Masking the GLP Lattice-Based Signature Scheme at Any Order

Sonia Belaïd

Joint Work with Gilles Barthe, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, Mélissa Rossi, and Mehdi Tibouchi

2 Power Analysis Attacks and Masking

3 Contribution: Higher-Order Masking of GLP

4 Implementation of the Countermeasure

5 Conclusion

2 Power Analysis Attacks and Masking

3 Contribution: Higher-Order Masking of GLP

4 Implementation of the Countermeasure

5 Conclusion

Context

- NIST postquantum competition
- demands for practical implementation

Lattice-Based Signatures

So far

- Numerous physical attacks against lattice-based schemes (Gaussian distributions, rejection sampling)
- Few countermeasures exist

2 - Power Analysis Attacks and Masking

3 Contribution: Higher-Order Masking of GLP

4 Implementation of the Countermeasure

5 Conclusion

Power Analysis Attacks

Masking

- sound countermeasure which splits every sensitive variable x into d + 1 shares $(x_i)_{0 \le i \le d}$ such that
 - ▶ for every $1 \le i \le d$, x_i is picking uniformly at random
 - $x_0 \leftarrow x \oplus x_1 \oplus \cdots \oplus x_d$
- \blacksquare any strict subvector of at most d shares is independent from \pmb{x}
- d is called masking order or security order

Leakage Models

Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

a circuit is *d*-probing secure iff any set composed of the exact values of at most *d* intermediate variables is independent from the secret

Leakage Models

Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

- a circuit is *d*-probing secure iff any set composed of the exact values of at most *d* intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
 - a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables

Leakage Models

Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

- a circuit is d-probing secure iff any set composed of the exact values of at most d intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
 - a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables
- Reduction by Duc, Dziembowski, and Faust (EC 2014)
 - \blacktriangleright $d\text{-probing security} \Rightarrow$ security in the noisy leakage model for some level of noise

Probing Model

variables: secret, shares, constant

• masking order d = 3

 $\frac{\text{function Ex-t3}(x_0, x_1, x_2, x_3, c):}{(* x_0, x_1, x_2 = \$)} \\
\xrightarrow{(* x_3 = x + x_0 + x_1 + x_2 *)} \\
r_0 \leftarrow \$ \\
r_1 \leftarrow \$ \\
y_0 \leftarrow x_0 + r_0 \\
y_1 \leftarrow x_3 + r_1 \\
t_1 \leftarrow x_1 + r_0 \\
t_2 \leftarrow (x_1 + r_0) + x_2 \\
y_2 \leftarrow (x_1 + r_0 + x_2) + r_1 \\
y_3 \leftarrow c + r_1 \\
\text{return}(y_0, y_1, y_2, y_3)$

Probing Model

variables: secret, shares, constant

• masking order d = 3

Probing Model

variables: secret, shares, constant

• masking order d = 3

Non-Interference (NI)

- d-NI \Rightarrow d-probing secure
- a circuit is d-NI iff any set of d intermediate variables can be perfectly simulated with at most d shares of each input

Non-Interference (NI)

- d-NI \Rightarrow d-probing secure
- a circuit is d-NI iff any set of d intermediate variables can be perfectly simulated with at most d shares of each input

Strong Non-Interference (SNI)

• d-SNI \Rightarrow d-NI \Rightarrow d-probing secure

a circuit is d-SNI iff any set of d intermediate variables, whose d₁ on the internal variables and d₂ and the outputs, can be perfectly simulated with at most d₁ shares of each input

Strong Non-Interference (SNI)

- $d\text{-SNI} \Rightarrow d\text{-NI} \Rightarrow d\text{-probing secure}$
- a circuit is d-SNI iff any set of d intermediate variables, whose d₁ on the internal variables and d₂ and the outputs, can be perfectly simulated with at most d₁ shares of each input

 From NI and SNI gadgets, we are able to build a NI circuit by adding SNI refresh gadgets when necessary

 From NI and SNI gadgets, we are able to build a NI circuit by adding SNI refresh gadgets when necessary

 From NI and SNI gadgets, we are able to build a NI circuit by adding SNI refresh gadgets when necessary

 From NI and SNI gadgets, we are able to build a NI circuit by adding SNI refresh gadgets when necessary

 From NI and SNI gadgets, we are able to build a NI circuit by adding SNI refresh gadgets when necessary

• Example: AES S-box on $GF(2^8)$

 $\begin{array}{c} \text{Constraint:}\\ d_0+d_1+d_2+d_3\leqslant d\\ \text{observations} \end{array} \left\{ \begin{array}{c} [x]\\ \hline [.2]\\ R \end{array} \right\} d_1+d_2\\ \text{observations}\\ \hline \\ d_3 \text{ output observations}\\ \hline \\ \hline \\ \hline \end{array} \right\} d_3 \text{ output observations}$

- From NI and SNI gadgets, we are able to build a NI circuit by adding SNI refresh gadgets when necessary
- Example: AES S-box on $GF(2^8)$

 From NI and SNI gadgets, we are able to build a NI circuit by adding SNI refresh gadgets when necessary

2 Power Analysis Attacks and Masking

3 - Contribution: Higher-Order Masking of GLP

4 Implementation of the Countermeasure

5 Conclusion

GLP Features

- Introduced at CHES 2012 by Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann
- No Gaussians, only uniform distributions
- Probabilistic algorithm
- Rejection sampling

GLP Key Derivation

$$\mathcal{R} = \frac{\mathbb{Z}_p[x]}{x^n + 1}$$

 \mathcal{R}_k : coefficients in the range [-k,k]

Algorithm 1 GLP key derivation

Ensure: Signing key sk, verification key pk1: $\mathbf{s_1}, \mathbf{s_2} \stackrel{\$}{\leftarrow} \mathcal{R}_1 / / \mathbf{s_1}$ and $\mathbf{s_2}$ have coefficients in $\{-1, 0, 1\}$ 2: $\mathbf{a} \stackrel{\$}{\leftarrow} \mathcal{R}$ 3: $\mathbf{t} \leftarrow \mathbf{as_1} + \mathbf{s_2}$ 4: $sk \leftarrow (\mathbf{s_1}, \mathbf{s_2})$ 5: $pk \leftarrow (\mathbf{a}, \mathbf{t})$

Based on the Decisional Compact Knapsack problem

GLP Signature

Fiat-Shamir with abort signature

Algorithm 2 GLP signature

Require: m, pk, skEnsure: Signature σ 1: $\mathbf{y}_1, \mathbf{y}_2 \stackrel{\$}{\leftarrow} \mathcal{R}_k$ 2: $\mathbf{c} \leftarrow H(\mathbf{r} = \mathbf{ay_1} + \mathbf{y_2}, \mathbf{m})$ 3: $\mathbf{z}_1 \leftarrow \mathbf{s}_1 \mathbf{c} + \mathbf{y}_1$ 4: $\mathbf{z}_2 \leftarrow \mathbf{s}_2 \mathbf{c} + \mathbf{y}_2$ 5: if \mathbf{z}_1 or $\mathbf{z}_2 \notin \mathcal{R}_{k-\alpha}$ then restart return $\sigma = (\mathbf{z}_1, \mathbf{z}_2, \mathbf{c})$

Random generation Commitment

Rejection Sampling

Verification \mathbf{z}_1 , $\mathbf{z}_2 \in \mathcal{R}_{k-\alpha}$ and $\mathbf{c} = H(\mathbf{a}\mathbf{z}_1 + \mathbf{z}_2 - \mathbf{t}\mathbf{c}, \mathbf{m})$

Algorithm 3 GLP key derivation

Algorithm 4 GLP key derivation

Algorithm 5 GLP key derivation

Algorithm 6 GLP key derivation

Algorithm 7 GLP key derivation

Security of Individual Gadgets

Each sensitive variable must be masked

- mod-p arithmetic masking
- w-bit Boolean masking
- Each block (or sub-block) which manipulates secret data is individually proven according to one of the three properties
 - ► Non-Interference (NI)
 - Strong Non-Interference (SNI)
 - Non-Interference with public Outputs (NIo)

DG: generation of sharings for coefficients $x \in [-k, k]$ (k = 1)

 DG: generation of sharings for coefficients x ∈ [-k,k] (k = 1)
 1. generate a Boolean sharing of x:

$$\forall 0 \le i \le d, \ x_i \leftarrow [0, 2^{w_0} - 1]$$

where $2^{w_0} > 2k + 1 \ge 2^{w_0 - 1}$

 DG: generation of sharings for coefficients x ∈ [-k,k] (k = 1)
 1. generate a Boolean sharing of x:

$$\forall 0 \le i \le d, \ x_i \leftarrow [0, 2^{w_0} - 1]$$

where
$$2^{w_0} > 2k + 1 \ge 2^{w_0 - 1}$$

2. $(\delta_i)_{0 \le i \le d} \leftarrow (\mathbf{x}_i)_{0 \le i \le d} - (\mathbf{k}_i)_{0 \le i \le d}$

DG: generation of sharings for coefficients $x \in [-k, k]$ (k = 1)

1. generate a Boolean sharing of *x*:

$$\forall 0 \le i \le d, \ x_i \leftarrow [0, 2^{w_0} - 1]$$

where $2^{w_0} > 2k + 1 \ge 2^{w_0-1}$ 2. $(\delta_i)_{0 \le i \le d} \leftarrow (\mathbf{x}_i)_{0 \le i \le d} - (\mathbf{k}_i)_{0 \le i \le d}$ 3. $b \leftarrow$ unmask δ 's most significant bit 4. b equals 0 iff $x \ge 2k + 1$

DG: generation of sharings for coefficients $x \in [-k, k]$ (k = 1)

1. generate a Boolean sharing of *x*:

$$\forall 0 \le i \le d, \ x_i \leftarrow [0, 2^{w_0} - 1]$$

where $2^{w_0} > 2k + 1 \ge 2^{w_0-1}$ 2. $(\delta_i)_{0 \le i \le d} \leftarrow (\mathbf{x}_i)_{0 \le i \le d} - (\mathbf{k}_i)_{0 \le i \le d}$ 3. $b \leftarrow$ unmask δ 's most significant bit 4. b equals 0 iff $x \ge 2k + 1$ 5. convert $(\mathbf{x}_i)_{0 \le i \le d}$ to an arithmetic masking

DG: generation of sharings for coefficients $x \in [-k, k]$ (k = 1)

1. generate a Boolean sharing of *x*:

$$\forall 0 \le i \le d, \ x_i \leftarrow [0, 2^{w_0} - 1]$$

where $2^{w_0} > 2k + 1 \ge 2^{w_0 - 1}$ 2. $(\delta_i)_{0 \le i \le d} \leftarrow (\mathbf{x}_i)_{0 \le i \le d} - (\mathbf{k}_i)_{0 \le i \le d}$ 3. $b \leftarrow$ unmask δ 's most significant bit 4. b equals 0 iff $x \ge 2k + 1$ 5. convert $(\mathbf{x}_i)_{0 \le i \le d}$ to an arithmetic masking

- $\bullet H^1: t \leftarrow as_1 + s_2$
- FullAdd: refresh then add

Algorithm 8 GLP key derivation

Algorithm 9 GLP signature

 $\begin{array}{lll} \mbox{Require: } m, pk, sk \\ \mbox{Ensure: Signature } \sigma \\ \mbox{1: } \mathbf{y_1, y_2} & \stackrel{\$}{\leftarrow} \mathcal{R}_k \\ \mbox{2: } \mathbf{c} \leftarrow H(\mathbf{r} = \mathbf{ay_1} + \mathbf{y_2}, \mathbf{m}) \\ \mbox{3: } \mathbf{z_1} \leftarrow \mathbf{s_1}\mathbf{c} + \mathbf{y_1} \\ \mbox{4: } \mathbf{z_2} \leftarrow \mathbf{s_2}\mathbf{c} + \mathbf{y_2} \\ \mbox{5: } \mbox{if } \mathbf{z_1 or z_2} \notin \mathcal{R}_{k-\alpha} \mbox{ then restart} \\ \mbox{return } \sigma = (\mathbf{z_1, z_2, c}) \end{array}$

Algorithm 10 GLP signature

Algorithm 11 GLP signature

Algorithm 12 GLP signature

Algorithm 13 GLP signature

Algorithm 14 GLP signature

- **DG:** generation of sharings for coefficients $x \in [-k, k]$
- H^1 : $\mathrm{ay_1} + \mathrm{y_2}$
- FullAdd: refresh then add
- Hash: unmasked
- RS: some details follow
- H²: linear function
- FullAdd: refresh then add

Rejection Sampling: are coefficients of z_1 and z_2 in $[-k + \alpha, k - \alpha]$?

Rejection Sampling: are coefficients of z_1 and z_2 in $[-k + \alpha, k - \alpha]$?

1. convert mod-*p* arithmetic sharing into Boolean masking

- Rejection Sampling: are coefficients of z_1 and z_2 in $[-k + \alpha, k \alpha]$?
 - **1**. convert mod-*p* arithmetic sharing into Boolean masking
 - 2. as in Data Generation, compute the masked difference with $k \alpha$ difference

- Rejection Sampling: are coefficients of z_1 and z_2 in $[-k + \alpha, k \alpha]$?
 - 1. convert mod-p arithmetic sharing into Boolean masking
 - 2. as in Data Generation, compute the masked difference with $k \alpha$ difference
 - 3. securely check the most significant bit

Algorithm 15 GLP signature

2 Power Analysis Attacks and Masking

3 Contribution: Higher-Order Masking of GLP

4 Implementation of the Countermeasure

5 Conclusion

Implementation

- unoptimized implementation
- based on a public domain implementation called GLYPH (n = 1024, p = 59393, k = 16383, and $\alpha = 16$)

Table: Implementation results. Timings are provided for 100 executions of the signing and verification algorithms, on one core of an Intel Core i7-3770 CPU-based desktop machine.

Number of shares $(d+1)$	Unprotected	2	3	4	5	6
Total CPU time (s)	0.540	8.15	16.4	39.5	62.1	111
Masking overhead	—	$\times 15$	$\times 30$	$\times 73$	$\times 115$	$\times 206$

2 Power Analysis Attacks and Masking

3 Contribution: Higher-Order Masking of GLP

4 Implementation of the Countermeasure

5 Conclusion

Conclusion

In a nutshell...

- Higher-order masking of GLP with proof in the probing model
- New security notions to mask lattice-based signatures

To continue...

- Extend these results to other lattice-based signatures
- Extend these results to other post-quantum schemes