

New Techniques for Random Probing Security

Application to Raccoon Signature Scheme

Sonia Belaïd, Matthieu Rivain and Mélissa Rossi

https://eprint.iacr.org/2025/278

Gardanne May 21, 2025

I) The random probing model
2) Composition in the random probing model
3) Random-probing Raccoon

I) The random probing model

3) Random-probing Raccoon

2) Composition in the random probing model

Sensitive variable x

Sonia Belaïd CryptoExperts

Masking

 X_n

- A Multiplication gadget $z_1 + z_2 = (x_1 + x_2) \cdot (k_1 + k_2)$ $r \leftarrow \$$ $z_1 \leftarrow x_1 k_1 + r$ $r' \leftarrow x_1 k_2 - r$ $r'' \leftarrow r' + x_2 k_1$ $z_2 \leftarrow r'' + x_2 k_2$

- New Techniques for Random Probing Security -

Sensitive variable x

Sonia Belaïd CryptoExperts

Masking

Attacker view?

- A Multiplication gadget $z_1 + z_2 = (x_1 + x_2) \cdot (k_1 + k_2)$ $r \leftarrow \$$ $z_1 \leftarrow x_1 k_1 + r$ $r' \leftarrow x_1 k_2 - r$ $r'' \leftarrow r' + x_2 k_1$ $z_2 \leftarrow r'' + x_2 k_2$

- New Techniques for Random Probing Security -

Attacker view

Sonia Belaïd CryptoExperts

- New Techniques for Random Probing Security -

- New Techniques for Random Probing Security -

[ISW03] Y. Ishai, A. Sahai, and D. Wagner. *Private circuits: Securing hardware* against probing attacks. CRYPTO 2003

[ISW03] Y. Ishai, A. Sahai, and D. Wagner. *Private circuits: Securing hardware* against probing attacks. CRYPTO 2003

[DDF14] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: From probing attacks to noisy leakage. EUROCRYPT 2014

Sonia Belaïd CryptoExperts

Attacker view

Random probing model

The attacker is given the value of each wire with probability p.

[DDF14] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: From probing attacks to noisy *leakage*. EUROCRYPT 2014

Sonia Belaïd CryptoExperts

Attacker model

- New Techniques for Random Probing Security -

[DDF14] A. Duc, S. Dziembowski, S. Faust. *Unifying leakage models: From probing attacks to noisy leakage*. EUROCRYPT 2014

Sonia Belaïd CryptoExperts

- New Techniques for Random Probing Security -

[DDF14] A. Duc, S. Dziembowski, S. Faust. *Unifying leakage models: From probing attacks to noisy leakage*. EUROCRYPT 2014

Sonia Belaïd CryptoExperts

- New Techniques for Random Probing Security -

[DDF14] A. Duc, S. Dziembowski, S. Faust. *Unifying leakage models: From probing attacks to noisy leakage*. EUROCRYPT 2014

Sonia Belaïd CryptoExperts

leakage. EUROCRYPT 2014

Sonia Belaïd CryptoExperts

leakage. EUROCRYPT 2014

Sonia Belaïd CryptoExperts

[DDF14] A. Duc, S. Dziembowski, S. Faust. Unifying leakage models: From probing leakage. EUROCRYPT 2014

Sonia Belaïd CryptoExperts

leakage. EUROCRYPT 2014

Sonia Belaïd CryptoExperts

I) The random probing model

3) Random-probing Raccoon

2) Composition in the random probing model

I) The random probing model

2) Composition in the random probing model

3) Random-probing Raccoon

Sonia Belaïd CryptoExperts - New Techniques for Random Probing Security -

Attacker view

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Sonia Belaïd CryptoExperts

out $\leftarrow \{\$, x_2 \times k_1, k_1\}$

Sonia Belaïd CryptoExperts

 $\mathcal{W} = \{k_1, k_2\}$ with proba $p^2(1-p)^{17}$ out $\leftarrow \{k_1, k_2\}$

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Sonia Belaïd CryptoExperts Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Sonia Belaïd CryptoExperts Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Sonia Belaïd CryptoExperts Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

Sonia Belaïd CryptoExperts Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

Sonia Belaïd CryptoExperts

Composition with threshold RPC

Threshold RPC:

Propagation of the leakage and the outputs to the inputs

- New Techniques for Random Probing Security -

Sonia Belaïd CryptoExperts

Composition with threshold RPC

Threshold RPC:

Propagation of the leakage and the outputs to the inputs

Except with probability $\epsilon!$

- New Techniques for Random Probing Security -

Sonia Belaïd CryptoExperts

Composition with threshold RPC

Threshold RPC:

Propagation of the leakage and the outputs to the inputs

Except with probability $\epsilon!$

Composition

All G_i are (t, p, ϵ) -threshold RPC \Longrightarrow G is (t, p, ϵ') -threshold RPC with

$\epsilon' \leq 8\epsilon.$

- New Techniques for Random Probing Security -

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

[CFOS21] G. Cassiers, S. Faust, M. Orlt and F-X. Standaert. *Towards Tight Random Probing Security* published in Crypto 2021

Sonia Belaïd CryptoExperts

- New Techniques for Random Probing Security -

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

[CFOS21] G. Cassiers, S. Faust, M. Orlt and F-X. Standaert. *Towards Tight Random Probing Security* published in Crypto 2021

Sonia Belaïd CryptoExperts

- New Techniques for Random Probing Security -

[BCPRT] Random probing security: Verification, composition, expansion and new constructions. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

[CFOS21] G. Cassiers, S. Faust, M. Orlt and F-X. Standaert. *Towards Tight Random Probing Security* published in Crypto 2021

Sonia Belaïd CryptoExperts

Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R., CRYPTO 2020

[CFOS21] G. Cassiers, S. Faust, M. Orlt and F-X. Standaert. *Towards Tight Random Probing Security* published in Crypto 2021

Sonia Belaïd CryptoExperts - New Techniques for Random Probing Security -

I) The random probing model

3) Random-probing Raccoon

2) Composition in the random probing model

I) The random probing model

2) Composition in the random probing model

3) Random-probing Raccoon

Raccoon Signature Scheme

[dPKPR24] R. del Pino, S. Katsumata, T. Prest and M. Rossi Raccoon: A Masking-Friendly Signature Proven in the Probing Model. CRYPTO 2024

Sonia Belaïd CryptoExperts

Raccoon 128-16

q	549824583172097
n	512
k	5
Ι	4
d	16
Т	2

- ➡ Proof in the (d 1)-probing model
- ➡ Same assumptions as Dilithium/ML-DSA

Signatures $4 \times larger$

- New Techniques for Random Probing Security -

Raccoon Signature Scheme

[dPKPR24] R. del Pino, S. Katsumata, T. Prest and M. Rossi Raccoon: A Masking-Friendly Signature Proven in the Probing Model. CRYPTO 2024

Sonia Belaïd CryptoExperts

Raccoon 128-16

q	549824583172097
n	512
k	5
I	4
d	16
Т	2

- → Quasi-linear in the masking order
- ➡ Proof in the (d 1)-probing model
- ➡ Same assumptions as Dilithium/ML-DSA

Signatures $4 \times larger$

Not selected for NIST additional post-quantum signatures (RIP)

« Add noise to »

Add $d \cdot T$ small uniform randoms

Random Probing Raccoon

I. Generate a large matrix $\mathbf{A} \in \mathscr{R}_q^{k \times \ell}$

KeyGen

- **2.** [|s|] = (0, ..., 0)
- 3. Add noise to [|s|]
- 4. Compute $[|t|] = \mathbf{A} \cdot [|s|]$
- 5. Add noise to [|t|]
- 6. Decode [|t|] to t
- 7. The verification key is (\mathbf{A}, t)
- 8. The signing key is [|s|]

Signature

- I. [|r|] = Refresh(0,...,0)
- 2. Add noise to [|r|]
- 3. Compute the commitment $[|w|] = \mathbf{A} \cdot [|r|]$
- 4. Add noise to [|w|]
- 5. Decode [|w|] to w
- 6. Compute the challenge c = H(w, msg, vk)
- 7. Compute the response $[|z|] = [|s|] \cdot c + [|r|]$
- 8. Decode [|z|] to z No Rejection Sampling
- 9. The signature is sig = (c, z)

Sonia Belaïd CryptoExperts

« Add noise to »

Add $d \cdot T$ small uniform randoms

Random Probing Raccoon

I. Generate a large matrix $\mathbf{A} \in \mathscr{R}_q^{k \times \ell}$

KeyGen

2. [|s|] = (0, ..., 0)

- 3. Add noise to [|s|]
- 4. Compute $[|t|] = \mathbf{A} \cdot [|s|]$
- 5. Add noise to [|t|]
- 6. Decode [|t|] to t
- 7. The verification key is (\mathbf{A}, t)
- 8. The signing key is [|s|]

Signature

- I. [|r|] = (0,...,0)
- 2. Add noise to [|r|]
- 3. Compute the commitment $[|w|] = \mathbf{A} \cdot [|r|]$
- 4. Add noise to [|w|]
- 5. Decode [|w|] to w
- 6. Compute the challenge c = H(w, msg, vk)
- 7. Compute the response $[|z|] = [|s|] \cdot c + [|r|]$
- 8. Decode [|z|] to z No Rejection Sampling
- 9. The signature is sig = (c, z)

Sonia Belaïd CryptoExperts

« Add noise to »

Add $d \cdot T$ small uniform randoms

Random Probing Raccoon

Sonia Belaïd CryptoExperts

« Add noise to »

Add $d \cdot T$ small uniform randoms

Random Probing Raccoon

« Add noise to »

Add $d \cdot T$ small uniform randoms

A New Notion ____

Random Probing Security with Auxiliary Inputs and public Outputs (RPS-AI-O)

 $\bigoplus_{\substack{(+) \\ (+)$

Composable (cardinal or threshold RPC) elementary gates are needed

Sonia Belaïd CryptoExperts

New gadgets

- New Techniques for Random Probing Security -

 $\bigoplus_{i=1}^{k} (i)$

Composable (cardinal or threshold RPC) elementary gates are needed

Sonia Belaïd CryptoExperts

New gadgets

To be composable, they need to include some refreshes Refresh ?

- New Techniques for Random Probing Security -

 $\bigoplus_{i=1}^{k} (i)$

Composable (cardinal or threshold RPC) elementary gates are needed

Sonia Belaïd CryptoExperts

To be composable, they need to include some refreshes

Refresh ?

- New Techniques for Random Probing Security -

New Random Probing Composable Refresh

Sonia Belaïd CryptoExperts — New Techniques for Random Probing Security —

- New Techniques for Random Probing Security -

7	8	
<i>-r</i> ₁	0	

7	8	
$-r_1$	$-r_{2}$	

- New Techniques for Random Probing Security -

7	8	
- <i>r</i> ₁	$-r_{2}$	

- New Techniques for Random Probing Security -

- New Techniques for Random Probing Security -

Random Probing Secure version of Raccoon

Raccoon 128-16 (n = 16 shares) - $p = 2^{-24}$

Sonia Belaïd CryptoExperts

n	Signature		
w Gadgets	Original		New Gadgets
16	16		16
1.82e9	1.02e8		3.44e9
8.39e7	1.01e8		1.01e8
6.57e8	5.57e5		1.42e9
2^{-132}	1		2^{-130}

- EUF-CMA secure even if 15 values of each auxiliary inputs leak

- New Techniques for Random Probing Security -

Random Probing Secure version of Raccoon

Raccoon 128-16 (n = 16 shares) - $p = 2^{-24}$

Sonia Belaïd CryptoExperts

		~ .	
on	Signature		
w Gadgets	Original		New Gadgets
16	16		16
1.82e9	1.02e8	$\times 30$	3.44e9
8.39e7	1.01e8	× 1	1.01e8
6.57e8	5.57e5	$\times 2500$	1.42e9
2^{-132}	1		2^{-130}

- EUF-CMA secure even if 15 values of each auxiliary inputs leak

- New Techniques for Random Probing Security -

Current state of the art

Existing elementary gadgets proved (Cardinal or threshold)-RPC

- Addition
- Multiplication
- ➡ Сору
- Refresh

Composition achievable by combining the enveloppes.

Complexity and penalty factor estimation for Raccoon.

Sonia Belaïd CryptoExperts - New Techniques for Random Probing Security -

Current state of the art

Existing elementary gadgets proved (Cardinal or threshold)-RPC

- Addition
- Multiplication
- ➡ Сору
- ➡ Refresh

 \mathbf{M} Composition achievable by combining the enveloppes.

Complexity and penalty factor estimation for Raccoon.

[BCPRT20] 8. Belaïd, S., Coron, J.S., Prouff, E., Rivain, M., Taleb, A.R. Random probing security: Verification, composition, expansion and new constructions. CRYPTO 2020

[BF023] Berti, F., Faust, S., Orlt, M. *Provable secure parallel gadgets*. TCHES 2023

[DFZ19] S. Dziembowski, S. Faust, K. Zebrowski Simple refreshing in the noisy leakage model. ASIACRYPT 2019

[JMB24] V. Jahandideh, B. Mennink and L. Batina An Algebraic Approach for Evaluating Random Probing Security With Application to AES. TCHES 2024

Sonia Belaïd CryptoExperts

- New Techniques for Random Probing Security -

PHISIC 2025

19

Thank you

