
Formal Verification of Side-Channel

Countermeasures

Sonia Beläıd

June 5th 2018

1 / 35



1 � Side-Channel Attacks

2 � Masking

3 � Formal Tools
� Verification of Masked Implementations at Fixed Order
� Verification of Masked Implementations for Generic t
� Composition

4 � Conclusion

2 / 35



1 � Side-Channel Attacks

2 � Masking

3 � Formal Tools
� Verification of Masked Implementations at Fixed Order
� Verification of Masked Implementations for Generic t
� Composition

4 � Conclusion

3 / 35



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-channel analysis

Alice Bob

c= 011100110101010110001010

ENCmi

k

c DECc

k

m

L

4 / 35



Cryptanalysis
Ü Black-box cryptanalysis: A ← (m, c)

Ü Side-Channel Analysis

Alice Bob

c= 011100110101010110001010

ENCmi

k

c DECc

k

m

L

4 / 35



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCmi

k

c DECDECc

k

m

L

4 / 35



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCmi

k

c DECDECc

k

m

L

4 / 35



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCmi

k

c DECDECc

k

m

L

4 / 35



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCmi

k

c DECDECc

k

m

L

4 / 35



Cryptanalysis
Ü Black-box cryptanalysis

Ü Side-Channel Analysis: A ← (m, c,L)

Alice Bob

c= 011100110101010110001010

ENCENCmi

k

c DECDECc

k

m

L

4 / 35



Example of SPA

Algorithm 1 Example
for i = 1 to n do

if key[i] = 0 then
do treatment 0

else
do treatment 1

end if
end for

SPA: one single trace to recover the secret key

5 / 35



Example of DPA

DPA: several traces to recover the secret key

6 / 35



1 � Side-Channel Attacks

2 � Masking

3 � Formal Tools
� Verification of Masked Implementations at Fixed Order
� Verification of Masked Implementations for Generic t
� Composition

4 � Conclusion

7 / 35



How to thwart SCA?

m

k

c

L

Issue: leakage L is key-dependent

Fresh Re-keying

Idea: regularly change k

session key k?

R

master key k

cm

r

Masking

Idea: make leakage L random

sensitive value: v = f(m, k)

v0 ← v ⊕

( ⊕
16i6t

vi

)
v1 ← $ ... vt ← $

Ü any t-uple of vi is
independent from v

8 / 35



How to thwart SCA?

m

k

c

L

Issue: leakage L is key-dependent

Fresh Re-keying

Idea: regularly change k

session key k?

R

master key k

cm

r

Masking

Idea: make leakage L random

sensitive value: v = f(m, k)

v0 ← v ⊕

( ⊕
16i6t

vi

)
v1 ← $ ... vt ← $

Ü any t-uple of vi is
independent from v

8 / 35



How to thwart SCA?

m

k

c

L

Issue: leakage L is key-dependent

Fresh Re-keying

Idea: regularly change k

session key k?

R

master key k

cm

r

Masking

Idea: make leakage L random

sensitive value: v = f(m, k)

v0 ← v ⊕

( ⊕
16i6t

vi

)
v1 ← $ ... vt ← $

Ü any t-uple of vi is
independent from v

8 / 35



How to thwart SCA?

m

k

c

L

Issue: leakage L is key-dependent

Fresh Re-keying

Idea: regularly change k

session key k?

R

master key k

cm

r

Masking

Idea: make leakage L random

sensitive value: v = f(m, k)

v0 ← v ⊕

( ⊕
16i6t

vi

)
v1 ← $ ... vt ← $

Ü any t-uple of vi is
independent from v

8 / 35



Masked Implementations

� Linear functions: apply the function to each share

v ⊕ w → (v0 ⊕ w0, v1 ⊕ w1, . . . , vt ⊕ wt)

� Non-linear functions: much more complex

∀ 0 ≤ i < j ≤ t− 1, ri,j ← $

∀ 0 ≤ i < j ≤ t− 1, rj,i ← (ri,j ⊕ viwj)⊕ vjwi

∀ 0 ≤ i ≤ d− 1, ci ← viwi ⊕
∑
j 6=i

ri,j

vw → (c0, c1, . . . , ct)

9 / 35



Masked Implementations

� Linear functions: apply the function to each share

v ⊕ w → (v0 ⊕ w0, v1 ⊕ w1, . . . , vt ⊕ wt)

� Non-linear functions: much more complex

∀ 0 ≤ i < j ≤ t− 1, ri,j ← $

∀ 0 ≤ i < j ≤ t− 1, rj,i ← (ri,j ⊕ viwj)⊕ vjwi

∀ 0 ≤ i ≤ d− 1, ci ← viwi ⊕
∑
j 6=i

ri,j

vw → (c0, c1, . . . , ct)

9 / 35



Leakage Models

� Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
I a circuit is t-probing secure iff any set composed of the exact

values of at most t intermediate variables is independent from
the secret

� Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
I a circuit is secure in the noisy leakage model iff the adversary

cannot recover information on the secret from the noisy values
of all the intermediate variables

� Reduction by Duc, Dziembowski, and Faust (EC 2014)
I t-probing security ⇒ security in the noisy leakage model for

some level of noise

10 / 35



Leakage Models

� Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
I a circuit is t-probing secure iff any set composed of the exact

values of at most t intermediate variables is independent from
the secret

� Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
I a circuit is secure in the noisy leakage model iff the adversary

cannot recover information on the secret from the noisy values
of all the intermediate variables

� Reduction by Duc, Dziembowski, and Faust (EC 2014)
I t-probing security ⇒ security in the noisy leakage model for

some level of noise

10 / 35



Leakage Models

� Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
I a circuit is t-probing secure iff any set composed of the exact

values of at most t intermediate variables is independent from
the secret

� Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
I a circuit is secure in the noisy leakage model iff the adversary

cannot recover information on the secret from the noisy values
of all the intermediate variables

� Reduction by Duc, Dziembowski, and Faust (EC 2014)
I t-probing security ⇒ security in the noisy leakage model for

some level of noise

10 / 35



How to Verify Probing Security?

� variables: secret, shares, constant

� masking order t = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?

11 / 35



How to Verify Probing Security?

� variables: secret, shares, constant

� masking order t = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?

11 / 35



How to Verify Probing Security?

� variables: secret, shares, constant

� masking order t = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?

11 / 35



1 � Side-Channel Attacks

2 � Masking

3 � Formal Tools
� Verification of Masked Implementations at Fixed Order
� Verification of Masked Implementations for Generic t
� Composition

4 � Conclusion

12 / 35



1 � Side-Channel Attacks

2 � Masking

3 � Formal Tools
� Verification of Masked Implementations at Fixed Order
� Verification of Masked Implementations for Generic t
� Composition

4 � Conclusion

13 / 35



State-Of-The-Art

� several tools were built to formally verify security of first-order
implementations t = 1

� then a sequence of work tackled higher-order implementations
t ≤ 5
I maskVerif from Barthe et al.: first tool to achieve verification

at high orders
I CheckMasks from Coron: improvements in terms of efficiency
I Bloem et al.’s tool: treatment of glitches attacks

14 / 35



State-Of-The-Art

� several tools were built to formally verify security of first-order
implementations t = 1

� then a sequence of work tackled higher-order implementations
t ≤ 5
I maskVerif from Barthe et al.: first tool to achieve verification

at high orders
I CheckMasks from Coron: improvements in terms of efficiency
I Bloem et al.’s tool: treatment of glitches attacks

14 / 35



maskVerif

� input:
I pseudo-code of a masked implementation
I order t

� output:
I formal proof of t-probing security
I potential flaws

� language: Easycrypt

Gilles Barthe and Sonia Beläıd and François Dupressoir and Pierre-Alain Fouque
and Benjamin Grégoire and Pierre-Yves Strub Verified Proofs of Higher-Order
Masking, EUROCRYPT 2015, Proceedings, Part I, 457–485.

15 / 35



Independence from the secret

Inputs: t intermediate variables, b← true

(Rule 1) secret variables?
yes Ü (Rule 2)

no Ü 4

(Rule 2) an expression v is invertible
in the only occurrence of a
random r?

yes Ü v ← r; (Rule 1)

no Ü (Rule 3)

(Rule 3) is flag b = true?

yes Ü simplify; b← false; (Rule 1)

no Ü 8

function Ex-t3(x1, x2, x3, x4, c):

r1 ← $

r2 ← $

y1 ← x1 + r1

y2 ← (x+ x1 + x2 + x3) + r2

t1 ← x2 + r1

t2 ← (x2 + r1) + x3

y3 ← (x2 + r1 + x3) + r2

y4 ← c+ r2

return(y1, y2, y3, y4)

4 Ü distribution independent from the secret
8 Ü might be used for an attack

16 / 35



Independence from the secret

Inputs: t intermediate variables, b← true

(Rule 1) secret variables?
yes Ü (Rule 2)

no Ü 4

(Rule 2) an expression v is invertible
in the only occurrence of a
random r?

yes Ü v ← r; (Rule 1)

no Ü (Rule 3)

(Rule 3) is flag b = true?

yes Ü simplify; b← false; (Rule 1)

no Ü 8

function Ex-t3(x1, x2, x3, x4, c):

r1 ← $

r2 ← $

y1 ← x1 + r1

y2 ← (x+ x1 + x2 + x3) + r2

t1 ← x2 + r1

t2 ← (x2 + r1) + x3

y3 ← (x2 + r1 + x3) + r2

y4 ← c+ r2

return(y1, y2, y3, y4)

4 Ü distribution independent from the secret
8 Ü might be used for an attack

16 / 35



Independence from the secret

Inputs: t intermediate variables, b← true

(Rule 1) secret variables?
yes Ü (Rule 2)

no Ü 4

(Rule 2) an expression v is invertible
in the only occurrence of a
random r?

yes Ü v ← r; (Rule 1)

no Ü (Rule 3)

(Rule 3) is flag b = true?

yes Ü simplify; b← false; (Rule 1)

no Ü 8

function Ex-t3(x1, x2, x3, x4, c):

r1 ← $

r2 ← $

y1 ← x1 + r1

y2 ← (x+ x1 + x2 + x3) + r2

t1 ← x2 + r1

t2 ← (x2 + r1) + x3

y3 ← (x2 + r1 + x3) + r2

y4 ← c+ r2

return(y1, y2, y3, y4)

4 Ü distribution independent from the secret
8 Ü might be used for an attack

16 / 35



Independence from the secret

Inputs: t intermediate variables, b← true

(Rule 1) secret variables?
yes Ü (Rule 2)

no Ü 4

(Rule 2) an expression v is invertible
in the only occurrence of a
random r?

yes Ü v ← r; (Rule 1)

no Ü (Rule 3)

(Rule 3) is flag b = true?

yes Ü simplify; b← false; (Rule 1)

no Ü 8

function Ex-t3(x1, x2, x3, x4, c):

r1 ← $

r2 ← $

y1 ← x1 + r1

y2 ← (x+ x1 + x2 + x3) + r2

y2 ← x3

t1 ← x2 + r1

t2 ← (x2 + r1) + x3

y3 ← (x2 + r1 + x3) + r2

y4 ← c+ r2

return(y1, y2, y3, y4)

4 Ü distribution independent from the secret
8 Ü might be used for an attack

16 / 35



Extension to All Possible Sets

Problem: n intermediate variables Ü
(
n
t

)
proofs

New Idea: proofs for sets of more than t variables
I find larger sets which cover all the intermediate variables is a

hard problem
I two algorithms efficient in practice

X X̂ C
(
X̂
)

Algorithm 1:

1. select X = (t variables) and prove its
independence

2. extend X to X̂ with more observations
but still independence

3. recursively descend in set C
(
X̂
)

4. merge X̂ and C
(
X̂
)
once they are

processed separately.

17 / 35



Extension to All Possible Sets

Problem: n intermediate variables Ü
(
n
t

)
proofs

New Idea: proofs for sets of more than t variables
I find larger sets which cover all the intermediate variables is a

hard problem
I two algorithms efficient in practice

X X̂ C
(
X̂
)

Algorithm 1:

1. select X = (t variables) and prove its
independence

2. extend X to X̂ with more observations
but still independence

3. recursively descend in set C
(
X̂
)

4. merge X̂ and C
(
X̂
)
once they are

processed separately.

17 / 35



Extension to All Possible Sets

Problem: n intermediate variables Ü
(
n
t

)
proofs

New Idea: proofs for sets of more than t variables
I find larger sets which cover all the intermediate variables is a

hard problem
I two algorithms efficient in practice

X X̂ C
(
X̂
)

Algorithm 1:

1. select X = (t variables) and prove its
independence

2. extend X to X̂ with more observations
but still independence

3. recursively descend in set C
(
X̂
)

4. merge X̂ and C
(
X̂
)
once they are

processed separately.

17 / 35



Extension to All Possible Sets

Problem: n intermediate variables Ü
(
n
t

)
proofs

New Idea: proofs for sets of more than t variables
I find larger sets which cover all the intermediate variables is a

hard problem
I two algorithms efficient in practice

X

X̂ C
(
X̂
)

Algorithm 1:

1. select X = (t variables) and prove its
independence

2. extend X to X̂ with more observations
but still independence

3. recursively descend in set C
(
X̂
)

4. merge X̂ and C
(
X̂
)
once they are

processed separately.

17 / 35



Extension to All Possible Sets

Problem: n intermediate variables Ü
(
n
t

)
proofs

New Idea: proofs for sets of more than t variables
I find larger sets which cover all the intermediate variables is a

hard problem
I two algorithms efficient in practice

X X̂

C
(
X̂
)

Algorithm 1:

1. select X = (t variables) and prove its
independence

2. extend X to X̂ with more observations
but still independence

3. recursively descend in set C
(
X̂
)

4. merge X̂ and C
(
X̂
)
once they are

processed separately.

17 / 35



Extension to All Possible Sets

Problem: n intermediate variables Ü
(
n
t

)
proofs

New Idea: proofs for sets of more than t variables
I find larger sets which cover all the intermediate variables is a

hard problem
I two algorithms efficient in practice

X X̂ C
(
X̂
)

Algorithm 1:

1. select X = (t variables) and prove its
independence

2. extend X to X̂ with more observations
but still independence

3. recursively descend in set C
(
X̂
)

4. merge X̂ and C
(
X̂
)
once they are

processed separately.

17 / 35



Extension to All Possible Sets

Problem: n intermediate variables Ü
(
n
t

)
proofs

New Idea: proofs for sets of more than t variables
I find larger sets which cover all the intermediate variables is a

hard problem
I two algorithms efficient in practice

X X̂ C
(
X̂
)

Algorithm 1:

1. select X = (t variables) and prove its
independence

2. extend X to X̂ with more observations
but still independence

3. recursively descend in set C
(
X̂
)

4. merge X̂ and C
(
X̂
)
once they are

processed separately.
17 / 35



Benchmarks

Reference Target # tuples Security
Complexity

# sets time (s)
First-Order Masking

FSE13 full AES 17,206 4 3,342 128
MAC-SHA3 full Keccak-f 13,466 4 5,421 405

Second-Order Masking
RSA06 Sbox 1,188,111 4 4,104 1.649

1st-order
CHES10 Sbox 7,140

flaws (2)
866 0.045

CHES10 AES KS 23,041,866 4 771,263 340,745
FSE13 2 rnds AES 25,429,146 4 511,865 1,295
FSE13 4 rnds AES 109,571,806 4 2,317,593 40,169

Third-Order Masking

3rd-order
RSA06 Sbox 2,057,067,320

flaws (98, 176)
2,013,070 695

FSE13 Sbox(4) 4,499,950 4 33,075 3.894
FSE13 Sbox(5) 4,499,950 4 39,613 5.036

Fourth-Order Masking
FSE13 Sbox (4) 2, 277, 036, 685 4 3,343,587 879

Fifth-Order Masking
CHES10 � 216,071,394 4 856,147 45

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at 2GHz

18 / 35



1 � Side-Channel Attacks

2 � Masking

3 � Formal Tools

� Verification of Masked Implementations at Fixed Order

� Verification of Masked Implementations for Generic t

� Composition

4 � Conclusion

19 / 35



Probing Model

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 1 to t do
r ← $
x0 ← x0 + r
xi ← xi + r

end for
return [x]

Simulation-based proof:

� show that any set of t variables can be simulated with at most
t input shares xi

� any set of t shares xi is independent from x

20 / 35



Probing Model

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 1 to t do
r ← $
x0 ← x0 + r
xi ← xi + r

end for
return [x]

Simulation-based proof:

� show that any set of t variables can be simulated with at most
t input shares xi

� any set of t shares xi is independent from x

20 / 35



Probing Model

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 1 to t do
r ← $
x0 ← x0 + r
xi ← xi + r

end for
return [x]

Simulation-based proof:

� show that any set of t variables can be simulated with at most
t input shares xi

� any set of t shares xi is independent from x

20 / 35



Non-Interference (NI)

� t-NI ⇒ t-probing secure

� a circuit is t-NI iff any set of t intermediate variables can be
perfectly simulated with at most t shares of each input

Ex-t3
3

observations

x0 x1 x2 x3 (= x+ x0 + x1 + x2)

y0 y1 y2 y3

21 / 35



And then?

once done for small gadgets, how to extend it?

22 / 35



1 � Side-Channel Attacks

2 � Masking

3 � Formal Tools

� Verification of Masked Implementations at Fixed Order

� Verification of Masked Implementations for Generic t

� Composition

4 � Conclusion

23 / 35



Until Recently

� composition probing secure for 2t+ 1 shares

� no solution for t+ 1 shares

24 / 35



First Proposal

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
� Example: AES S-box on GF(28)

[x]

[·2]

[×]

[x]

[·2]

R

[×]

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 1 to t do
r ← $
x0 ← x0 + r
xi ← xi + r

end for
return [x]

⇒ Flaw from t = 2 (FSE 2013: Coron, Prouff, Rivain, and Roche)

25 / 35



First Proposal

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
� Example: AES S-box on GF(28)

[x]

[·2]

[×]

[x]

[·2]

R

[×]

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 1 to t do
r ← $
x0 ← x0 + r
xi ← xi + r

end for
return [x]

⇒ Flaw from t = 2 (FSE 2013: Coron, Prouff, Rivain, and Roche)

25 / 35



Why This Flaw?

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0
observations

t1
observations

t2
observations

t3
observations

26 / 35



Why This Flaw?

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0
observations

t1
observations

t2
observations

t3
observations

26 / 35



Why This Flaw?

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
observations

t1
observations

t2 + t3
observations

26 / 35



Why This Flaw?

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
observations

t1
observations

t2 + t3
observations

26 / 35



Why This Flaw?

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
observations

t1 + t2 + t3
observations

26 / 35



Why This Flaw?

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
observations

t1 + t2 + t3
observations

26 / 35



Why This Flaw?

� Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
+t1 + t2 + t3
observations

26 / 35



Second Proposal

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

[x]

[·2]

[×]

[x]

[·2]

R

[×]

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 0 to t do
for j = i+ 1 to t do

r ← $
xi ← xi + r
xj ← xj + r

end for
end for
return [x]

⇒ Formal security proof for any order t

27 / 35



Second Proposal

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

[x]

[·2]

[×]

[x]

[·2]

R

[×]

Require: Encoding [x]
Ensure: Fresh encoding [x]

for i = 0 to t do
for j = i+ 1 to t do

r ← $
xi ← xi + r
xj ← xj + r

end for
end for
return [x]

⇒ Formal security proof for any order t 27 / 35



Strong Non-Interference (SNI)

� t-SNI ⇒ t-NI ⇒ t-probing secure
� a circuit is t-SNI iff any set of t intermediate variables, whose
t1 on the internal variables and t2 and the outputs, can be
perfectly simulated with at most t1 shares of each input

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

require x0 and x1
to be perfectly
simulated ⇒ not
3-SNI since y0 is
an output variable

28 / 35



Strong Non-Interference (SNI)

� t-SNI ⇒ t-NI ⇒ t-probing secure

� a circuit is t-SNI iff any set of t intermediate variables, whose
t1 on the internal variables and t2 and the outputs, can be
perfectly simulated with at most t1 shares of each input

Refresh
2 internal

observations

+ 1 output
observation

x0 x1 x2 x3

y0 y1 y2 y3

29 / 35



Why Does It Works?

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0
observations

t1
observations

t2
observations

t3
observations

30 / 35



Why Does It Works?

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0
observations

t1
observations

t2
observations

t3
observations

30 / 35



Why Does It Works?

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
observations

t1
observations

t2 internal observations
t3 output observations

30 / 35



Why Does It Works?

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
observations

t1
observations

t2 internal observations
t3 output observations

30 / 35



Why Does It Works?

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
observations

t1 + t2
observations

t3 output observations

30 / 35



Why Does It Works?

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
observations

t1 + t2
observations

t3 output observations

30 / 35



Why Does It Works?

� Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

� Example: AES S-box on GF(28)

Constraint:
t0 + t1 + t2 + t3 6 t

[x]

[·2]

R

[×]

t0 + t3
+t1 + t2

observations

t3 output ob-
servations

30 / 35



Tool maskComp

� from t-NI and t-SNI gadgets ⇒ build a t-NI circuit by
inserting t-SNI refresh gadgets at carefully chosen locations

� formally proven

maskComp
Implementation in

C language with

no countermeasure

t-NI secure

implementation

in C language

Gilles Barthe and Sonia Beläıd and François Dupressoir and Pierre-Alain Fouque
and Benjamin Grégoire and Pierre-Yves Strub Strong Non-Interference and
Type-Directed Higher-Order Masking and Rebecca Zucchini, ACM CCS 2016,
Proceedings, 116–129.

31 / 35



Limitations of maskComp

� maskComp adds a refresh gadget to Circuit 1
� but Circuit 1 was already t-probing secure

[x1] [x2]

[+]

[×]

Figure: Circuit 1.

[x1] [x2]

[+]

R

[×]

Figure: Circuit 1 after
maskComp.

32 / 35



New Proposal

� Joint work with Dahmun Goudarzi and Matthieu Rivain

� Apply to tight shared circuits:
I sharewise additions,
I ISW-multiplications,
I ISW-refresh gadgets

� Determine exactly whether a tight shared circuit is probing
secure for any order t

1. Reduction to a simplified problem
2. Resolution of the simplified problem
3. Extension to larger circuits

33 / 35



1 � Side-Channel Attacks

2 � Masking

3 � Formal Tools

� Verification of Masked Implementations at Fixed Order

� Verification of Masked Implementations for Generic t

� Composition

4 � Conclusion

34 / 35



Conclusion

In a nutshell...

� Formal tools to verify security of masked implementations

� Trade-off between security and performances

To continue...

� Achieve better performances

� Apply such formal verifications to every circuit

35 / 35


	Side-Channel Attacks
	Masking
	Formal Tools
	Verification of Masked Implementations at Fixed Order
	Verification of Masked Implementations for Generic t
	Composition

	Conclusion

