Formal Verification of Masked Implementations

Sonia Belaïd Benjamin Grégoire
CHES 2018 - Tutorial
September 9th 2018

1 - Side-Channel Attacks and Masking
2. Formal Tools for Verification at Fixed Order
3. Formal Tools for Verification of Generic Implementations

1 - Side-Channel Attacks and Masking

2 - Formal Tools for Verification at Fixed Order
3. Formal Tools for Verification of Generic Implementations

Cryptanalysis

\rightarrow Black-box cryptanalysis
\rightarrow Side-channel analysis

Cryptanalysis

\rightarrow Black-box cryptanalysis: $\mathcal{A} \leftarrow(m, c)$
\rightarrow Side-Channel Analysis

Cryptanalysis

\rightarrow Black-box cryptanalysis
\rightarrow Side-Channel Analysis: $\mathcal{A} \leftarrow(m, c, \mathcal{L})$

Cryptanalysis

\rightarrow Black-box cryptanalysis
\rightarrow Side-Channel Analysis: $\mathcal{A} \leftarrow(m, c, \mathcal{L})$

Cryptanalysis

\rightarrow Black-box cryptanalysis
\rightarrow Side-Channel Analysis: $\mathcal{A} \leftarrow(m, c, \mathcal{L})$

Cryptanalysis

\rightarrow Black-box cryptanalysis
\rightarrow Side-Channel Analysis: $\mathcal{A} \leftarrow(m, c, \mathcal{L})$

Cryptanalysis

\rightarrow Black-box cryptanalysis
\rightarrow Side-Channel Analysis: $\mathcal{A} \leftarrow(m, c, \mathcal{L})$

Example of SPA

```
Algorithm 1 Example
    for \(i=1\) to \(n\) do
        if \(\operatorname{key}[i]=0\) then
        do treatment 0
        else
            do treatment 1
        end if
    end for
```


SPA: one single trace to recover the secret key

Example of DPA

DPA: several traces to recover the secret key

How to thwart SCA?

Issue: leakage \mathcal{L} is key-dependent

How to thwart SCA?

Issue: leakage \mathcal{L} is key-dependent

Idea of masking: make leakage \mathcal{L} random

\rightarrow any t-uple of v_{i} is independent from v

Masked Implementations

- Linear functions: apply the function to each share

$$
v \oplus w \rightarrow\left(v_{0} \oplus w_{0}, v_{1} \oplus w_{1}, \ldots, v_{t} \oplus w_{t}\right)
$$

Masked Implementations

- Linear functions: apply the function to each share

$$
v \oplus w \rightarrow\left(v_{0} \oplus w_{0}, v_{1} \oplus w_{1}, \ldots, v_{t} \oplus w_{t}\right)
$$

- Non-linear functions: much more complex

$$
\begin{aligned}
\forall 0 \leq i<j \leq t-1, & r_{i, j} \leftarrow \$ \\
\forall 0 \leq i<j \leq t-1, & r_{j, i} \leftarrow\left(r_{i, j} \oplus v_{i} w_{j}\right) \oplus v_{j} w_{i} \\
\forall 0 \leq i \leq d-1, & c_{i} \leftarrow v_{i} w_{i} \oplus \sum_{j \neq i} r_{i, j} \\
\quad v w & \rightarrow \\
& \left(c_{0}, c_{1}, \ldots, c_{t}\right)
\end{aligned}
$$

Leakage Models

- Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret

Leakage Models

- Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
- a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables

Leakage Models

- Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
- a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables
- Reduction by Duc, Dziembowski, and Faust (EC 2014)
- t-probing security \Rightarrow security in the noisy leakage model for some level of noise

How to Verify Probing Security?

- variables: secret, shares, constant
- masking order $t=3$

$$
\begin{gathered}
\hline \text { function Ex-t3 }\left(x_{0}, x_{1}, x_{2}, x_{3}, c\right) \text { : } \\
\hline\left(^{*} x_{0}, x_{1}, x_{2}=\$^{*}\right) \\
\left(^{*} x_{3}=x+x_{0}+x_{1}+x_{2}^{*}\right) \\
r_{0} \leftarrow \$ \\
r_{1} \leftarrow \$ \\
y_{0} \leftarrow x_{0}+r_{0} \\
y_{1} \leftarrow x_{3}+r_{1} \\
t_{1} \leftarrow x_{1}+r_{0} \\
t_{2} \leftarrow\left(x_{1}+r_{0}\right)+x_{2} \\
y_{2} \leftarrow\left(x_{1}+r_{0}+x_{2}\right)+r_{1} \\
y_{3} \leftarrow c+r_{1} \\
\operatorname{return}\left(y_{0}, y_{1}, y_{2}, y_{3}\right) \\
\hline
\end{gathered}
$$

How to Verify Probing Security?

- variables: secret, shares, constant
- masking order $t=3$

How to Verify Probing Security?

- variables: secret, shares, constant
- masking order $t=3$

Non-Interference (NI)

- t-NI $\Rightarrow t$-probing secure
- a circuit is $t-\mathrm{NI}$ iff any set of t intermediate variables can be perfectly simulated with at most t shares of each input

Non-Interference (NI)

- t-NI $\Rightarrow t$-probing secure
- a circuit is t - NI iff any set of t intermediate variables can be perfectly simulated with at most t shares of each input

1 . Side-Channel Attacks and Masking

2 - Formal Tools for Verification at Fixed Order
3. Formal Tools for Verification of Generic Implementations

State-Of-The-Art

- several tools were built to formally verify security of first-order implementations $t=1$
- then a sequence of work tackled higher-order implementations $t \leq 5$
- maskVerif from Barthe et al.: first tool to achieve verification at high orders
- CheckMasks from Coron: improvements in terms of efficiency
- Bloem et al.'s tool: treatment of glitches attacks

State-Of-The-Art

- several tools were built to formally verify security of first-order implementations $t=1$
- then a sequence of work tackled higher-order implementations $t \leq 5$
- maskVerif from Barthe et al.: first tool to achieve verification at high orders
- CheckMasks from Coron: improvements in terms of efficiency
- Bloem et al.'s tool: treatment of glitches attacks

maskVerif

- input:
- pseudo-code of a masked implementation
- order t
- output:
- formal proof of t-probing security (or NI, SNI)
- potential flaws

Gilles Barthe and Sonia Belaïd and François Dupressoir and Pierre-Alain Fouque and Benjamin Grégoire and Pierre-Yves Strub Verified Proofs of Higher-Order Masking, EUROCRYPT 2015, Proceedings, Part I, 457-485.

Checking probabilistic independence

Problem: Check if a program expression e is probabilistic independent from a secret s
Example: $e=\left(s \oplus r_{1}\right) \cdot\left(r_{1} \oplus r_{2}\right)$
First solution:

- for each value of s computes the associate distribution of e
- if all the resulting distribution are equals then e is independent of s

$$
s=0\left\{\begin{array}{lll}
r_{1} & r_{2} & e \\
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array} \quad s=1\left\{\begin{array}{lll}
r_{1} & r_{2} & e \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right.\right.
$$

Checking probabilistic independence

Problem: Check if a program expression e is probabilistic independent from a secret s
Example: $e=\left(s \oplus r_{1}\right) \cdot\left(r_{1} \oplus r_{2}\right)$
First solution:

- for each value of s computes the associate distribution of e
- if all the resulting distribution are equals then e is independent of s
- Complete
- Exponential in the number of secret and random values

Checking probabilistic independence

Second solution, using simple rules:

- Rule 1: If e does not use s then it is independent

Checking probabilistic independence

Second solution, using simple rules:

- Rule 1: If e does not use s then it is independent
- Rule 2: If e can be written as $C[f \oplus r]$ and r does not occur in C and f then it is sufficient to test the independence of $C[r]$

The distribution of $f \oplus r$ is equal to the distribution of r

Checking probabilistic independence

Second solution, using simple rules:

- Rule 1: If e does not use s then it is independent
- Rule 2: If e can be written as $C[f \oplus r]$ and r does not occur in C and f then it is sufficient to test the independence of $C[r]$
- Rule 3: If Rules 1 and 2 do not apply then use the first solution (when possible)

Checking probabilistic independence

Second solution, using simple rules:

- Rule 1: If e does not use s then it is independent
- Rule 2: If e can be written as $C[f \oplus r]$ and r does not occur in C and f then it is sufficient to test the independence of $C[r]$
- Rule 3: If Rules 1 and 2 do not apply then use the first solution (when possible)

Problem: finding occurence of Rule 2 is relatively costly

Independence: dag representation

$\left(s \oplus r_{1}\right) \cdot\left(r_{1} \oplus r_{2}\right)$

Independence: dag representation

$$
\left(s \oplus r_{1}\right) \cdot r_{2}
$$

Independence: dag representation

$r_{1} \cdot r_{2}$

Independent from the secret

First order Dom AND : NI

Extension to All Possible Sets

- Verification of first order masking is just a linear iteration of the previous algorithm (one call for each program point) 100 checks for a program of 100 lines

Extension to All Possible Sets

- Verification of first order masking is just a linear iteration of the previous algorithm (one call for each program point) 100 checks for a program of 100 lines
- For second order masking:
forall pair of program point, the corresponding pair of expressions is independent from the secrets 4,950 checks for a program of 100 lines

Extension to All Possible Sets

- Verification of first order masking is just a linear iteration of the previous algorithm (one call for each program point) 100 checks for a program of 100 lines
- For second order masking:
forall pair of program point, the corresponding pair of
expressions is independent from the secrets 4,950 checks for a program of 100 lines
- For t-order masking: forall t-tuple of program point, the corresponding t-tuple of expressions is independent from the secrets
$\binom{N}{t}$ where N is the number program points
$3,921,225$ for a program of 100 lines and 4 observations

Extension to All Possible Sets

Idea: if e_{1}, \ldots, e_{p} is independent from the secrets then all subtuples are independent from the secrets.

Extension to All Possible Sets

Idea: if e_{1}, \ldots, e_{p} is independent from the secrets then all subtuples are independent from the secrets.

Extension to All Possible Sets

Idea: if e_{1}, \ldots, e_{p} is independent from the secrets then all subtuples are independent from the secrets.

1. select $X=(t$ variables $)$ and prove its independence

Extension to All Possible Sets

Idea: if e_{1}, \ldots, e_{p} is independent from the secrets then all subtuples are independent from the secrets.

1. select $X=(t$ variables $)$ and prove its independence
2. extend X to \widehat{X} with more observations but still independence

Extension to All Possible Sets

Idea: if e_{1}, \ldots, e_{p} is independent from the secrets then all subtuples are independent from the secrets.

1. select $X=(t$ variables $)$ and prove its independence
2. extend X to \widehat{X} with more observations but still independence
3. recursively descend in set $\mathcal{C}(\widehat{X})$

Extension to All Possible Sets

Idea: if e_{1}, \ldots, e_{p} is independent from the secrets then all subtuples are independent from the secrets.

1. select $X=(t$ variables $)$ and prove its independence
2. extend X to \widehat{X} with more observations but still independence
3. recursively descend in set $\mathcal{C}(\widehat{X})$
4. merge \widehat{X} and $\mathcal{C}(\widehat{X})$ once they are processed separately.

Extension to All Possible Sets

Idea: if e_{1}, \ldots, e_{p} is independent from the secrets then all subtuples are independent from the secrets.

1. select $X=(t$ variables $)$ and prove its independence
2. extend X to \widehat{X} with more observations but still independence
3. recursively descend in set $\mathcal{C}(\widehat{X})$
4. merge \widehat{X} and $\mathcal{C}(\widehat{X})$ once they are processed separately.
Finding \widehat{X} can be done very efficiently using a dag representation

Benchmark

It is working for relatively small programs:

Algorithm	Order	Tuples	Secure	Verification time
Refresh	9	2.10^{10}	\checkmark	2 s
Refresh	17	2.10^{20}	\checkmark	3d
Refresh	18	4.10^{21}	\checkmark	1 month

But there is a problem with large programs:

- Full AES implementation at order 1
- only 4 rounds of AES at order 2

Demo
https://sites.google.com/view/maskverif/home
Demo maskVerif

Extending the model: glitches

For hardware implementation a more realistic model need to take into account glitches

Example: AND gate $A \otimes B$

Possible leaks: $A \cdot B, A, B$

First order DOM AND : NI with glitches

First order DOM AND : NI with glitches

First order DOM AND : NI with glitches

First order DOM AND : NI with glitches

First order DOM AND : NI with glitches

First order DOM AND : NI with glitches

First order DOM AND : NI with glitches

Hardware implementation

We have extended maskVerif to

- take Verilog implementation as input
- take extra information on input shares (random, shares secret, public input)
- Check the security with or without glitches

Demo Hardware

https://sites.google.com/view/maskverif/home

> yosys + maskVerif

Examples (provided by Bloem et al)

Algo	\# obs		probing	
	wG	woG	wG	woG
first-order verification				
Trichina AND	2	13	$0.01 \mathrm{~s} \boldsymbol{X}$	$0.01 \mathrm{~s} \boldsymbol{X}$
ISW AND	1	13	$0.01 \mathrm{~s} \boldsymbol{X}$	0.01 s
DOM AND	4	13	0.01 s	0.01 s
DOM Keccak S-box	20	76	0.01 s	0.01 s
DOM AES S-box	96	571	2.3 s	0.4 s
second-order verification				
DOM Keccak S-box	60	165	0.02 s	0.02 s
third-order verification				
DOM Keccak S-box	100	290	0.28 s	0.25 s
fourth-order verification				
DOM Keccak S-box	150	450	11 s	14 s
fifth-order verification				
DOM Keccak S-box	210	618	9 m 44 s	18 m 39 s

1 . Side-Channel Attacks and Masking

2 . Formal Tools for Verification at Fixed Order
3. Formal Tools for Verification of Generic Implementations

Probing Model

```
Require: Encoding \([x]\)
Ensure: Fresh encoding \([x]\)
    for \(i=1\) to \(t\) do
        \(r \leftarrow \$\)
        \(x_{0} \leftarrow x_{0}+r\)
        \(x_{i} \leftarrow x_{i}+r\)
    end for
    return \([x]\)
```


Probing Model

```
Require: Encoding \([x]\)
Ensure: Fresh encoding \([x]\)
    for \(i=1\) to \(t\) do
        \(r \leftarrow \$\)
        \(x_{0} \leftarrow x_{0}+r\)
        \(x_{i} \leftarrow x_{i}+r\)
    end for
    return \([x]\)
```

Simulation-based proof:

- show that any set of t variables can be simulated with at most t input shares x_{i}
- any set of t shares x_{i} is independent from x

Probing Model

```
Require: Encoding \([x]\)
Ensure: Fresh encoding \([x]\)
    for \(i=1\) to \(t\) do
        \(r \leftarrow \$\)
        \(x_{0} \leftarrow x_{0}+r\)
        \(x_{i} \leftarrow x_{i}+r\)
    end for
    return \([x]\)
```

Simulation-based proof:

- show that any set of t variables can be simulated with at most t input shares x_{i}
- any set of t shares x_{i} is independent from x
- exactly relies on the notion of non interference (NI)

And then?

once done for small gadgets, how to extend it?

Until Recently

- composition probing secure for $2 t+1$ shares
- no solution for $t+1$ shares

First Proposal

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Require: Encoding $[x]$
Ensure: Fresh encoding $[x]$
for $i=1$ to t do
$r \leftarrow \$$
$x_{0} \leftarrow x_{0}+r$
$x_{i} \leftarrow x_{i}+r$
end for
return $[x]$

First Proposal

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Require: Encoding $[x]$
Ensure: Fresh encoding $[x]$
for $i=1$ to t do
$r \leftarrow \$$
$x_{0} \leftarrow x_{0}+r$
$x_{i} \leftarrow x_{i}+r$
end for
return $[x]$

\Rightarrow Flaw from $t=2$ (FSE 2013: Coron, Prouff, Rivain, and Roche)

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

$$
\begin{aligned}
& \text { Constraint: } \\
& t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
\end{aligned}
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:
$t_{0}+t_{1}+t_{2}+t_{3} \leqslant t$

Second Proposal

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$


```
Require: Encoding \([x]\)
Ensure: Fresh encoding \([x]\)
    for \(i=0\) to \(t\) do
        for \(j=i+1\) to \(t\) do
        \(r \leftarrow \$\)
        \(x_{i} \leftarrow x_{i}+r\)
        \(x_{j} \leftarrow x_{j}+r\)
        end for
    end for
    return \([x]\)
```


Second Proposal

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

\Rightarrow Formal security proof for any order t

Strong Non-Interference (SNI)

- t-SNI $\Rightarrow t$-NI $\Rightarrow t$-probing secure
- a circuit is t-SNI iff any set of t intermediate variables, whose t_{1} on the internal variables and t_{2} and the outputs, can be perfectly simulated with at most t_{1} shares of each input

Strong Non-Interference (SNI)

- t-SNI $\Rightarrow t$-NI $\Rightarrow t$-probing secure
- a circuit is t-SNI iff any set of t intermediate variables, whose t_{1} on the internal variables and t_{2} and the outputs, can be perfectly simulated with at most t_{1} shares of each input

Why Does It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:
$t_{0}+t_{1}+t_{2}+t_{3} \leqslant t$

Why Does It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:
$t_{0}+t_{1}+t_{2}+t_{3} \leqslant t$

Why Does It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Why Does It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Why Does It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why Does It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why Does It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Tool maskComp

- from t-NI and t-SNI gadgets \Rightarrow build a t-NI circuit by inserting t-SNI refresh gadgets at carefully chosen locations
- formally proven

围
Gilles Barthe and Sonia Belaïd and François Dupressoir and Pierre-Alain Fouque and Benjamin Grégoire and Pierre-Yves Strub Strong Non-Interference and Type-Directed Higher-Order Masking and Rebecca Zucchini, ACM CCS 2016, Proceedings, 116-129.

Demo AES S-box without refresh

https://sites.google.com/site/maskingcompiler/home


```
bint8_t x3(bint8_t x) {
    bint8_t r, z;
    z = gf256_pow2(x);
    r = gf256_mul(x,z);
    return r;
}
```

```
Start type checking of x3
insert refresh 1 1
x3 : {S_34 } ->
    0_21
    side
    constraints LE:S_34 <= I_35
        NEEDED:[ {0_21 }]
1 refresh inserted in x3.
1 refresh inserted.
```

$>$./maskcomp.native - o myoutput_masked.c x3.c

Demo AES S-box with refresh

https://sites.google.com/site/maskingcompiler/home

bint8_t x3(bint8_t x) {
bint8_t x3(bint8_t x) {
bint8_t r, w, z;
bint8_t r, w, z;
z = gf256_pow2(x);
z = gf256_pow2(x);
w = bint8_refresh(x);
w = bint8_refresh(x);
r = gf256_mul(w,z);
r = gf256_mul(w,z);
return ri
return ri
}
}
Start type checking of x3
Start type checking of x3
x3 : {S_29 } ->
x3 : {S_29 } ->
0_21
0_21
side
side
constraints LE:S_29 <= I_30
constraints LE:S_29 <= I_30
NEEDED:[{0_21 }]
NEEDED:[{0_21 }]
0 refresh inserted.
0 refresh inserted.
> ./maskcomp.native - o myoutput masked.c x3.c

Demo full AES

https://sites.google.com/site/maskingcompiler/home
> ./maskcomp.native - o myoutput masked.c aes.c

Limitations of maskComp

- maskComp adds a refresh gadget to Circuit 1
- but Circuit 1 was already t-probing secure

Figure: Circuit 1.
Figure: Circuit 1 after maskComp.

Tool tightPROVE

- Joint work with Dahmun Goudarzi and Matthieu Rivain to appear in Asiacrypt 2018
- Apply to tight shared circuits:
- sharewise additions,
- ISW-multiplications,
- ISW-refresh gadgets
- Determine exactly whether a tight shared circuit is probing secure for any order t

1. Reduction to a simplified problem
2. Resolution of the simplified problem
3. Extension to larger circuits

Demo tightPROVE 1

> sage verif.sage example1.circuit

Demo tightPROVE 2

in	0	
in	1	
in	2	
xor	0	1
xor	1	2
and	0	1
and	3	4
and	2	3
out	5	
out	6	
out	7	

> sage verif.sage example2.circuit

Demo tightPROVE 2

> sage verif.sage example2.circuit

Conclusion

In a nutshell...

- Formal tools to verify security of masked implementations
- Trade-off between security and performances

To continue...

- Achieve better performances
- Apply such formal verifications to every circuit

