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SCVERIF  - OVERVIEW

• Prove security w.r.t. all 

device specific leakage at 

fixed security order

• Executable Arm / RISC-V 

assembly implementations

• Stateful non-interference

• PINI + probing security

model.ilprogram.s

scVerif

annotation.il

maskVerif

Provably Stateful (S)NI 
at order 𝑡

or

Insecure due to leakage 
in instructions X,… at 
lines Y,… in program.s
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STATEFUL NON- INTERFERENCE

• Gadget

− Masked secret inputs 𝑥𝑖𝑛

− Randomness 𝑟

− Public input state 𝑠𝑖𝑛 (indep. of 𝑥𝑖𝑛 and 𝑟)

− Secret outputs 𝑦𝑜𝑢𝑡

− Public output state 𝑠𝑜𝑢𝑡

− Exposes internal observable leakage 𝐿

• Stateful 𝑡-Strong Non-Interference

1. Any set of 𝑡𝑖𝑛𝑡 observations on internal leakage 𝐿 in combination with 𝑡𝑜𝑢𝑡 observations on 
outputs 𝑠𝑜𝑢𝑡 s.t. 𝑡𝑖𝑛𝑡 + 𝑡𝑜𝑢𝑡 ≤ 𝑡, combined with any number of observations on public output 
state 𝑠𝑜𝑢𝑡 can be simulated from just 𝑡 input shares and the input state 𝑠𝑖𝑛.

2. The output state 𝑠𝑜𝑢𝑡 can be simulated from only the input state 𝑠𝑖𝑛.
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SECURE COMPOSIT ION WITH STATEFUL (S)NI

• Well known

− Secure + insecure code ⇏ secure

• Side-Channel
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− Observed knowledge propagates

− Especially residue
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SECURE COMPOSIT ION WITH STATEFUL (S)NI

• Well known

− Secure + insecure code ⇏ secure

• Side-Channel

− Resilient + Resilient ⇏ Resilient

− Observed knowledge propagates

− Especially residue

Stateful notions ensure removal of residue

→ Standard (S)NI composition rules restored in stateful setting

annotate andOrder1
…
output public r0
…
output public r7
output public stack
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ANNOTATIONS FOR CONCRETE IMPLEMENTATIONS

𝑟

𝑦𝑜, 𝑦1

𝑥0
(0)
, 𝑥1

(0)

𝑥0
(1)
, 𝑥1

(1)

Pointers to

annotate andOrder1
region mem w32 a[0:1]
region mem w32 b[0:1]
region mem w32 c[0:1]
region mem w32 rnd[0:0]

init r0 [rnd 0]
init r1 [c 0]
init r2 [a 0]
init r3 [b 0]
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ANNOTATIONS FOR CONCRETE IMPLEMENTATIONS

𝑟

𝑦𝑜, 𝑦1

𝑥0
(0)
, 𝑥1

(0)

𝑥0
(1)
, 𝑥1

(1)

Pointers to

annotate andOrder1
region mem w32 a[0:1]
region mem w32 b[0:1]
region mem w32 c[0:1]
region mem w32 rnd[0:0]
region mem w32 stack[-2:-1]
init r0 [rnd 0]
init r1 [c 0]
init r2 [a 0]
init r3 [b 0]
init sp [stack 0]
init lr exit
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LOWERING TO MASKVERIF

PARTIAL -EVALUATION

• MaskVerif

− Provides verification algorithms for high-level algorithms

− No addressable memory →just arrays with static indices

− No control-flow
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LOWERING TO MASKVERIF

PARTIAL -EVALUATION

• MaskVerif

− Provides verification algorithms for high-level algorithms

− No addressable memory →just arrays with static indices

− No control-flow

• Partial evaluation

− Evaluate control flow

− Resolve memory accesses

Annotate andOrder1 rnd[1]

region mem w32 rnd[0:2]

init r0 [rnd 0]

…

LDR r4, 0x04(r0)

…

evaluates to: r4 ← rnd[1]
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VERIF ICATION FLOW OF SCVERIF

1. Represent program code 

using modeled instruction 

semantics

2. Partially evaluate using 

annotations

3. Verify resulting symbolic 

trace (representing the 

executed program) with 

maskVerif

4. Report verification result to 

user
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TOOL ASSISTED OPTIMIZATION STRATEGIES FOR EFFICIENT MASKING

• Applied to masked Present S-box

− speedup in dev time, speedup in exec time & program size

+ fine-tuning to device-specific leakage

− scVerif + gadgets publicly available

• Also applied to Kyber modules

− Very large

− still phy. leakage free without conservative choices

• Linear compositions share-wise

• Merging of non-linear gadgets

− Reduce memory access at increased complexity
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MASKING IN  REAL APPLICATIONS

• Application to entire ciphers (e.g., Kyber)

• Hand-crafted composition, specialized algorithms for efficient gadgets

masked AND
A2B
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APPLICATION (2 )
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LIMITATIONS

• Partial evaluation

− memcpy with symbolic size

• Generic order

• Secret dependent memory accesses

− Masked table lookup ?!

LDR rd, a0
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VERIFYING LOOK -UP-TABLES WITH SECRET DEPENDENT MEMORY ACCESS

• Replace LDR by virtual LUT instruction

− Express semantic of lookup table without memory access

LDR rD, rIDX

val ← mem[rIDX]

LUT rD, rIDX

val ← f[rIDX]
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VERIFYING LOOK -UP-TABLES WITH SECRET DEPENDENT MEMORY ACCESS

• Replace LDR by virtual LUT instruction

− Express semantic of lookup table without memory access

Same leakage as LDR 

instruction

Semantic of table lookup

LDR rD, rIDX

val ← mem[rIDX]

LUT rD, rIDX

val ← f[rIDX]
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SUMMARY

• Fine-grained models for software masking

− Reliable & accurate

− User-defined arbitrary leakage behavior

− Not sacrificing efficiency

• scVerif

− Fast verification

− Accurate error reports

− Support specialized constructions

− Support highly-efficient masking
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LISTING L

LICENSE OF SHOWN CODE -SNIPPETS

RISCV Sail Model

This Sail RISC-V architecture model, comprising all files and directories except for the snapshots of the Lem and Sail libraries in the prover_snapshots
directory (which include copies of their licences), is subject to the BSD two-clause licence below.

Copyright (c) 2017-2021 Prashanth Mundkur, Rishiyur S. Nikhil and Bluespec Inc., Jon French, Brian Campbell, Robert Norton-Wright, Alasdair Armstrong, Thomas 
Bauereiss, Shaked Flur, Christopher Pulte, Peter Sewell, Alexander Richardson, Hesham Almatary, Jessica Clarke, Microsoft, for contributions by Robert Norton-
Wright and Nathaniel Wesley Filardo, Peter Rugg and Aril Computer Corp., for contributions by Scott Johnson.

Copyright 2020-2022 - TUHH, TU Graz

All rights reserved.

This software was developed by the above within the Rigorous Engineering of Mainstream Systems (REMS) project, partly funded by EPSRC grant EP/K008528/1, at the 
Universities of Cambridge and Edinburgh.

This software was developed by SRI International and the University of Cambridge Computer Laboratory (Department of Computer Science and Technology) under 
DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"), and under DARPA contract HR0011-18-C-0016 ("ECATS") as part of the DARPA SSITH research programme.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant 
agreement 789108, ELVER).

This software has received funding from the Federal Ministry of Education and Research (BMBF) as part of the VE-Jupiter project grant 16ME0231K.

This work was supported by the Austrian Research Promotion Agency (FFG) through the FERMION project (grant number 867542).

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or 
other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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