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Algorithm 1 Example
for i =1 ton do
if key[i] = 0 then
do treatment 0

else
d? treatment 1 treatment 1
end if
end for

[ secret = 1011100101001

SPA: one single trace to recover the secret key



Observations and extraction
of points of interest:

P P1
| P2
k* $ P3
a Distinguisher: CPA
Predictions: Model:
{ S(py +hyp) s HWIS(p: + hypy)

S(p2 + hypy) HW(S(p, + hypy))
S(ps + hypy) HW(S(p3 + hypy))

DPA: several traces to recover the secret key



Side-Channel Attacks

2 » Masking

Formal Tools
= Verification of Masked Implementations at Fixed Order
= Verification of Masked Implementations for Generic ¢
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Conclusion
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How to thwart SCA?
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Issue: leakage L is key-dependent
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Fresh Re-keying
regularly change k

master key k
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leakage L is key-dependent

Masking

make leakage £ random

sensmve value: v = f(m, k)
v~ vB | D vi| vi+$ . v $
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any t-uple of v; is
independent from v
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Masked Implementations

= Linear functions: apply the function to each share

v@®w — (vo D wo,v1 D wr, ..., v HDwy)
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Masked Implementations

= Linear functions: apply the function to each share

v@®w — (vo D wo,v1 D wr, ..., v HDwy)

= Non-linear functions: much more complex

V0§i<j§t—1, ’l“i’j(—$
VO<i<j<t-—1, iji%(Ti’j@inj)@’iji
Vo<i<d-1, ci<—viwi®2ri7j
J#i
vw —  (co,C1,...,¢)
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Leakage Models

= Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
» a circuit is t-probing secure iff any set composed of the exact
values of at most ¢ intermediate variables is independent from
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by Ishai, Sahai, and Wagner (Crypto 2003)
» a circuit is t-probing secure iff any set composed of the
of at most ¢ intermediate variables is independent from
the secret
by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
» a circuit is secure in the noisy leakage model iff the adversary
cannot recover information on the secret from the noisy values
of all the intermediate variables

by Duc, Dziembowski, and Faust (EC 2014)

» t-probing security = security in the noisy leakage model for
some level of noise
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How to Verify Probing Security?

m variables: secret, shares, constant

= masking order t = 3

function Ex-t3(, 71,10, 13, ¢):
(* vo,x1,00 =8 %)
(¥os=x+x0+azi a0 *)

o < $
T < $
Yo < 1o+ 1o
Yp — I3+ 1
ty <11 +1g
to < (11 + 7o) + 0
y2 = (1 4+ro+10)+ 11
Y3 < c+ry
return(yo, y1, Y2, y3)
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Formal Tools
= Verification of Masked Implementations at Fixed Order
= Verification of Masked Implementations for Generic ¢
= Composition
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Formal Tools
= Verification of Masked Implementations at Fixed Order
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several tools were built to formally verify security of first-order
implementations t = 1
then a sequence of work tackled higher-order implementations
t<5
» maskVerif from Barthe et al.: first tool to achieve verification
at high orders
» CheckMasks from Coron: improvements in terms of efficiency
» Bloem et al.’s tool: treatment of glitches attacks
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input:
» pseudo-code of a masked implementation
» order ¢

output:
» formal proof of ¢t-probing security
» potential flaws

language: Easycrypt

@ Gilles Barthe and Sonia Belaid and Francois Dupressoir and Pierre-Alain Fouque
and Benjamin Grégoire and Pierre-Yves Strub
EUROCRYPT 2015, Proceedings, Part |, 457—-485.
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Independence from the secret

Inputs: t intermediate variables, b < true

(Rule 1) secret variables? function Ex-t3(11, 12,25, x4, ¢):
yes = (Rule 2) 18
no = v ro +—$
(Rule 2) an expression v is invertible Y1t
in the only occurrence of a Yo < (T + 01 4+ a0+ 23) + 0
random 7?7
t1 < 120+

yes =» v < r; (Rule 1)
no = (Rule3)

ty = (w0 +7r1) 43
Y3 (2471 +a3) + 72

(Rule 3) is flag b = true? Y4 c+ o
yes =» simplify; b < false; (Rule 1) return(y1, y2, y3, ya)
no = X

v = distribution independent from the secret
X = might be used for an attack
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Independence from the secret

Inputs: t intermediate variables, b < true

(Rule 1) secret variables? function Ex-t3(s1, 10,5, 24, ¢):
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Extension to All Possible Sets

Problem: n intermediate variables = ('}) proofs

New Idea: proofs for sets of more than ¢ variables
» find larger sets which cover all the intermediate variables is a

hard problem

» two algorithms efficient in practice

Algorithm 1:

1.

select X = (¢t variables) and prove its
independence

extend X to X with more observations
but still independence

recursively descend in set C ()?)

merge X andC ()?) once they are

processed separately.
17/35



Reference ‘ Target ‘ # tuples Security ‘ ” Se(i:mpllexﬁine (s)
First-Order Masking
FSE13 full AES 17,206 v 3,342 128
MAC-SHA3 ‘ full Keccak-f ‘ 13,466 v ‘ 5,421 ‘ 405
Second-Order Masking
RSA06 Sbox 1,188,111 4 4,104 1.649
15t -order
CHES10 Sbox 7,140 866 0.045
flaws (2)

CHES10 AES KS 23,041,866 (4 771,263 340,745
FSE13 2 rnds AES 25,429,146 v 511,865 1,295
FSE13 4 rnds AES 109,571,806 v 2,317,593 40,169

Third-Order Masking
RSA06 Shox 2,057,067,320 37-order 2,013,070 695
G flaws (98, 176) .

FSE13 Sbox(4) 4,499,950 (4 33,075 3.894
FSE13 Sbox(5) 4,499,950 v 39,613 5.036
Fourth-Order Masking
FSEI3 | Sbox (4) | 2,277,036,685 || % [ 3343587 | 879
Fifth-Order Masking

CHESIO | o [ 216,071,304 | v [ 856,147 | 45

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at 2GHz
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Formal Tools

= Verification of Masked Implementations for Generic ¢
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Require: Encoding [z]
Ensure: Fresh encoding [z]
fori =1 to ¢t do
r«3$
o — T+ T
Ti—xi+T
end for
return [z]
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Require: Encoding [z]
Ensure: Fresh encoding [z]
fori =1 to ¢t do
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Ti—xi+T
end for
return [z]

Simulation-based proof:

show that any set of ¢ variables can be simulated with at most
t input shares x;

any set of ¢ shares z; is independent from x
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Require: Encoding [z]
Ensure: Fresh encoding [z]
fori =1 to ¢t do
r«3$
o — T+ T
— x4+
end for
return [z]

Simulation-based proof:

show that any set of ¢ variables can be simulated with at most
t input shares x;

any set of ¢ shares z; is independent from x
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Non-Interference (NI)

= ¢-NI = t-probing secure

= a circuit is t-NI iff any set of ¢ intermediate variables can be
perfectly simulated with at most ¢ shares of each input

7

Ex-t3 ))>> 3

=x+arg+x + .172)

observations

Yo Y1 Y2 Y3
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And then?

once done for small gadgets, how to extend it?
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Formal Tools

= Composition
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Until Recently

= composition probing secure for 2¢ 4 1 shares

= no solution for ¢ + 1 shares
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Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
Example: AES S-box on GF(2%)

[]

|2

Require: Encoding [z]
Ensure: Fresh encoding [z]
fori =1 to ¢t do
r<«$
o —x0+ T
Ti4—x; +1r
end for
return [z]
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Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
Example: AES S-box on GF(2%)

x
2] ) Require: Encoding [z]
@ Ensure: Fresh encoding [z]
fori =1 to ¢t do
r<«$
E o —x0+ T
Ti4—x; +1r

end for
return [z]

= Flaw from ¢ = 2 (FSE 2013: Coron, Prouff, Rivain, and Roche)

25/35



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+ta+t3 <t

observatlons
observatlons
observatlons

observatlons

26 /35



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+ta+t3 <t

ob! ervatlons
observatlons
ob ervatlons

observatlons

26 /35



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+ta+t3 <t
to + 3
observatlons

observatlons

to + t3
observatlons

26 /35



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+ta+t3 <t
to + 3
observatlons

observatlons

to + t3
observatlons

26 /35



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
to+t1 +ta+i3 <t

ty + 1t + 13

observations
L [x])
{ \/
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to + 3 { ]
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Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
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Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN)
Example: AES S-box on GF(2%)

Require: Encoding [z]
Ensure: Fresh encoding [z]

[z]
[z] N
@ for i =0 to ¢t do
forj=i+1totdo
E r+<$
Ti X+
Tj— x5+

end for
end for
return [z]
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Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN)
Example: AES S-box on GF(2%)

[x] Require: Encoding [z]
Ensure: Fresh encoding [z]

(2] N,
@ for i =0tot do
forj=i+1totdo
E r+<$
T —x; +1r
Tj— x5+
end for

end for
return [z]

= Formal security proof for any order ¢

27 /35



Strong Non-Interference (SNI)

= t-SNI = ¢-NI = t-probing secure

= a circuit is t-SNI iff any set of ¢ intermediate variables, whose
t1 on the internal variables and 75 and the outputs, can be
perfectly simulated with at most #; shares of each input

function Ex-t3( o, 21,10, 13, ¢):
(* vo,x1,20 =8 *)
(Fos=x+z0o+a+x2 %)
require 1) and 1 rg < $
to be perfectly r <+ $
simulated = not e ro+ro

3-SNI since yq is 1< st
an output variable 1+
2 (11 +10) + 10

Yo — (,1'] +7ro+ r"J) +r
Yz < c+rp
return(yo, y1, y2,Y3)
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Strong Non-Interference (SNI)

= t-SNI = ¢t-NI = t-probing secure

= a circuit is t-SNI iff any set of ¢ intermediate variables, whose
t1 on the internal variables and ¢y and the outputs, can be
perfectly simulated with at most ¢ shares of each input

R74

Refresh 2 mterr_lal
) ) > ) observations

yo/@él\n\% } + 1 output

observation
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Why Does It Works?

= Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)

= Example: AES S-box on GF(28%)

Constraint:

to+t1+1ta+1t3 <t
to
observations { [2]

ty
observations

51 | e

observations

t3
. X
observations
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Why Does It Works?

= Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add stronger refresh gadgets (SNI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+to+ts3 <t

to + t3
+t1 + to { [x]

observations @ }

E } t3 output ob-

servations
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from t-NI and ¢-SNI gadgets = build a ¢-Nl circuit by
inserting t-SNI refresh gadgets at carefully chosen locations

formally proven

Implementation in t-NI secure
C language with — —— implementation
no countermeasure in C language

@ Gilles Barthe and Sonia Belaid and Francois Dupressoir and Pierre-Alain Fouque
and Benjamin Grégoire and Pierre-Yves Strub
ACM CCS 2016,
Proceedings, 116-129.
31/35



Limitations of maskComp

= maskComp adds a refresh gadget to Circuit 1
= but Circuit 1 was already t-probing secure

] 2] o =

Figure: Circuit 1. Figure: Circuit 1 after
maskComp.
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Joint work with Dahmun Goudarzi and Matthieu Rivain
Apply to
» sharewise additions,
» ISW-multiplications,
» ISW-refresh gadgets
Determine whether a tight shared circuit is probing
secure for any order t
Reduction to a simplified problem
Resolution of the simplified problem
Extension to larger circuits
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Side-Channel Attacks

Masking

Formal Tools
= Verification of Masked Implementations at Fixed Order
= Verification of Masked Implementations for Generic ¢

= Composition

4 = Conclusion
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In a nutshell...

Formal tools to verify security of masked implementations

Trade-off between security and performances

To continue...

Achieve better performances

Apply such formal verifications to every circuit

35/35
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