Formal Verification of Masked Implementations

Sonia Belaïd Benjamin Grégoire CHES 2018 - Tutorial September 9th 2018

1 Side-Channel Attacks and Masking

2 Formal Tools for Verification at Fixed Order

3 Formal Tools for Verification of Generic Implementations

1 Side-Channel Attacks and Masking

2 Formal Tools for Verification at Fixed Order

3 Formal Tools for Verification of Generic Implementations

- → Black-box cryptanalysis
- → Side-channel analysis

- → Black-box cryptanalysis: $\mathcal{A} \leftarrow (m, c)$
- ➔ Side-Channel Analysis

➔ Black-box cryptanalysis

Example of SPA

SPA: one single trace to recover the secret key

Example of DPA

DPA: several traces to recover the secret key

How to thwart SCA?

Issue: leakage \mathcal{L} is key-dependent

How to thwart SCA?

Issue: leakage \mathcal{L} is key-dependent

Idea of masking: make leakage \mathcal{L} random

 \rightarrow any *t*-uple of v_i is independent from v

Masked Implementations

Linear functions: apply the function to each share

 $v \oplus w \to (v_0 \oplus w_0, v_1 \oplus w_1, \dots, v_t \oplus w_t)$

Masked Implementations

Linear functions: apply the function to each share

 $v \oplus w \to (v_0 \oplus w_0, v_1 \oplus w_1, \dots, v_t \oplus w_t)$

Non-linear functions: much more complex

$$\begin{array}{ll} \forall \ 0 \leq i < j \leq t-1, & r_{i,j} \leftarrow \$ \\ \forall \ 0 \leq i < j \leq t-1, & r_{j,i} \leftarrow (r_{i,j} \oplus v_i w_j) \oplus v_j w_i \\ \forall \ 0 \leq i \leq d-1, & c_i \leftarrow v_i w_i \oplus \sum_{j \neq i} r_{i,j} \\ & vw \quad \rightarrow \quad (c_0, c_1, \dots, c_t) \end{array}$$

Leakage Models

• Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret

Leakage Models

Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
 - a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables

Leakage Models

Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
 - a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables
- Reduction by Duc, Dziembowski, and Faust (EC 2014)
 - ► t-probing security ⇒ security in the noisy leakage model for some level of noise

How to Verify Probing Security?

variables: secret, shares, constant

• masking order t = 3

 $\begin{array}{c} \text{function Ex-t3}(x_0, x_1, x_2, x_3, c):\\ \hline (* x_0, x_1, x_2 = \$ \ *)\\ (* x_3 = x + x_0 + x_1 + x_2 \ *)\\ \hline r_0 \leftarrow \$\\ r_1 \leftarrow \$\\ y_0 \leftarrow x_0 + r_0\\ y_1 \leftarrow x_3 + r_1\\ t_1 \leftarrow x_1 + r_0\\ t_2 \leftarrow (x_1 + r_0) + x_2\\ y_2 \leftarrow (x_1 + r_0 + x_2) + r_1\\ y_3 \leftarrow c + r_1\\ \hline \mathbf{return}(y_0, y_1, y_2, y_3) \\ \end{array}$

How to Verify Probing Security?

variables: secret, shares, constant

• masking order t = 3

How to Verify Probing Security?

variables: secret, shares, constant

• masking order t = 3

Non-Interference (NI)

- t-NI ⇒ t-probing secure
- a circuit is t-NI iff any set of t intermediate variables can be perfectly simulated with at most t shares of each input

Non-Interference (NI)

- t-NI \Rightarrow t-probing secure
- a circuit is t-NI iff any set of t intermediate variables can be perfectly simulated with at most t shares of each input

1 Side-Channel Attacks and Masking

2 Formal Tools for Verification at Fixed Order

3 Formal Tools for Verification of Generic Implementations

State-Of-The-Art

- \hfill several tools were built to formally verify security of first-order implementations t=1
- \blacksquare then a sequence of work tackled higher-order implementations $t \leq 5$
 - maskVerif from Barthe et al.: first tool to achieve verification at high orders
 - ▶ CheckMasks from Coron: improvements in terms of efficiency
 - Bloem et al.'s tool: treatment of glitches attacks

State-Of-The-Art

- \hfill several tools were built to formally verify security of first-order implementations t=1
- \blacksquare then a sequence of work tackled higher-order implementations $t \leq 5$
 - maskVerif from Barthe et al.: first tool to achieve verification at high orders
 - ▶ CheckMasks from Coron: improvements in terms of efficiency
 - Bloem et al.'s tool: treatment of glitches attacks

maskVerif

- input:
 - pseudo-code of a masked implementation
 - $\blacktriangleright \ \, {\rm order} \ t$
- output:
 - ▶ formal proof of *t*-probing security (or NI, SNI)
 - potential flaws

Gilles Barthe and Sonia Belaïd and François Dupressoir and Pierre-Alain Fouque and Benjamin Grégoire and Pierre-Yves Strub *Verified Proofs of Higher-Order Masking*, EUROCRYPT 2015, Proceedings, Part I, 457–485.

Problem: Check if a program expression e is probabilistic independent from a secret sExample: $e = (s \oplus r_1) \cdot (r_1 \oplus r_2)$

First solution:

- for each value of s computes the associate distribution of e
- if all the resulting distribution are equals then e is independent of s

1	(r_1)	r_2	e		r_1	r_2	e
	0	0	0		0	0	0
s = 0	0	1	0	s = 1	0	1	1
	1	0	1		1	0	0
l	1	1	0		1	1	0

Problem: Check if a program expression e is probabilistic independent from a secret sExample: $e = (s \oplus r_1) \cdot (r_1 \oplus r_2)$

First solution:

- $\hfill \hfill \hfill$
- if all the resulting distribution are equals then e is independent of s
- Complete
- Exponential in the number of secret and random values

Second solution, using simple rules:

• Rule 1: If e does not use s then it is independent

Second solution, using simple rules:

- Rule 1: If e does not use s then it is independent
- Rule 2: If e can be written as $C[f \oplus r]$ and r does not occur in C and f then it is sufficient to test the independence of C[r]

The distribution of $f \oplus r$ is equal to the distribution of r

Second solution, using simple rules:

- **Rule 1**: If e does not use s then it is independent
- Rule 2: If e can be written as $C[f \oplus r]$ and r does not occur in C and f then it is sufficient to test the independence of C[r]
- Rule 3: If Rules 1 and 2 do not apply then use the first solution (when possible)

Second solution, using simple rules:

- **Rule 1**: If e does not use s then it is independent
- Rule 2: If e can be written as $C[f \oplus r]$ and r does not occur in C and f then it is sufficient to test the independence of C[r]
- Rule 3: If Rules 1 and 2 do not apply then use the first solution (when possible)

Problem: finding occurence of Rule 2 is relatively costly

Independence: dag representation

 $(\mathbf{s} \oplus r_1) \cdot (r_1 \oplus r_2)$

Independence: dag representation

 $(s\oplus r_1)\cdot r_2$

Independence: dag representation

 $r_1 \cdot r_2$

Independent from the secret

First order Dom AND : NI

 Verification of first order masking is just a linear iteration of the previous algorithm (one call for each program point) 100 checks for a program of 100 lines

- Verification of first order masking is just a linear iteration of the previous algorithm (one call for each program point) 100 checks for a program of 100 lines
- For second order masking: forall pair of program point, the corresponding pair of expressions is independent from the secrets 4,950 checks for a program of 100 lines

- Verification of first order masking is just a linear iteration of the previous algorithm (one call for each program point) 100 checks for a program of 100 lines
- For second order masking: forall pair of program point, the corresponding pair of expressions is independent from the secrets 4,950 checks for a program of 100 lines
- For *t*-order masking:

forall *t*-tuple of program point, the corresponding *t*-tuple of expressions is independent from the secrets $\binom{N}{t}$ where N is the number program points 3,921,225 for a program of 100 lines and 4 observations

Idea: if e_1, \ldots, e_p is independent from the secrets then all subtuples are independent from the secrets.

1. select X = (t variables) and prove its independence

- 1. select X = (t variables) and prove its independence
- 2. extend X to \widehat{X} with more observations but still independence

- 1. select X = (t variables) and prove its independence
- 2. extend X to \widehat{X} with more observations but still independence
- 3. recursively descend in set $\mathcal{C}(\widehat{X})$

- 1. select X = (t variables) and prove its independence
- 2. extend X to \widehat{X} with more observations but still independence
- 3. recursively descend in set $\mathcal{C}(\widehat{X})$
- 4. merge \widehat{X} and $\mathcal{C}(\widehat{X})$ once they are processed separately.

Idea: if e_1, \ldots, e_p is independent from the secrets then all subtuples are independent from the secrets.

- 1. select X = (t variables) and prove its independence
- 2. extend X to \widehat{X} with more observations but still independence
- 3. recursively descend in set $\mathcal{C}(\widehat{X})$
- 4. merge \widehat{X} and $\mathcal{C}(\widehat{X})$ once they are processed separately.

Finding \widehat{X} can be done very efficiently using a dag representation

Benchmark

It is working for relatively small programs:

Algorithm	Order	Tuples	Secure	Verification time
Refresh	9	2.10^{10}	\checkmark	2s
Refresh	17	2.10^{20}	\checkmark	3d
Refresh	18	4.10^{21}	\checkmark	1 month

But there is a problem with large programs:

- Full AES implementation at order 1
- only 4 rounds of AES at order 2

https://sites.google.com/view/maskverif/home

Demo maskVerif

Extending the model: glitches

For hardware implementation a more realistic model need to take into account glitches

Example: AND gate $A \bigotimes B$

Possible leaks : $A \cdot B$, A, B

Hardware implementation

We have extended maskVerif to

- take Verilog implementation as input
- take extra information on input shares (random, shares secret, public input)
- Check the security with or without glitches

Demo Hardware

https://sites.google.com/view/maskverif/home

yosys + maskVerif

Examples (provided by Bloem et al)

Algo	# obs		probing			
	wG	woG	wG	woG		
first-order verification						
Trichina AND	2	13	0.01s 🗡	0.01s 🗡		
ISW AND	1	13	0.01s X	0.01s		
DOM AND	4	13	0.01s	0.01s		
DOM Keccak S-box	20	76	0.01s	0.01s		
DOM AES S-box	96	571	2.3s	0.4s		
second-order verification						
DOM Keccak S-box	60	165	0.02s	0.02s		
third-order verification						
DOM Keccak S-box	100	290	0.28s	0.25s		
fourth-order verification						
DOM Keccak S-box	150	450	11s	14s		
fifth-order verification						
DOM Keccak S-box	210	618	9m44s	18m39s		

1 - Side-Channel Attacks and Masking

2 Formal Tools for Verification at Fixed Order

3 Formal Tools for Verification of Generic Implementations

Probing Model

Probing Model

```
Require: Encoding [x]
Ensure: Fresh encoding [x]
for i = 1 to t do
r \leftarrow \$
x_0 \leftarrow x_0 + r
x_i \leftarrow x_i + r
end for
return [x]
```

Simulation-based proof:

- show that any set of t variables can be simulated with at most t input shares x_i
- any set of t shares x_i is independent from x

Probing Model

```
Require: Encoding [x]
Ensure: Fresh encoding [x]
for i = 1 to t do
r \leftarrow \$
x_0 \leftarrow x_0 + r
x_i \leftarrow x_i + r
end for
return [x]
```

Simulation-based proof:

- show that any set of t variables can be simulated with at most t input shares x_i
- any set of t shares x_i is independent from x
- exactly relies on the notion of non interference (NI)

And then?

once done for small gadgets, how to extend it?

Until Recently

- composition probing secure for 2t + 1 shares
- no solution for t+1 shares

First Proposal

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

• Example: AES S-box on $GF(2^8)$

Require: Encoding [x]Ensure: Fresh encoding [x]for i = 1 to t do $r \leftarrow \$$ $x_0 \leftarrow x_0 + r$ $x_i \leftarrow x_i + r$ end for return [x]

First Proposal

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

• Example: AES S-box on $GF(2^8)$

 \Rightarrow Flaw from t = 2 (FSE 2013: Coron, Prouff, Rivain, and Roche)

Why This Flaw?

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
 Example: AES S-box on GF(2⁸)

Why This Flaw?

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
 Example: AES S-box on GF(2⁸)

Why This Flaw?

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
 Example: AES S-box on GF(2⁸)

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
 Example: AES S-box on GF(2⁸)

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
 Example: AES S-box on GF(2⁸)

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
 Example: AES S-box on GF(2⁸)

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
 Example: AES S-box on GF(2⁸)

Constraint: $t_0 + t_1 + t_2 + t_3 \leq t$

Second Proposal

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on GF(2⁸)

Require: Encoding [x]Ensure: Fresh encoding [x]for i = 0 to t do for j = i + 1 to t do $r \leftarrow \$$ $x_i \leftarrow x_i + r$ $x_j \leftarrow x_j + r$ end for return [x]

Second Proposal

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on GF(2⁸)

Require: Encoding [x]Ensure: Fresh encoding [x]for i = 0 to t do for j = i + 1 to t do $r \leftarrow \$$ $x_i \leftarrow x_i + r$ $x_j \leftarrow x_j + r$ end for return [x]

 \Rightarrow Formal security proof for any order t

Strong Non-Interference (SNI)

• t-SNI \Rightarrow t-NI \Rightarrow t-probing secure

a circuit is t-SNI iff any set of t intermediate variables, whose t₁ on the internal variables and t₂ and the outputs, can be perfectly simulated with at most t₁ shares of each input

Strong Non-Interference (SNI)

- $t\text{-SNI} \Rightarrow t\text{-NI} \Rightarrow t\text{-probing secure}$
- a circuit is t-SNI iff any set of t intermediate variables, whose t₁ on the internal variables and t₂ and the outputs, can be perfectly simulated with at most t₁ shares of each input

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

Tool maskComp

from t-NI and t-SNI gadgets ⇒ build a t-NI circuit by inserting t-SNI refresh gadgets at carefully chosen locations
 formally proven

Gilles Barthe and Sonia Belaïd and François Dupressoir and Pierre-Alain Fouque and Benjamin Grégoire and Pierre-Yves Strub *Strong Non-Interference and Type-Directed Higher-Order Masking and Rebecca Zucchini*, ACM CCS 2016, Proceedings, 116–129.

Demo AES S-box without refresh

https://sites.google.com/site/maskingcompiler/home


```
bint8_t x3(bint8_t x) {
    bint8_t r, z;
    z = gf256_pow2(x);
    r = gf256_mul(x,z);
    return r;
}
```

```
Start type checking of x3
insert refresh 1 1
x3 : {S_34 } ->
0_21
side
constraints LE:S_34 <= I_35
NEEDED:[ {0_21 }]
1 refresh inserted in x3.
1 refresh inserted.</pre>
```

> ./maskcomp.native - o myoutput_masked.c x3.c

Demo AES S-box with refresh

https://sites.google.com/site/maskingcompiler/home


```
bint8_t x3(bint8_t x) {
    bint8_t r, w, z;
    z = gf256_pow2(x);
    w = bint8_refresh(x);
    r = gf256_mul(w,z);
    return r;
}
```

```
Start type checking of x3
x3 : {S_29 } ->
0_21
side
constraints LE:S_29 <= I_30
NEEDED:[ {0_21 }]
0 refresh inserted.</pre>
```

> ./maskcomp.native - o myoutput_masked.c x3.c

Demo full AES

https://sites.google.com/site/maskingcompiler/home

> ./maskcomp.native - o myoutput_masked.c aes.c

Limitations of maskComp

- maskComp adds a refresh gadget to Circuit 1
- but Circuit 1 was already t-probing secure

Figure: Circuit 1.

Figure: Circuit 1 after maskComp.

Tool tightPROVE

- Joint work with Dahmun Goudarzi and Matthieu Rivain to appear in Asiacrypt 2018
- Apply to tight shared circuits:
 - sharewise additions,
 - ISW-multiplications,
 - ISW-refresh gadgets
- Determine exactly whether a tight shared circuit is probing secure for any order t
 - 1. Reduction to a simplified problem
 - 2. Resolution of the simplified problem
 - 3. Extension to larger circuits

Demo tightPROVE 1

> sage verif.sage example1.circuit

Demo tightPROVE 2

> sage verif.sage example2.circuit

Demo tightPROVE 2

> sage verif.sage example2.circuit

Conclusion

In a nutshell...

- Formal tools to verify security of masked implementations
- Trade-off between security and performances

To continue...

- Achieve better performances
- Apply such formal verifications to every circuit