CRYPTOEXPERTS

WE INNOVATE TO SECURE YOUR BUSINESS

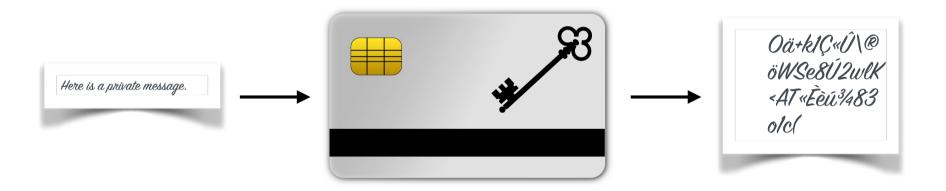
Side-Channel Attacks and Countermeasures Sonia Belaïd

ASCrypto 2019

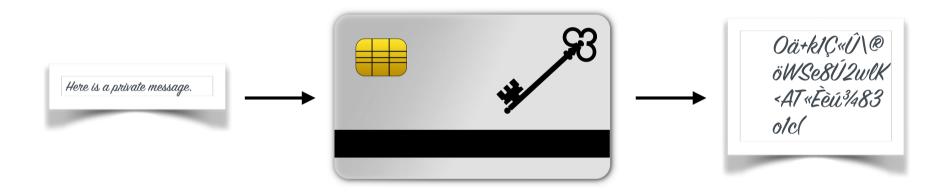
Overview

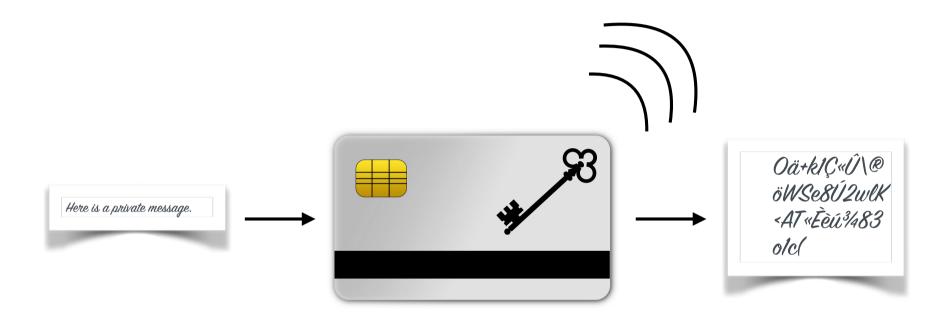
- What are side-channel attacks?
 - Definition, examples

How to thwart side-channel attacks?

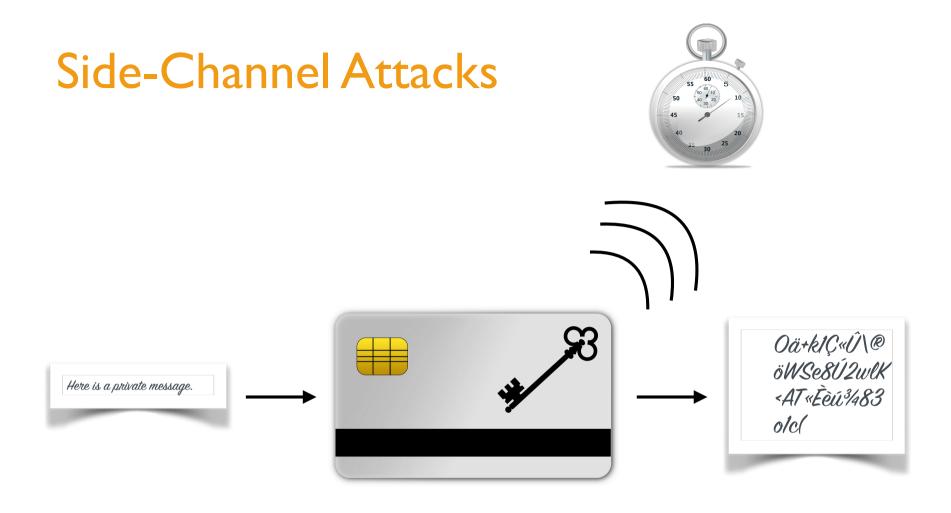

Countermeasures

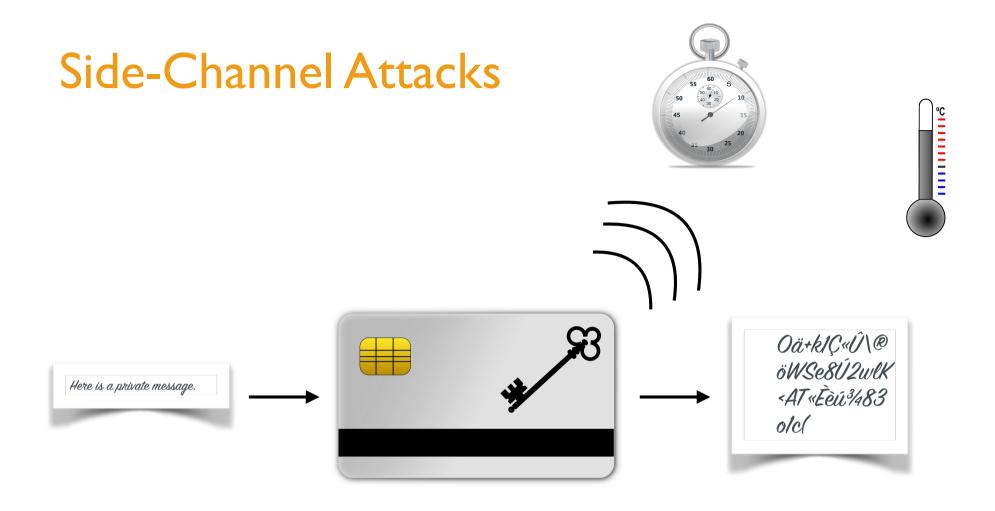
How to make sure that you did it?

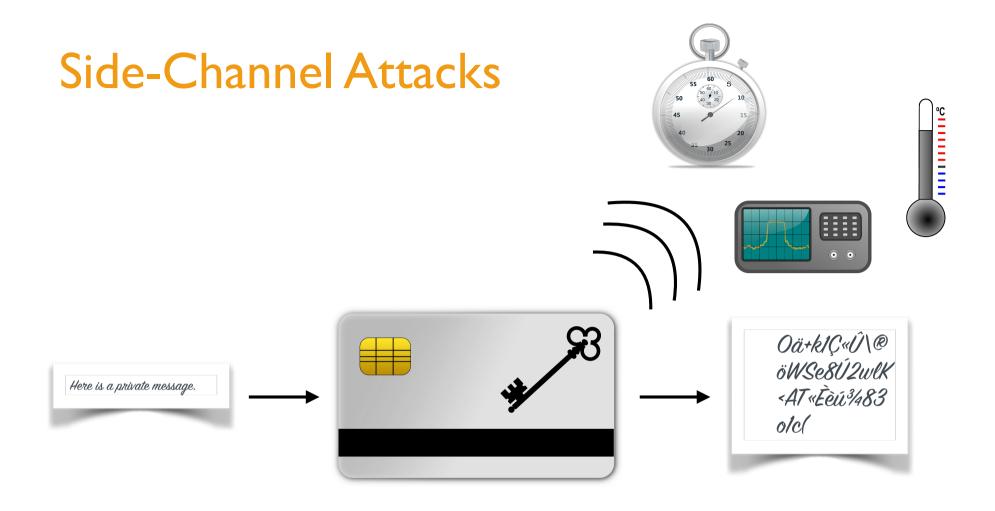

Proofs, automatic tools



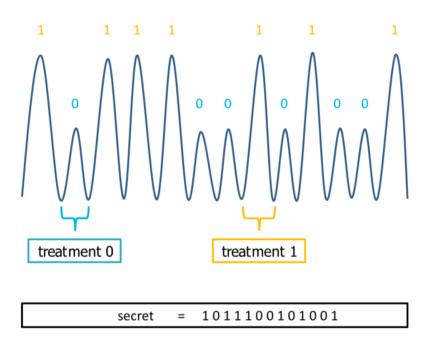
Black-box cryptanalysis:


$$\mathscr{A} \leftarrow (m, c)$$


- Black-box cryptanalysis:
- Side-channel analysis:


- Black-box cryptanalysis:
- Side-channel analysis:

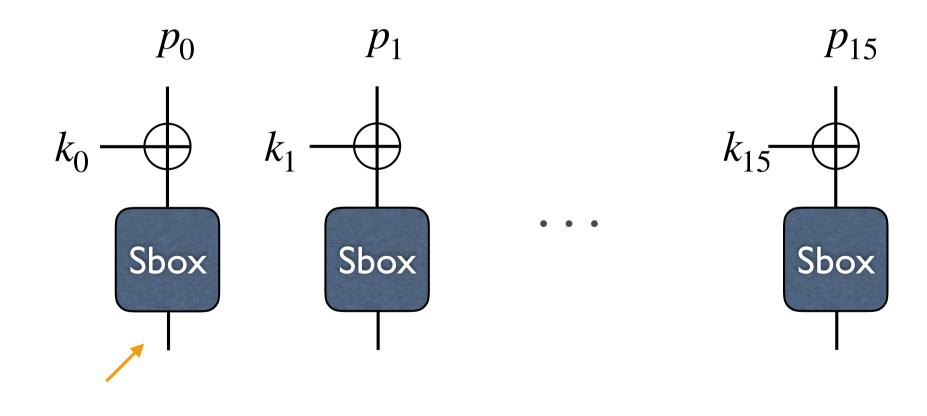
- Black-box cryptanalysis:
- Side-channel analysis:


- Black-box cryptanalysis:
- Side-channel analysis:

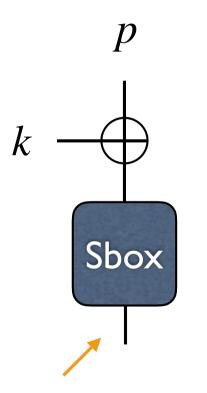
Example of SPA

Algorithm 1 Example

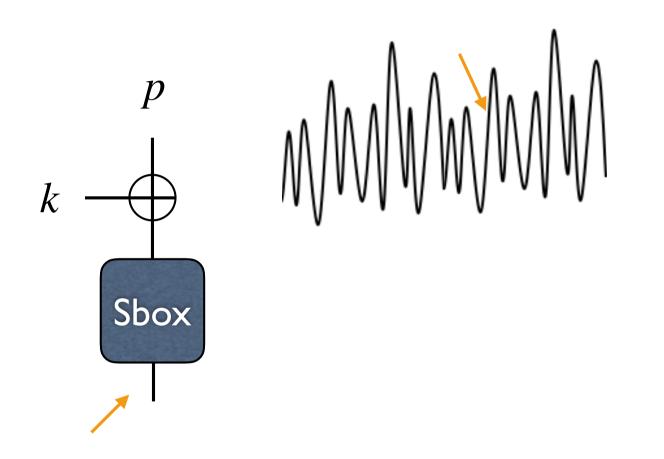
for i = 1 to n do if key[i] = 0 then do treatment 0 else do treatment 1 end if end for

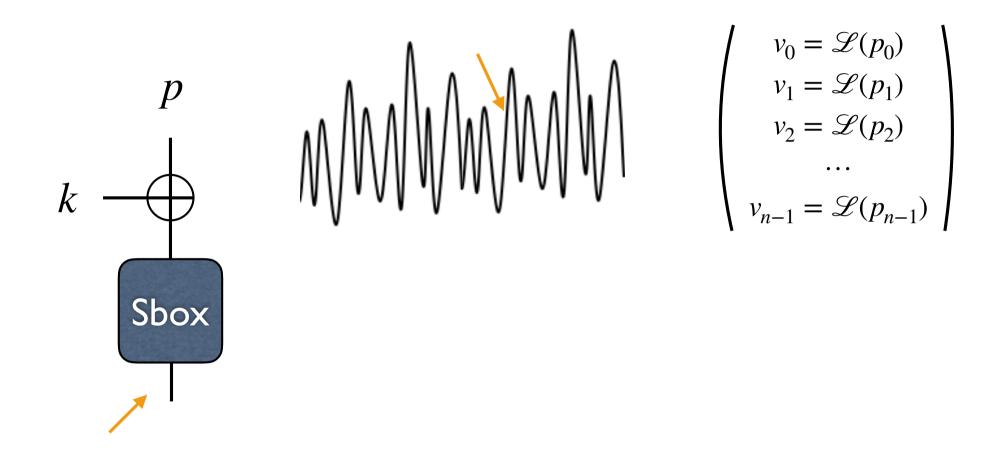


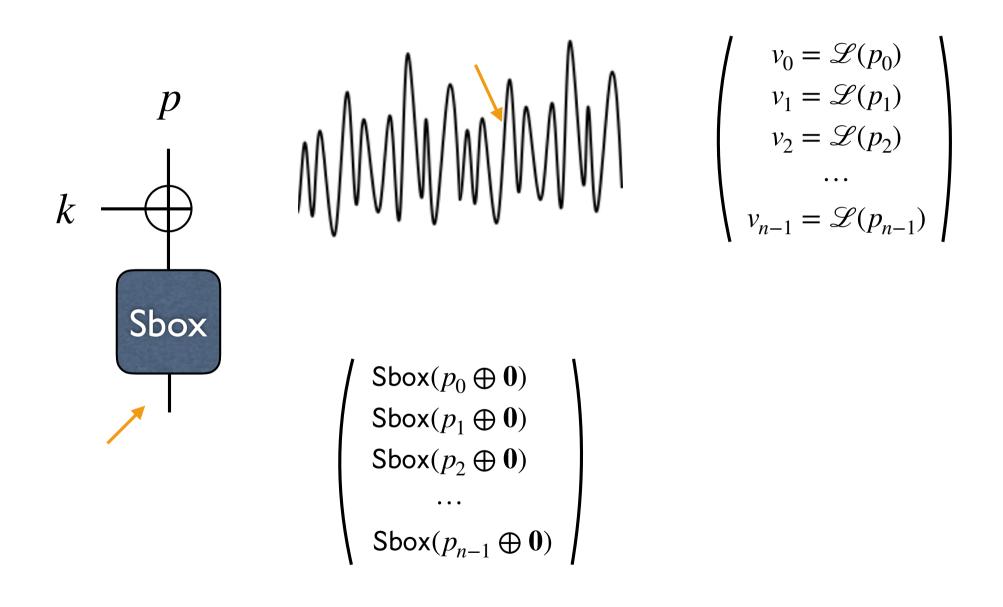
SPA: one single trace to recover the secret key

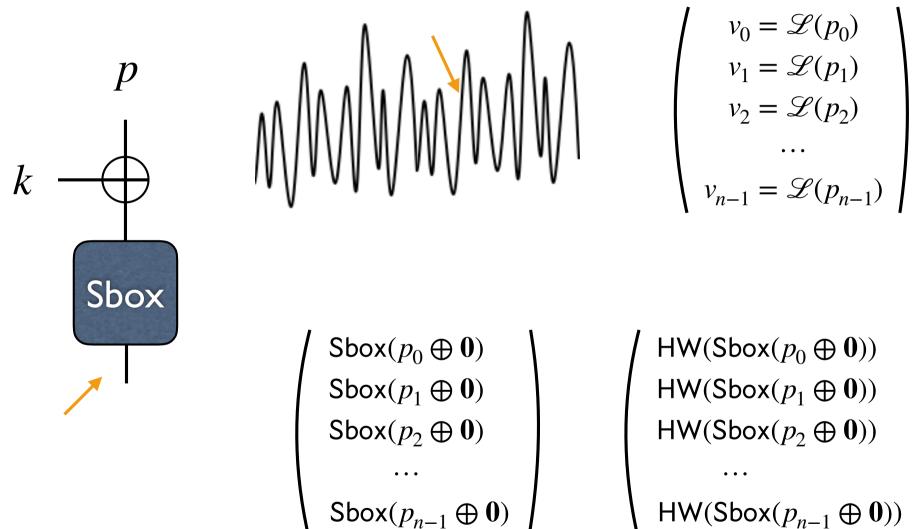


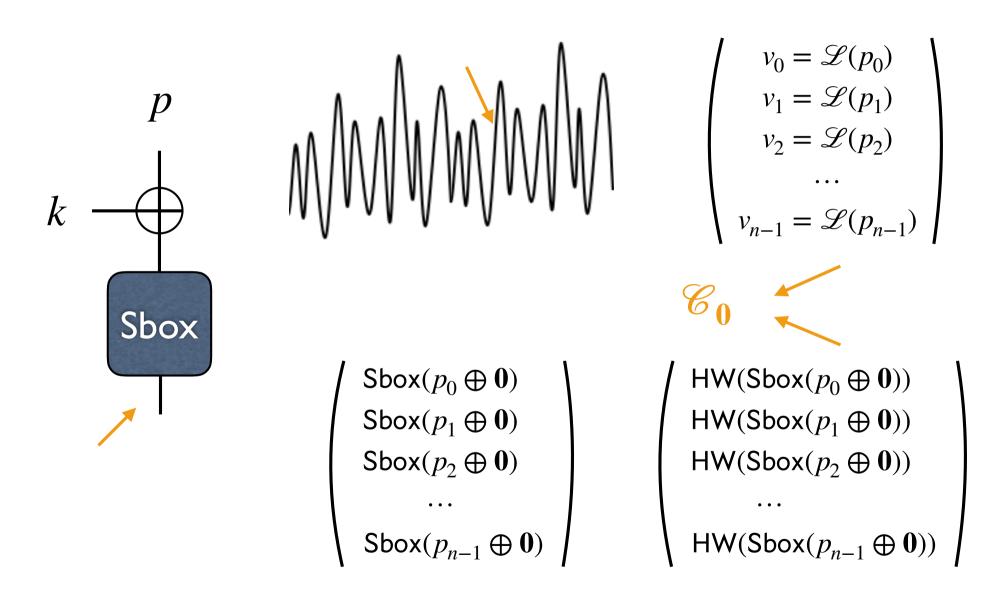
AES

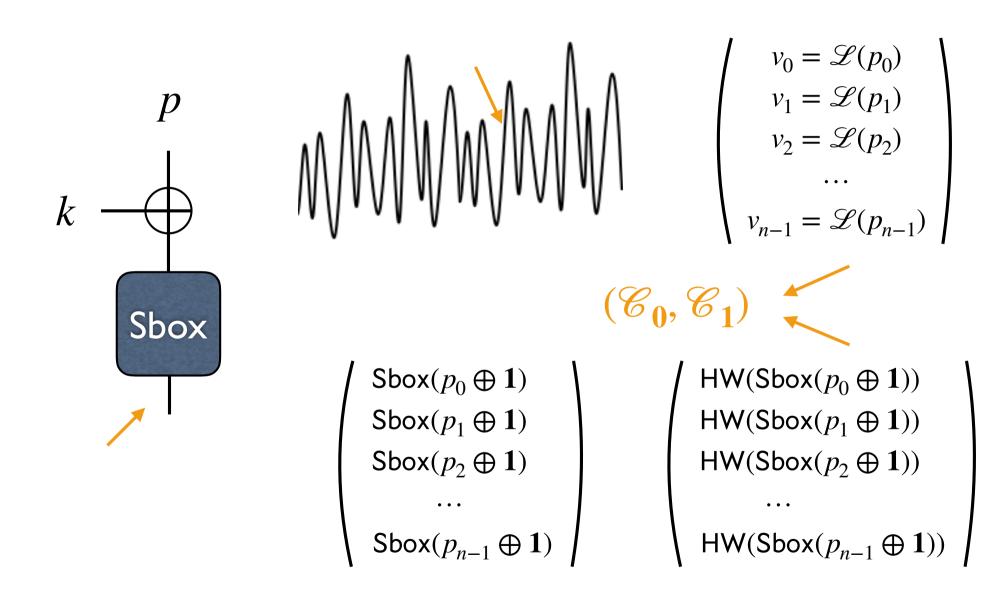

- plaintext and key on 16 bytes
- First round: 16 S-boxes

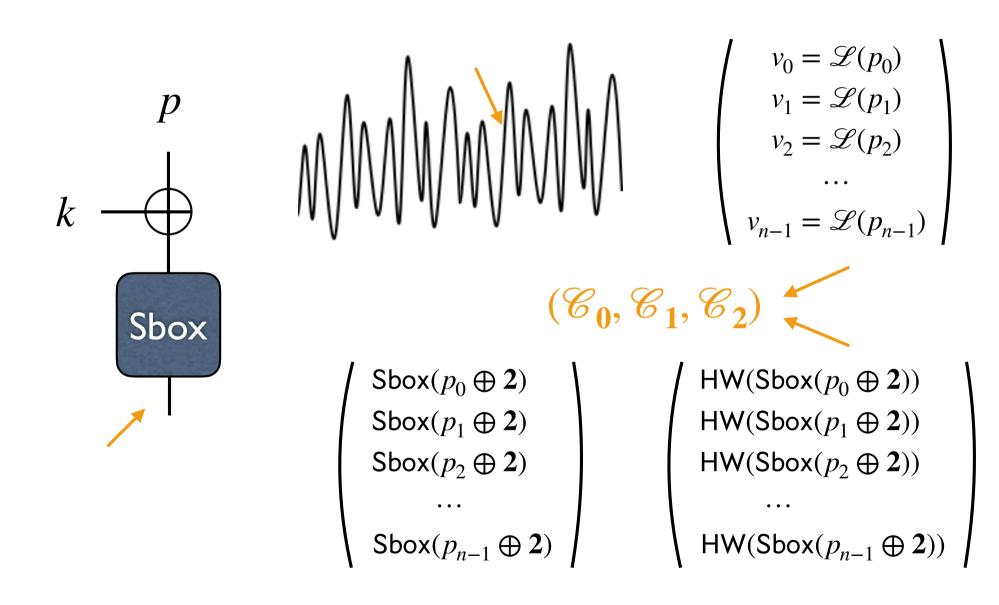




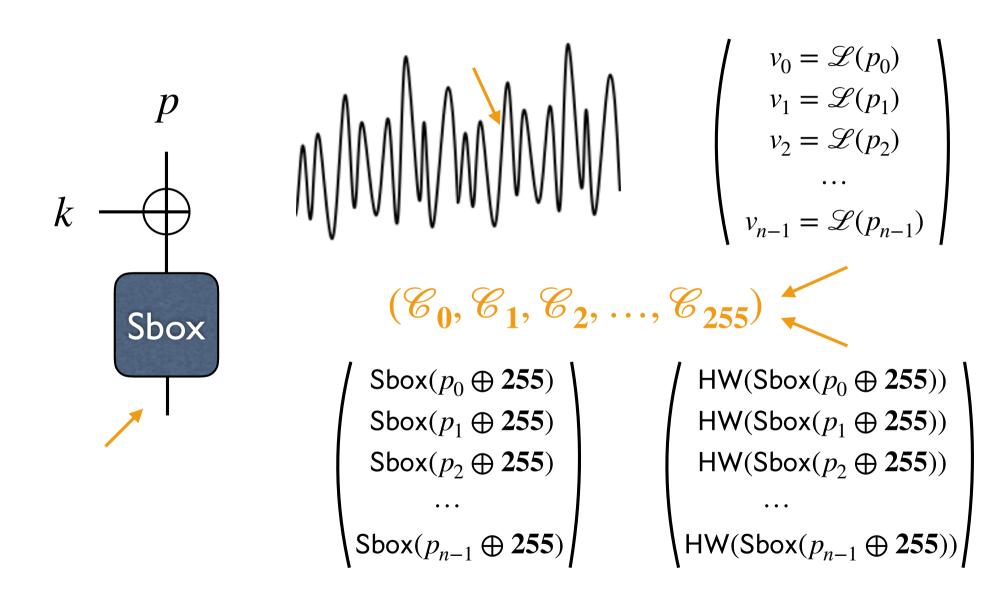


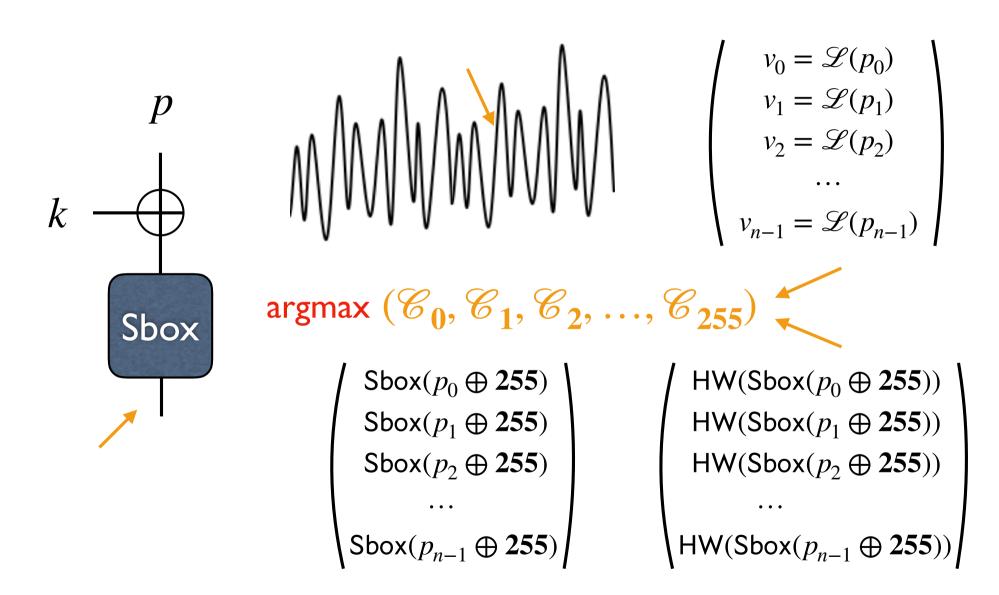






 $\mathsf{HW}(\mathsf{Sbox}(p_{n-1} \oplus \mathbf{0}))$



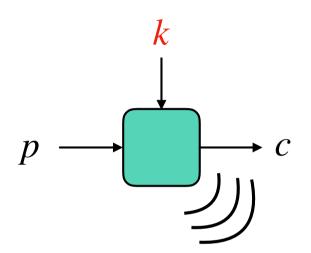


CRYPTOEXPERTS

- Cheap equipment
 - Basic oscilloscope is enough

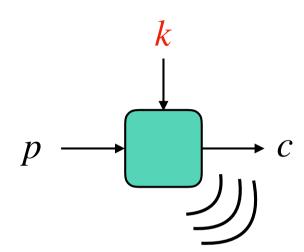
Few traces

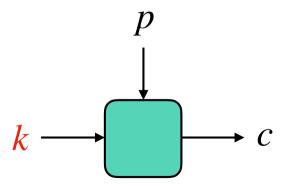
- Less than a hundred traces to recover secrets in software
- A few hundreds/thousands traces in hardware


Fast

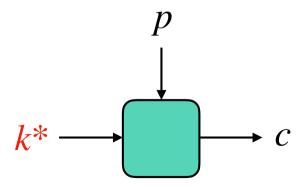
- A few minutes to get the traces
- A few seconds to mount the attack

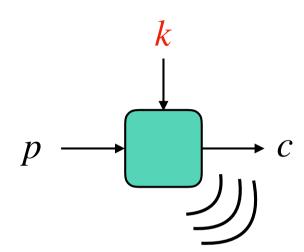
Countermeasures

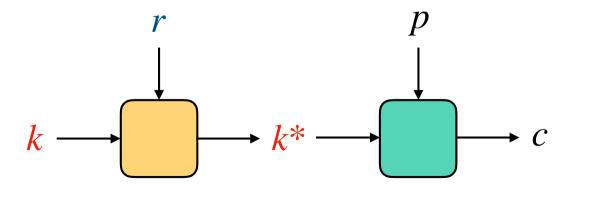

Problem: the leakage is key-dependent

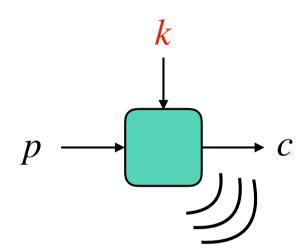


Problem: the leakage is key-dependent

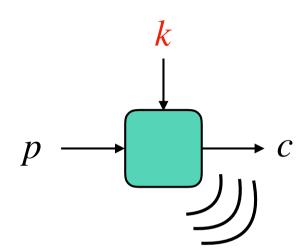

Problem: the leakage is key-dependent




Problem: the leakage is key-dependent

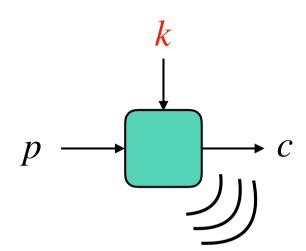


Problem: the leakage is key-dependent



Problem: the leakage is key-dependent

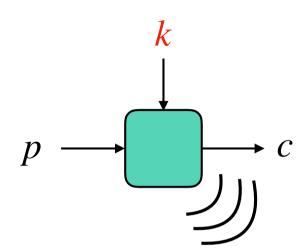
Solution 2: Masking (make the leakage random)



Problem: the leakage is key-dependent

Solution 2: Masking (make the leakage random)

for each sensitive value $v \leftarrow f(p, k)$


Problem: the leakage is key-dependent

Solution 2: Masking (make the leakage random)

for each sensitive value $v \leftarrow f(p, k)$

$$v_1 \leftarrow \$ \qquad v_2 \leftarrow \$ \qquad \cdots \qquad v_{n-1} \leftarrow \$$$

Problem: the leakage is key-dependent

Solution 2: Masking (make the leakage random)

for each sensitive value $v \leftarrow f(p, k)$

$$v_0 \leftarrow v \oplus \left(\bigoplus_{i=1}^{n-1} v_i \right) \qquad v_1 \leftarrow \$ \qquad v_2 \leftarrow \$ \qquad \cdots \qquad v_{n-1} \leftarrow \$$$

Masking linear operations

$$z \leftarrow x \oplus y \qquad \qquad x = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} \\ y = y_0 \oplus y_1 \oplus \dots \oplus y_{n-1}$$

Masking linear operations

$$z \leftarrow x \oplus y \qquad \qquad x = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} \\ y = y_0 \oplus y_1 \oplus \dots \oplus y_{n-1}$$

$$\mathbf{z} = (x_0 \oplus y_0, x_1 \oplus y_1, \dots, x_{n-1} \oplus y_{n-1})$$

Masking linear operations

$$z \leftarrow x \oplus y \qquad \qquad x = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} \\ y = y_0 \oplus y_1 \oplus \dots \oplus y_{n-1}$$

$$\mathbf{z} = (x_0 \oplus y_0, x_1 \oplus y_1, \dots, x_{n-1} \oplus y_{n-1})$$

- Masking non linear operations
 - Cannot be done share by share
 - Example of multiplication for n = 2

Masking linear operations

$$z \leftarrow x \oplus y \qquad \qquad x = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} \\ y = y_0 \oplus y_1 \oplus \dots \oplus y_{n-1}$$

$$\mathbf{z} = (x_0 \oplus y_0, x_1 \oplus y_1, \dots, x_{n-1} \oplus y_{n-1})$$

Masking non linear operations

- Cannot be done share by share
- Example of multiplication for n = 2

$$x = x_0 \oplus x_1$$
$$y = y_0 \oplus y_1$$

Masking in Practice

Masking linear operations

$$z \leftarrow x \oplus y \qquad \qquad x = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} \\ y = y_0 \oplus y_1 \oplus \dots \oplus y_{n-1}$$

$$\mathbf{z} = (x_0 \oplus y_0, x_1 \oplus y_1, \dots, x_{n-1} \oplus y_{n-1})$$

Masking non linear operations

- Cannot be done share by share
- Example of multiplication for n = 2

$$x = x_0 \oplus x_1$$

$$y = y_0 \oplus y_1$$

$$z_0 \leftarrow x_0 y_0 \oplus x_0 y_1$$

$$z_1 \leftarrow x_1 y_1 \oplus x_1 y_0$$

Masking in Practice

Masking linear operations

$$z \leftarrow x \oplus y \qquad \qquad x = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} \\ y = y_0 \oplus y_1 \oplus \dots \oplus y_{n-1}$$

$$\mathbf{z} = (x_0 \oplus y_0, x_1 \oplus y_1, \dots, x_{n-1} \oplus y_{n-1})$$

Masking non linear operations

- Cannot be done share by share
- Example of multiplication for n = 2

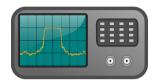
$$x = x_0 \oplus x_1$$

$$y = y_0 \oplus y_1$$

$$z_0 \leftarrow x_0 y_0 \oplus r \oplus x_0 y_1$$

$$z_1 \leftarrow x_1 y_1 \oplus r \oplus x_1 y_0$$

Leakage Models



How to evaluate the security of an implementation?

How to evaluate the security of an implementation?

- Integrate it on a device and try to attack it
 - Not always possible

How to evaluate the security of an implementation?

- Integrate it on a device and try to attack it
 - Not always possible

Model the leakage and prove its security or exhibit an attack

How to evaluate the security of an implementation?

- Integrate it on a device and try to attack it
 - Not always possible

Model the leakage and prove its security or exhibit an attack

Probing Model

Leakage

- Only t variables leak in the implementation
- Leakage = exact value

Probing Model

Leakage

- Only t variables leak in the implementation
- Leakage = exact value

Security in the t-probing model

Implementation such that any set of t intermediate variables is independent from the secret

Probing Model

Leakage

- Only t variables leak in the implementation
- Leakage = exact value
- Security in the t-probing model
 - Implementation such that any set of t intermediate variables is independent from the secret

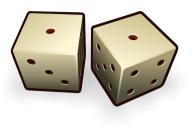
Pros and Cons

- Easy to make security proofs
- Not that close to the reality...

Random Probing Model

Leakage

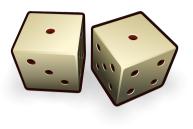
- Every variable leaks with probability *p*
- Leakage = exact value



Random Probing Model

Leakage

- Every variable leaks with probability *p*
- Leakage = exact value


- Security in the *p*-random probing model
 - Given *p*, the probability to recover information on the secret is negligible

Random Probing Model

Leakage

- Every variable leaks with probability p
- Leakage = exact value

- Security in the *p*-random probing model
 - Given p, the probability to recover information on the secret is negligible

Pros and Cons

- A bit more complicated to make security proofs
- Closer to the reality

Noisy Leakage Model

Leakage

- Every variable leaks
- Leakage = noisy function of the value

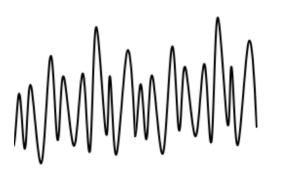
Noisy Leakage Model

Leakage

- Every variable leaks
- Leakage = noisy function of the value

Security in the noisy leakage model

 Given the level of noise, the probability to recover information on the secret is negligible

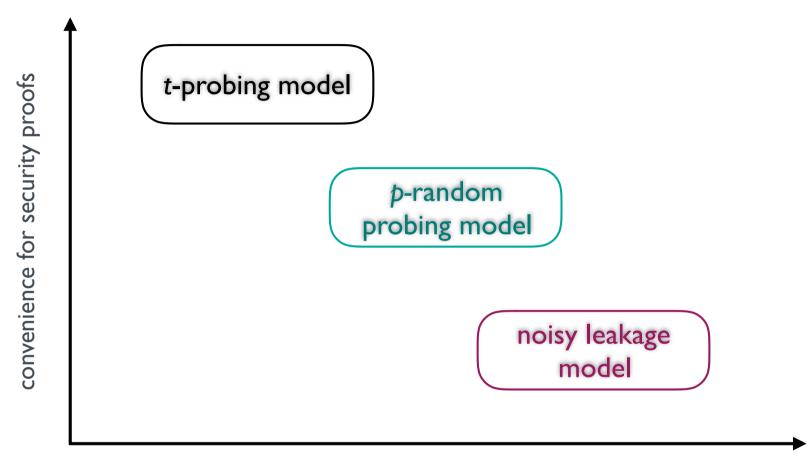


Noisy Leakage Model

Leakage

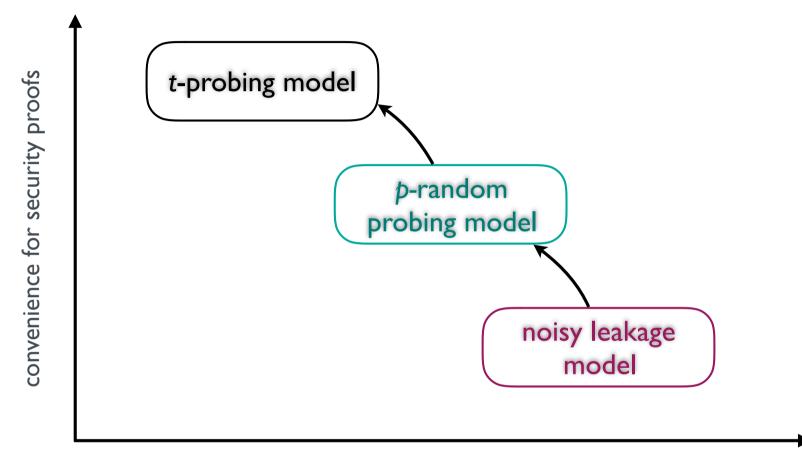
- Every variable leaks
- Leakage = noisy function of the value

Security in the noisy leakage model


 Given the level of noise, the probability to recover information on the secret is negligible

Pros and Cons

- Much more complicated to make security proofs
- The closest to the reality


Reductions

realism

Reductions

realism

Security Proofs

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

2 shares

function example(a_0, a_1, b_0, b_1) $r \leftarrow \$$ $u \leftarrow a_0 \cdot b_0$ $c_0 \leftarrow u \oplus r$ $v \leftarrow a_1 \cdot b_1$ $x \leftarrow a_0 \cdot b_1$ $w \leftarrow v \oplus x$ $y \leftarrow w \oplus r$ $z \leftarrow a_1 \cdot b_0$ $c_1 \leftarrow y \oplus z$ return (c_0, c_1)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

2 shares I-probing secure? function example(a_0, a_1, b_0, b_1) $r \leftarrow \$$ $u \leftarrow a_0 \cdot b_0$ $c_0 \leftarrow u \oplus r$ $v \leftarrow a_1 \cdot b_1$ $x \leftarrow a_0 \cdot b_1$ $w \leftarrow v \oplus x$ $y \leftarrow w \oplus r$ $z \leftarrow a_1 \cdot b_0$ $c_1 \leftarrow y \oplus z$ return (c_0, c_1)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example
$$(a_0, a_1, b_0, b_1)$$

 $\widehat{r} \leftarrow \$$
 $u \leftarrow a_0 \cdot b_0$
 $c_0 \leftarrow u \oplus r$
 $v \leftarrow a_1 \cdot b_1$
 $x \leftarrow a_0 \cdot b_1$
 $w \leftarrow v \oplus x$
 $y \leftarrow w \oplus r$
 $z \leftarrow a_1 \cdot b_0$
 $c_1 \leftarrow y \oplus z$
return (c_0, c_1)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example(
$$a_0, a_1, b_0, b_1$$
)
 $r \leftarrow \$$
 $(u) \leftarrow a_0 \cdot b_0$
 $c_0 \leftarrow u \oplus r$
 $v \leftarrow a_1 \cdot b_1$
 $x \leftarrow a_0 \cdot b_1$
 $w \leftarrow v \oplus x$
 $y \leftarrow w \oplus r$
 $z \leftarrow a_1 \cdot b_0$
 $c_1 \leftarrow y \oplus z$
return (c_0, c_1)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example(
$$a_0, a_1, b_0, b_1$$
)
 $r \leftarrow \$$
 $u \leftarrow a_0 \cdot b_0$
 $\bigcirc \leftarrow u \oplus r$
 $v \leftarrow a_1 \cdot b_1$
 $x \leftarrow a_0 \cdot b_1$
 $w \leftarrow v \oplus x$
 $y \leftarrow w \oplus r$
 $z \leftarrow a_1 \cdot b_0$
 $c_1 \leftarrow y \oplus z$
return (c_0, c_1)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example
$$(a_0, a_1, b_0, b_1)$$

 $r \leftarrow \$$
 $u \leftarrow a_0 \cdot b_0$
 $c_0 \leftarrow u \oplus r$
 $(v) \leftarrow a_1 \cdot b_1$
 $x \leftarrow a_0 \cdot b_1$
 $w \leftarrow v \oplus x$
 $y \leftarrow w \oplus r$
 $z \leftarrow a_1 \cdot b_0$
 $c_1 \leftarrow y \oplus z$
return (c_0, c_1)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example
$$(a_0, a_1, b_0, b_1)$$

 $r \leftarrow \$$
 $u \leftarrow a_0 \cdot b_0$
 $c_0 \leftarrow u \oplus r$
 $v \leftarrow a_1 \cdot b_1$
 $x \leftarrow a_0 \cdot b_1$
 $w \leftarrow v \oplus x$
 $y \leftarrow w \oplus r$
 $z \leftarrow a_1 \cdot b_0$
 $c_1 \leftarrow y \oplus z$
return (c_0, c_1)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example
$$(a_0, a_1, b_0, b_1)$$

 $r \leftarrow \$$
 $u \leftarrow a_0 \cdot b_0$
 $c_0 \leftarrow u \oplus r$
 $v \leftarrow a_1 \cdot b_1$
 $x \leftarrow a_0 \cdot b_1$
 $w \leftarrow v \oplus x$
 $y \leftarrow w \oplus r$
 $z \leftarrow a_1 \cdot b_0$
 $c_1 \leftarrow y \oplus z$
return (c_0, c_1)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example(a_0, a_1, b_0, b_1) $r \leftarrow \$$ $u \leftarrow a_0 \cdot b_0$ Independent from secrets? $c_0 \leftarrow u \oplus r$ $w = v \oplus x$ $v \leftarrow a_1 \cdot b_1$ $w = a_1 \cdot b_1 \oplus a_0 \cdot b_1$ $x \leftarrow a_0 \cdot b_1$ $w = a \cdot b_1$ $w \leftarrow v \oplus x$ $y \leftarrow w \oplus r$ $z \leftarrow a_1 \cdot b_0$ $c_1 \leftarrow y \oplus z$ return (c_0, c_1)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example($a_0, a_1, a_2, b_0, b_1, b_2$)

3 shares

$$r_{00}, r_{01}, r_{02}, r_{12} \leftarrow \$$$

$$t \leftarrow a_0 \cdot b_0$$

$$c_0 \leftarrow t \oplus r_{00}$$

$$t \leftarrow a_0 \cdot b_1$$

$$t \leftarrow t \oplus r_{01}$$

$$c_0 \leftarrow c_0 \oplus t$$

$$t \leftarrow a_0 \cdot b_2$$

$$t \leftarrow t \oplus r_{02}$$

$$c_0 \leftarrow c_0 \oplus t$$

$$t \leftarrow a_1 \cdot b_0$$

$$c_1 \leftarrow t \oplus r_{01}$$

$$t \leftarrow a_1 \cdot b_1$$

$$c_1 \leftarrow c_1 \oplus t$$
....
return (c_0, c_1, c_2)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example($a_0, a_1, a_2, b_0, b_1, b_2$)

3 shares 33 intermediate variables $\binom{33}{2} = 528$ couples to verify

$$\begin{aligned} r_{00}, r_{01}, r_{02}, r_{12} \leftarrow \$ \\ t \leftarrow a_0 \cdot b_0 \\ c_0 \leftarrow t \oplus r_{00} \\ t \leftarrow a_0 \cdot b_1 \\ t \leftarrow t \oplus r_{01} \\ c_0 \leftarrow c_0 \oplus t \\ t \leftarrow a_0 \cdot b_2 \\ t \leftarrow t \oplus r_{02} \\ c_0 \leftarrow c_0 \oplus t \\ t \leftarrow a_1 \cdot b_0 \\ c_1 \leftarrow t \oplus r_{01} \\ t \leftarrow a_1 \cdot b_1 \\ c_1 \leftarrow c_1 \oplus t \\ & \dots \end{aligned}$$
return (c_0, c_1, c_2)

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

function example($a_0, a_1, a_2, b_0, b_1, b_2$)

	$r_{00}, r_{01}, r_{02}, r_{12} \leftarrow \$$
3 shares	$t \leftarrow a_0 \cdot b_0$
	$c_0 \leftarrow t \oplus r_{00}$
33 intermediate variables	$t \leftarrow a_0 \cdot b_1$
	$t \leftarrow t \oplus r_{01}$
$\binom{33}{2} = 528$ couples to verify	$c_0 \leftarrow c_0 \oplus t$
$\begin{pmatrix} 2 \end{pmatrix} = 328$ couples to verify	$t \leftarrow a_0 \cdot b_2$
	$t \leftarrow t \oplus r_{02}$
$\binom{n}{t}$ tuples to verify	$c_0 \leftarrow c_0 \oplus t$
	$t \leftarrow a_1 \cdot b_0$
	$c_1 \leftarrow t \oplus r_{01}$
	$t \leftarrow a_1 \cdot b_1$
	$c_1 \leftarrow c_1 \oplus t$
	• • •
	return (c_0, c_1, c_2)

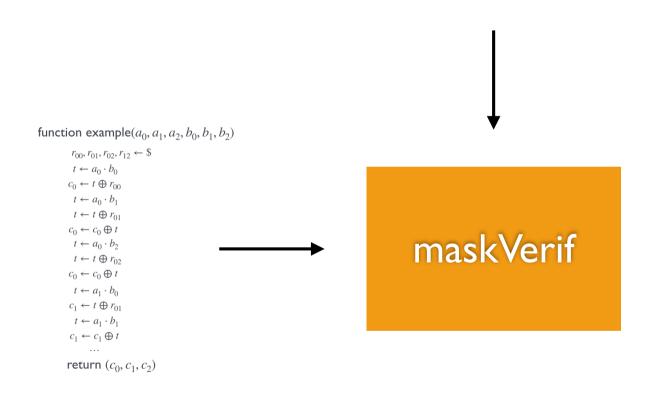
Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

Two methods to verify *t*-probing security

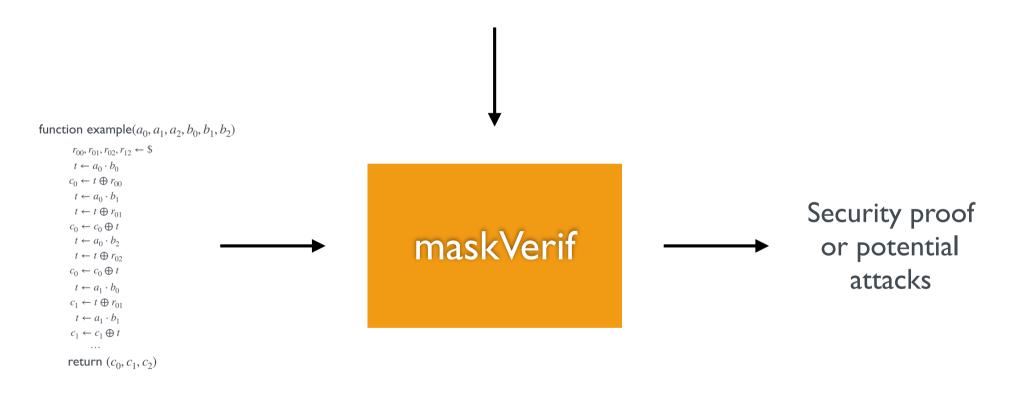
- Theoretical proof from the structure of the algorithm
- Automatic proofs with a tool

Reminder: an implementation is *t*-probing secure iff any set of at most *t* variables is independent from the secret

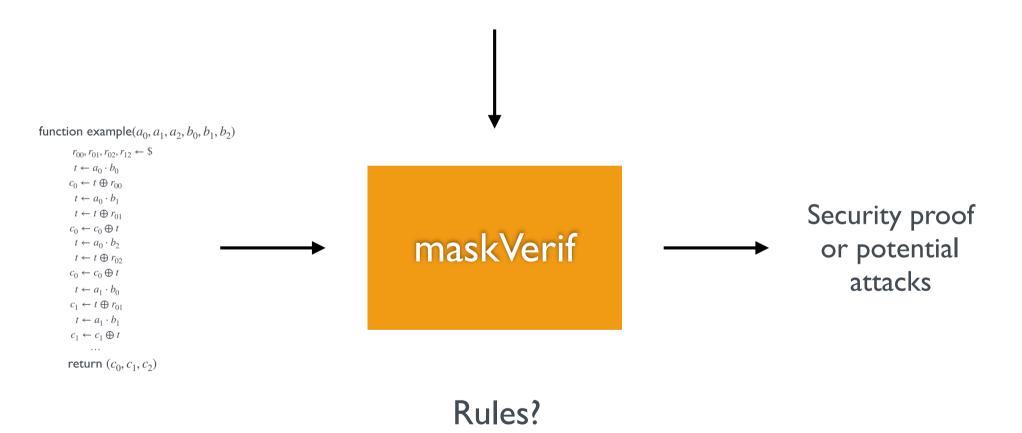
Two methods to verify *t*-probing security


- Theoretical proof from the structure of the algorithm
- Automatic proofs with a tool

maskVerif



Security order *t*



Security order *t*

Security order *t*

Conclusion

Summary

- Side-channel attacks are very powerful
 - Few seconds to recover the key on some software devices
 - Cheap equipments

Summary

- Side-channel attacks are very powerful
 - Few seconds to recover the key on some software devices
 - Cheap equipments
- Countermeasures are mandatory for sensitive devices
 - Hardware and low cost countermeasures
 - Fresh re-keying
 - Masking

Summary

- Side-channel attacks are very powerful
 - Few seconds to recover the key on some software devices
 - Cheap equipments
- Countermeasures are mandatory for sensitive devices
 - Hardware and low cost countermeasures
 - Fresh re-keying
 - Masking
- Practical security
 - Security proofs in relevant leakage models
 - Automatic tools

Challenges

Efficiency

- The least possible randomness
- The least possible operations

Challenges

Efficiency

- The least possible randomness
- The least possible operations

Security

- Theoretical proofs of existing schemes
- Automatic tools to verify the security of implementations

Challenges

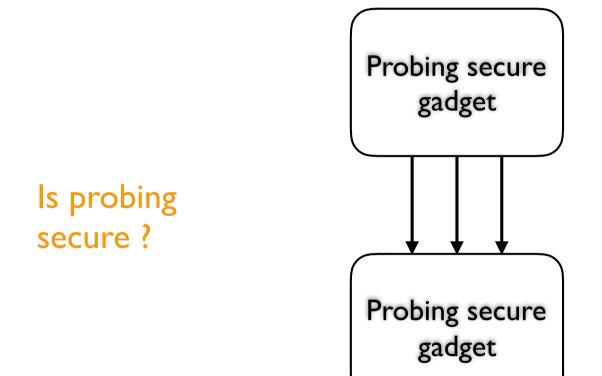
Efficiency

- The least possible randomness
- The least possible operations

Security

- Theoretical proofs of existing schemes
- Automatic tools to verify the security of implementations

Practicality


 Security of implementations under leakage models as close as possible to the reality

Thank you

Subsidiary Question

