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1. Introduction

1.1. The masking countermeasure
Masking is the most widely used countermeasure against side-channel attacks for block-ciphers and
symmetric-key algorithms. In a first-order countermeasure, all intermediate variables x are masked
into a pair (x′, r) where r is a randomly generated value and x′ = x ⊕ r. For such countermea-
sure, it is usually straightforward to verify its security against first-order attacks; namely it suffices to
check that all intermediate variables have the uniform distribution, or at least that their distribution is
independent from the key; therefore an attacker processing the side-channel leakage of intermediate
variables separately (as in a first-order attack) does not get useful information.

However second-order attacks combining the leakage on x′ and r can be mounted in practice,
so it makes sense to design masking algorithms resisting higher-order attacks. This is done by
extending Boolean masking to n shares with x = x1 ⊕ · · · ⊕ xn; in that case an implementation
should be resistant against t-th order attacks, in which the adversary combines leakage information
from at most t < n intermediate variables.

1.2. Security proofs
In principle any countermeasure against high-order attacks should have a security proof, but such
proof can be either missing, incomplete, or incorrect.

The first step is to specify what it means for a masking countermeasure to be secure, i.e. what
is the security model. Such formalization was initiated by Ishai, Sahai and Wagner in [ISW03]. In
this model, the adversary can probe at most t wires in the circuit, but he should not learn anything
about the secret key. The approach for proving security is based on simulation: one must show that
any set of t wires probed by the adversary can be perfectly simulated without the knowledge of the
secret-key. This shows that the t probes do not bring any useful information to the attacker, since he
could run this simulation by himself.

More precisely, the simulation technique consists in showing that any set of t probes can be
perfectly simulated by the knowledge of only a proper subset of the input shares xi. At the beginning
of the algorithm an original variable x is shared into n shares xi. When x is part of the secret-key, this
pre-sharing cannot be probed by the adversary. Since any subset of at most n − 1 input shares xi
are uniformly and independently distributed, the simulation of the probed variables can be performed
without knowing the secret-key.

The main result in [ISW03] is to show that any circuit C can be transformed into a new circuit
C ′ of size O(t2 · |C|) that is resistant against an adversary probing at most t wires in the circuit.
The construction is based on secret-sharing every variable x into n shares with x = x1 ⊕ · · · ⊕ xn,
and processing the shares in a way that prevents a t-limited adversary from learning any information
about the initial variable x, using n ≥ 2t+ 1 shares.

One advantage of the ISW model is that its conceptual simplicity makes it amenable to formal
verification. This has been demonstrated in a series of works, including [MOPT12, BRNI13, EWS14,
BBD+15, BBD+16, Cor18, ZGSW18, BGI+18, BIKM18].

The most immediate benefit of formal verification is its automation, allowing to deal with the
combinatorial complexity of proving masked implementations secure. This complexity is specially
significant for implementations where secrets are split into a large number of shares; we call such
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implementations higher-order. Perhaps more importantly, formal verification has also been instru-
mental for advancing the state-of-the-art in masking. First, formal verification tools have been used
to reduce the randomness cost of existing schemes. Second, strong non-interference, which solves
a long-standing problem of compositional reasoning for masking, has first emerged in the context of
formal verification, before being adopted in the literature on masking.

Another model is the noisy leakage model introduced by Chari et al. [CJRR99] then extended
by Prouff and Rivain [PR13]. It describes many realistic side-channel attacks where an adversary
obtains each intermediate value perturbed with a “δ-noisy" leakage function. A leakage function
L is called δ-noisy if for a uniformly random variable Y we have SD(Y ;Y |LY ) ≤ δ, with SD the
statistical distance. It was shown in [DFS15] that an equivalent condition is that the leakage is
not too informative, where informativity is measured with the standard notion of mutual information
MI(Y ;LY ). In contrast with the ε-probing model, the adversary obtains noisy leakage for each
intermediate variable. For example, in the context of masking, he obtains L(Yi,Ri) for all the shares
Yi, which is reflective of actual implementations where the adversary can potentially observe the
leakage of all these shares, since they are all present in leakage traces.

A third and intermediate model is getting more and more important in the literature recently, the
random probing model. Basically, it assumes that every wire or intermediate variable in a circuit leaks
with some probability p. The circuit is then secure if the probability to leak intermediate variables
which jointly depend on the secrets is negligible. This model benefits from being more realistic than
the probing model since it captures a larger set of attacks. For instance, horizontal attacks that may
exploit the multiple use of a variable to get information on its value is not captured in the probing
model while it is handled in the random probing model where the probability to get the value is
increased by the repetition.

Duc et al. showed that security against probing attacks implies random probing security for some
probability which itself implies security against noisy leakages [DDF14]. This result leads to the
natural strategy of proving security in the (simpler) probing model while stating security levels based
on the concrete information leakage evaluations (as discussed in [DFS15]).

2. Formal verification tools of masking

A first sequence of work manages to provide verification of masked implementations, but is mainly
restricted to first-order masking schemes. We give an overview below and then focus on recent tools
that achieves verification of higher-order verification schemes.

2.1. Verification of first-order masking schemes
In 2012, Moss et al. [MOPT12] implement the first automated method to verify and build masked
implementations. Basically, they design a type-based masking compiler that tracks variables that
are masked by random values and iteratively modifies an unprotected program until all secrets are
masked. This strategy achieves first-order probing security. Although efficient and scalable, this
method is overly conservative and rejects secure programs.

Bayrak et al. [BRNI13] investigate in 2013 the logic-based verification which offers interesting
trade-offs between efficiency and expressiveness. Their SMT-based method is able to analyze the
probing security of first-order masked implementations by proving statistical independence between
secrets and leakage. It was later extended by Eldib, Wang and Schaumont [EWS14] to achieve
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higher-order masking verification with a method based on model counting. The authors use in-
cremental verification in order to circumvent the resulting exponential blow-up. Despite these im-
provements, the scope of the method remains limited on concrete examples. Finally, Zhang et
al. [ZGSW18] provide additional improvements in terms of precision and scalability with their tool
SCInfer (partly inspired from maskVerif below).

2.2. Verification of higher-order masking schemes
In the following, we focus only on recent tools able to provide verifications of concrete masking
schemes at higher orders.

2.2.1. maskVerif

In 2015, Barthe et al. exhibited an automated method to prove the security of masked implementation
against t-th order attacks, for small values of t [BBD+15]. The method only works for small values
of t because the number of possible t-tuples of intermediate variables grows exponentially with t. To
formally prove the security of a masking algorithm, the authors describe an algorithm to construct
a bijection between the observations of the adversary (corresponding to a t-tuple of intermediate
variables) and a distribution that is syntactically independent from the secret inputs; this implies
that the adversary learns nothing from this particular t-tuple of intermediate variables. All possible
t-tuples of intermediates variables are then examined by exhaustive search.

The authors obtain a formal verification of various masked implementations, up to second order
masked implementation of AES, and up to 5-th order for the masked Rivain-Prouff multiplication
[RP10]. In particular, the authors were able to rediscover some known attacks and discover new
ways of attacking already broken schemes.

The main drawback of this approach is that it can only work for small orders t and small programs,
since the running time is exponential in t and the size of the program.

The tool allows to check various security properties, like probing security, non-interference (NI)
and strong non-interference (SNI). It is also able to perform security analysis in presence or in ab-
sence of glitches from its extension in 2019, or with transition or without transition. It provides a small
intermediate language for describing implementation but it can also take Verilog implementation as
input.

2.2.2. CheckMasks

A simplification and extension of the formal verification results from [BBD+15] and [BBD+16] was
described in [Cor18]. Two complementary approaches were described: a generic approach for the
formal verification of any circuit, but for small attack orders only (as in [BBD+15]), and a specialized
approach for the verification of specific circuits, but at any order (as in [BBD+16]).

For the generic verification of countermeasures at small orders, the author uses a different formal
language from [BBD+15]. In particular the underlying circuit is represented as nested lists, which
leads to a simple and concise implementation in Common Lisp, a programming language well suited
to formal manipulations. The author is then able to formally verify the security of the Rivain-Prouff
countermeasure with very few lines of code. The running times for formal verification are similar to
those in [BBD+15]. Thanks to this simpler approach, the author also extends [BBD+15] to handle
a combination of arithmetic and Boolean operations, and formally verifies the security of the recent
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Number of files Lines of code
maskVerif
[BBD+15]

13 4 678

CheckMasks 1 459

Table 1: Number of files and number of lines of code in the EasyCrypt-based tool from [BBD+15]
and in our CheckMasks tool.

Boolean to arithmetic conversion algorithm from [Cor17b]. This approach is implemented in a tool,
referred to as CheckMasks.

For the verification of specific gadgets at any order (instead of small orders only with the generic
approach), our technique is quite different from [BBD+16] and consists in applying elementary trans-
forms to the circuit, until the t-NI or t-SNI properties become straightforward to verify. For a set of
well-chosen elementary transforms, the formal verification time becomes polynomial in t (instead of
exponential with the generic approach); this implies that the formal verification can be performed at
any order. The CheckMasks tool provides a formally verified proof of the t-SNI property of the mul-
tiplication algorithm in the Rivain-Prouff countermeasure, and of the mask refreshing based on the
same multiplication algorithm; in both cases the running time of the formal verification is polynomial
in the number of shares n.

Finally, the authors show how to get the best of both worlds, at least for simple circuits: they show
how to automatically apply the circuit transforms that lead to a polynomial time verification, based
on a limited set of generic rules. Namely we identify a set of three simple rules that enable to auto-
matically prove the t-SNI property of the multiplication based mask refreshing, and also two security
properties of mask refreshing considered in [Cor17b]. The source code of our CheckMasks verifica-
tion tool is publicly available at [Cor17a], under the GPL v2.0 license.

Comparison of code size. In Table 1 we give the number of lines of code of CheckMasks tool and
maskVerif. The source code from [BBD+15] is publicly available at [sou].

2.2.3. Bloem et al. hardware verification tool

Bloem et al. went one step further with an automated method to verify the probing security of a hard-
ware circuit in the presence of glitches [BGI+18]. The latter are a kind of physical default occurring
when the information does not propagate simultaneously throughout execution. Basically, the output
of a computation may be unstable before all the information get to it. Such physical defaults may
introduce dependencies between the leakage of an instruction and of its predecessors (in the sense
of dataflow analysis) that are not yet captured in the probing model. Hardware implementations
may thus be proved secure in the probing model and be practically vulnerable against side-channel
attacks.

Independently, Bloem et al. and Faust et al. [FGP+18] thus extended the original probing model
to capture glitches by assuming that any computation between two storage in a register would leak
all its inputs. In the following, we will denote this extended model by probing model with glitches.

Based on this new model, Bloem et al. developed an automated tool taking a circuit in Verilog as
input to verify its security in the probing model with glitches. Their method is based on an estimation
of Fourier coefficients and benefits from being adapted to concrete hardware implementations. The
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authors proved its application on a concrete set of examples. Nevertheless, their approach is mostly
limited to the first-order setting where variables are split into two shares due to its computational cost.

3. Formal tools for masking generation

3.1. maskComp
Barthe et al. studied the composition property of masked algorithms. In particular, the authors intro-
duce the notion of strong simulatability, a stronger property which requires that the number of input
shares necessary to simulate the observations of the adversary in a given gadget is independent
from the number of observations made on output wires. This ensures some separation between
the input and the output wires: no matter how many output wires must be simulated (to ensure the
composition of gadgets), the number of input wires that must be known to perform the simulation
only depends on the number of internal probes within the gadget.

The paper [BBD+16] has a number of important contributions that we summarize below. Firstly,
the authors introduce the t-NI and t-SNI definitions. The t-NI security notion corresponds to the
original security definition in the ISW probing model [ISW03]; it requires that any tc ≤ t probes of
the gadget circuit can be simulated from at most tc of its input shares. The stronger t-SNI notion
corresponds to the strong simulatability property mentioned above, in which the number of input
shares required for the simulation is upper bounded by the number of probes tc in the circuit, and is
independent from the number of output variables |O| that must be simulated (as long as the condition
tc + |O| < t is satisfied).

The authors show that the t-SNI definition allows for securely composing masked algorithms;
i.e. for a construction involving many gadgets, one can prove that the full construction is t-SNI
secure, based on the t-SNI security of its components. The advantages are twofold: firstly the
proof becomes modular and much easier to describe. Secondly as opposed to [ISW03] the masking
order does not need to be doubled throughout the circuit, as one can work with n ≥ t + 1 shares,
instead of n ≥ 2t + 1 shares. Since most gadgets have complexity O(n2), this usually gives a
factor 4 improvement in efficiency. In [BBD+16], the authors prove the t-SNI property of several
useful gadgets: the multiplication of Rivain-Prouff [RP10], the mask refreshing based on the same
multiplication algorithm, and the multiplication between linearly dependent inputs from [CPRR13].

Moreover, in [BBD+16] the authors also machine-checked the multiplication of Rivain-Prouff and
the multiplication-based mask refreshing in the EasyCrypt framework [BDG+14]. The main point
is that their machine verification works for any order, whereas in [BBD+15] the formal verification
could only be performed at small orders t. However, the approach seems difficult to understand (at
least for a non-expert in formal methods), and when reading [BBD+16] it is far from obvious how the
automated verification of the countermeasure can be implemented concretely; this seems to require
a deep knowledge of the EasyCrypt framework.

Finally, the authors built an automated approach for verifying that an algorithm constructed by
composing provably secure gadgets is itself secure. They also implemented an algorithm for trans-
forming an input program P into a program P ′ secure at order t; their algorithm automatically inserts
mask refreshing gadgets whenever required.
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3.2. tightPROVE
In the same line of work, Belaïd, Goudarzi, and Rivain recently proposed tightPROVE [BGR18] which
exactly and directly verifies the software probing security of a circuit based on standard gadgets at
any order.

The tightPROVE verification tool aims to verify the probing security of a shared Boolean circuit.
More specifically, it takes as input a file containing a list of instructions that describes a shared circuit
made of specific multiplication, addition and refresh gadgets and outputs either a probing security
proof or a probing attack. To that end, a security reduction is made through a sequence of four
equivalent games: Game 0 to Game 3. In each of them, an adversary A chooses a set of probes
P (indices pointing to wires in the shared circuit) in the target circuit C, and a simulator S wins the
game if it successfully simulates the distribution of the tuple of variables carried by the corresponding
wires without knowledge of the secret inputs.

Game 0 corresponds to the t-probing security definition : the adversary can choose t probes
in a t + 1-shared circuit, on whichever wires she wishes. In Game 1, the adversary is restricted
to only probe gadget inputs: one probe on an addition or refresh gadget becomes one probe on
one input share, one probe on a multiplication gadget becomes one probe on each of the inputs
sharings. In Game 2, the circuit C is replaced by another circuit C ′ that is functionally equivalent
and has a multiplicative depth of one, through a transformation called Flatten. In a nutshell, each
output of a multiplication or refresh gadget is considered as a new input with a fresh sharing. Finally,
in Game 3, the adversary is only allowed to probe pairs of inputs of multiplication gadgets. The
transition between these games is mainly made possible by an important property of the selected
refresh and multiplication gadgets : in addition to being t-probing secure, they are t-strong non
interfering [BBD+16]. As detailed in the previous section, satisfying the latter means that t probed
variables in their circuit description can be simulated with less than t1 shares of each input, where t1
denotes the number of probes that are not outputs.

The last game can be interpreted as a linear algebra problem. In the flattened circuit, the inputs
of multiplication gadgets are linear combinations of the circuit inputs, which can be seen as boolean
vectors that we call operand vectors, with ones at indexes of involved inputs. From the definition
of the last game, the 2t probes made by the adversary all target these operand vectors for chosen
shares. These probes can be distributed into t+1 matrices M0,M1, . . . ,Mt, where t+1 correspond
to the (tight) number of shares, such that for each probe targeting the share i of an operand vector v,
with i in {0, 1, . . . , t}, v is added as a row to matrix Mi. The problem of whether a circuit is t-probing
secure can then be reduced to verifying whether Im(M0) ∩ · · · ∩ 〈(〉Mt) 6= ∅. The latter can be
solved algorithmically with the following high-level algorithm for a circuit with m multiplications:

For each operand vector w,

1. Create a set G1 with all the multiplications for which w is one of the operand vectors.

2. Create a set O1 with the operand vectors of the multiplications in G1 but w.

3. Stop if w ∈ 〈O1〉 (O1’s linear span), that is if w can be written as a linear combination of
boolean vectors from O1.

4. For i from 2 to m, create new sets Gi and Oi by adding to Gi−1 multiplications that involve an
operand w′ verifying w′ ∈ (w ⊕ 〈Oi−1〉), and adding to Oi−1 the other operand vectors of
these multiplications. Stop whenever i = m or Gi = Gi−1 or w ∈ 〈Oi〉.
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If this algorithm stops when w ∈ 〈Oi〉 for some i, then there is a probing attack on w, meaning
that from a certain t, the attacker can recover the actual value w corresponding to the sharing w,
with only t probes on the corresponding (t+ 1)-shared circuit. In the other two scenarios, the circuit
is proven to be t-probing secure for any value of t.

Note that while maskComp and tightPROVE are recalled in the generation tools category, they can
also be used to verify the security of masked implementations. In this scenario, tightPROVE takes
as inputs standard circuits made of sharewise additions, multiplications gadgets from [ISW03] and
SNI refreshing gadgets.
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