Masking the GLP Lattice-Based Signature
Scheme at Any Order

Sonia Belaid

Joint Work with Gilles Barthe, Thomas Espitau, Pierre-Alain
Fouque, Benjamin Grégoire, Mélissa Rossi, and Mehdi Tibouchi

]

CrRYPTOCXPERTS"

O

1/31

Post-Quantum Schemes

Power Analysis Attacks and Masking

Contribution: Higher-Order Masking of GLP

Implementation of the Countermeasure

Conclusion

31

Post-Quantum Schemes

31

Post-Quantum Schemes

Context
= NIST postquantum competition

= demands for practical implementation

4/31

Lattice-Based Signatures

So far

= Numerous physical attacks against lattice-based schemes
(Gaussian distributions, rejection sampling)

= Few countermeasures exist

5/31

Power Analysis Attacks and Masking

31

Power Analysis Attacks

/31

sound countermeasure which splits every sensitive variable
into d 4 1 shares (z;)p<i<q4 such that

» for every 1 < i <d, z; is picking uniformly at random

> Tp<— 1 D1 D--- Dy
any strict subvector of at most d shares is independent from

d is called masking order or security order

Leakage Models

= Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
» a circuit is d-probing secure iff any set composed of the exact
values of at most d intermediate variables is independent from

raes

9/31

Leakage Models

= Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

» a circuit is d-probing secure iff any set composed of the exact
values of at most d intermediate variables is independent from
the secret

= Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)

» a circuit is secure in the noisy leakage model iff the adversary
cannot recover information on the secret from the noisy values
of all the intermediate variables

9/31

by Ishai, Sahai, and Wagner (Crypto 2003)
» a circuit is d-probing secure iff any set composed of the
of at most d intermediate variables is independent from
the secret
by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
» a circuit is secure in the noisy leakage model iff the adversary
cannot recover information on the secret from the noisy values
of all the intermediate variables

by Duc, Dziembowski, and Faust (EC 2014)

» d-probing security = security in the noisy leakage model for
some level of noise

31

Probing Model

m variables: secret, shares, constant

= masking order d = 3

function Ex-t3(, 71,10, 13, ¢):
(*ro,z1,00 =8 %)
(¥os=x+x0+azi a0 *)

o < $
T < $
Yo < 1o+ 710
Y1 I3+
ty <1 +71o
ty < (11 +7ro) + 10
Yo — (,1‘1 “+ 7o+ ,1‘2) —+ 7
Y3 < c+ry
return(yo, y1, Y2, ¥3)

10/31

Probing Model

m variables: secret, shares, constant

= masking order d = 3

function Ex-t3(, 71,10, 13, ¢):
(¥ o, x1,00=8 %)
(* r3=x+x0+ 11+ 22 *)

rg < $
. (/®<— $
independent from

the secret? z? : :(: I :(1)
ty <11 +10
(1 +7ro) 4+ 20
— (v +ro+a)+r
—c+1r
return(yo, y1, Y2, y3)

10/31

Probing Model

m variables: secret, shares, constant
= masking order d = 3

function Ex-t3(, 71,10, 13, ¢):

>y

(* vo,x1,00 =8 %)
(* 3 =x+ w0+ x + 2o *)

o < $
] r < $
independent from (_ 20+ 10
the secret? -' — 541
1471 +70

to « (11 + 7o) + 10
— (11 +ro+a0)+r
Y3 < c+ry
return(yo, y1, Y2, y3)

10/31

Non-Interference (NI)

= d-NI = d-probing secure
= a circuit is d-NI iff any set of d intermediate variables can be
perfectly simulated with at most d shares of each input

function Ex-t3(v, 71,10, 13, ¢):
(* vo,x1,20 =8 ¥)
(*,r'; =x+xo+ 1+ 22 *)

o < $
. ri < $
can be simulated
. <— o+ 1o
with 7 and 1
1< st
\@H 1 470
2 < (,l‘\ + 1”0) —|—)

Yo — (,1‘1 “+ 7o+ -1'2) +7r
Y3 < c+ry
return(yo, y1, Y2, Y3)

11/31

Non-Interference (NI)

d-NI = d-probing secure

= a circuit is d-NI iff any set of d intermediate variables can be
perfectly simulated with at most d shares of each input

g

Ex-d3)) >>

=x+ a9+ + .172)

3
observations

Yo Y1 Y2 Y3

12/31

Strong Non-Interference (SNI)

= d-SNI = d-NI = d-probing secure

= a circuit is d-SNI iff any set of d intermediate variables, whose
dy on the internal variables and ds and the outputs, can be
perfectly simulated with at most ; shares of each input

function Ex-t3(0, 71, 10, 13, ¢):
=57
(*rs=x+x0+ 21+ 20 *)
require 1 and 1 ro <+ $
to be perfectly ri <+ $
simulated = not F Lo +To

3-SNI since yq is 1 ag+r
an output variable 1+
2 (11 4+ 10) + 10

ya < (1 +ro+aro)+r
Y3 —c+ry
return(yo, y1, Y2, Y3)

13/31

Strong Non-Interference (SNI)

= d-SNI = d-NI = d-probing secure

= a circuit is d-SNI iff any set of d intermediate variables, whose
dy on the internal variables and ds and the outputs, can be
perfectly simulated with at most /| shares of each input

QI/I&?/U?) 2 internal

Ex-d3)) >) observations

Z/O/@élé\% } +1 output
observation

14/31

From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

Example: AES S-box on GF(2%)

Constraint:
do+dy+do+ds < d

[x]
observat|ons
observatlons

observatlons

observatlons

15 /31

From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

Example: AES S-box on GF(2%)

Constraint:
do+dy+do+ds < d

ob. ervat|ons
observatlons
ob ervat|ons

observatlons

15 /31

From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

Example: AES S-box on GF(2%)

Constraint:
do+di+de+ds < d
do + d3
observatlons

observatlons
d2 internal observations
t3 output observations

15 /31

From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

Example: AES S-box on GF(2%)

Constraint:
do+di+de+ds < d
do + d3
observatlons

observatlons(\

d2 internal observations
t3 output observations

15 /31

From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

Example: AES S-box on GF(2%)

Constraint:
do+di+de+ds < d
do + d3
observatlons
dy + ds
observations

d3 output observations

15 /31

From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

Example: AES S-box on GF(2%)

Constraint:
do+di+de+ds < d

dy + ds
observatlons

E } ds output observations

do + d3
observatlons

15 /31

From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

Example: AES S-box on GF(2%)

Constraint:
do+di+do+ds < d

+di + do

observations @ }

E } ds3 output ob-

servations

do + d3
{ [z]

15 /31

Contribution: Higher-Order Masking of GLP

16 /31

Introduced at CHES 2012 by Tim Giineysu, Vadim
Lyubashevsky, and Thomas Poppelmann

No Gaussians, only uniform distributions
Probabilistic algorithm

Rejection sampling

17 /31

R = Lnlz] Ry, : coefficients in the range

z"+1 [—/{7, k‘]

Algorithm 1 GLP key derivation

Ensure: Signing key sk, verification key pk

1:

G WN

S1,82 ﬁ R1 //s1 and sz have coefficients in {—1,0,1}
a (i R

:t + asy + s2
1 sk + (s1,s2)
1 pk < (a,t)

Based on the Decisional Compact Knapsack problem

18/31

Fiat—Shamir with abort signature

Algorithm 2 GLP signature

Require: m, pk, sk
Ensure: Signature o

R WN -

LY, Y2 & R Random generation

c ¢+ H(r =ay1 +y2,m) Commitment

I z1 < s1c+ty1
1 Z2 < s2Cc+y2
1 if z1 or 22 ¢ Ry_, then restart Rejection Sampling

return o = (21,22, ¢C)

Verification z1, z9 € Rj_, and ¢ = H(az; + z2 — tc, m)

19/31

Algorithm 3 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1,s2 i R1 //s1 and s2 have coefficients in {—1,0,1}
a & R

:t +— asy + s2

1 sk + (s1,s2)

1 pk + (a,t)

G WN

DG
- (s1)osiza
(s2,i)o<i<d

DG

Algorithm 4 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1,s2 i R1 //s1 and sz have coefficients in {—1,0,1}
a i R

:t +— asy + s2

1 sk + (s1,s2)

1 pk + (a,t)

OB WwN

DG
- (s1)osiza
(s2,i)o<i<d

DG

Algorithm 5 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1,s2 i R1 //s1 and s2 have coefficients in {—1,0,1}
a & R

:t « asq +s2

1 sk + (s1,s2)

1 pk + (a,t)

OB wWwN

DG
- (s1)osiza
(s2,i)o<i<d

DG

(ti)o<i<d

Algorithm 6 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1,s2 i R1 //s1 and s2 have coefficients in {—1,0,1}
a & R

:t +— asy + s2

i sk < (s1,s2)

1 pk + (a,t)

OB WN

a (81,i)o<i<d

(s1,i)o<i<a
= (ti)o<i<d

(s2,i)o<i<a

(82,i)0<i<d

Algorithm 7 GLP key derivation

Ensure: Signing key sk, verification key pk

1:

G WN

S1,S2 i R1 //s1 and s2 have coefficients in {—1,0,1}
a & R

:t +— asy + s2
1 sk + (s1,s2)
: pk +— (a,t)

a (81,i)o<i<d

(s1,i)o<i<a
= (ti)o<i<d

(s2,i)o<i<a

(82,i)0<i<d

20/31

Security of Individual Gadgets

= Each sensitive variable must be masked

» mod-p arithmetic masking
» w-bit Boolean masking

= Each block (or sub-block) which manipulates secret data is
individually proven according to one of the three properties
» Non-Interference (NI)
» Strong Non-Interference (SNI)
» Non-Interference with public Outputs (Nlo)

21/31

Masking GLP Key Derivation

= DG: generation of sharings for coefficients x € [—k, k]
(k=1)

22/31

Masking GLP Key Derivation

= DG: generation of sharings for coefficients x € [—k, k]
(k=1)

1. generate a Boolean sharing of z:
VO <i<d, ;< [0,2%0 —1]

where 2@ > 2k 41 > 2wo—1

22/31

Masking GLP Key Derivation

= DG: generation of sharings for coefficients x € [—k, k]
(k=1)

1. generate a Boolean sharing of z:
VO <i<d, ;< [0,2%0 —1]

where 2@ > 2k 41 > 2wo—1
2. (6;)o<i<d < (%i)o<i<a — (Ki)o<i<d

22/31

Masking GLP Key Derivation

= DG: generation of sharings for coefficients x € [—k, k]
(k=1)

1. generate a Boolean sharing of z:
VO<i<d, a< [0,2%0 —1]

where 2@ > 2k 41 > 2wo—1

2. (8;)o<i<a + (Xi)o<i<a — (ki)o<i<d
3. b+ unmask §'s most significant bit
4. bequals 0iff 2 > 2k +1

22/31

Masking GLP Key Derivation

= DG: generation of sharings for coefficients x € [—k, k]
(k=1)

1. generate a Boolean sharing of z:
VO<i<d, a< [0,2%0 —1]

where 2@ > 2k 41 > 2wo—1

(6i)o<i<a + (Xi)o<i<a — (ki)o<i<a

b <— unmask d's most significant bit

b equals 0 iff x > 2k + 1

convert (x;)o<i<q to an arithmetic masking

RN

22/31

Masking GLP Key Derivation

= DG: generation of sharings for coefficients x € [—k, k]
(k=1)

1. generate a Boolean sharing of z:
VO<i<d, a< [0,2%0 —1]

where 2@ > 2k 41 > 2wo—1

(6i)o<i<a + (Xi)o<i<a — (ki)o<i<a

b <— unmask d's most significant bit

b equals 0 iff x > 2k + 1

convert (x;)o<i<q to an arithmetic masking

RN

= H: t+ as; + s
= FullAdd: refresh then add

22/31

Algorithm 8 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1,s2 i R1 //s1 and s2 have coefficients in {—1,0,1}
a (i R

:t +— asy + s2

1 sk« (s1,s2)

: pk + (a,t)

G WN

a (s1,:)o<i<a

(s2,i)o<i<d

Not masked Non interferent Non interferent with public outputs I
23 /31

Masking GLP Signature

Algorithm 9 GLP signature

Require: m, pk, sk

Ensure: Signature o

Dynyz &Ry

c <+ H(r =ayy +y2,m)

z] < sic+y1

Iz < sS2Cct+Yy2

. if zp or zg ¢ R _ then restart
return o = (z1, z2, C)

gRwpe

(V1,)0<i<a
(y2,i)o<i<d

Algorithm 10 GLP signature

Require: m, pk, sk
Ensure: Signature o
$
Y1,¥2 < R
c+ H(r =ay; +y2,m)
z] < s1c+y1
z2 < s2¢+y2
if z] or zp ¢ Ry _ then restart
return o = (z1,2z9,C)

gRwpe

DG
(y1,i)o<i<d
(y2,i)o<i<d
DG

(ri)o<i<a

Algorithm 11 GLP signature

Require: m, pk, sk
Ensure: Signature o
$
Y1,¥2 < R
c+ H(r =ay; +y2,m)
z] < s1c+y1
z2 < s2¢+y2
if z] or zp ¢ Ry _ then restart
return o = (z1,2z9,C)

gRwpe

DG
(y1,i)o<i<d
(y2,i)o<i<d
DG

(ri)o<i<d

Masking GLP Signature

Algorithm 12 GLP signature

Require: m, pk, sk

Ensure: Signature o

Dynye SRy

c+ H(r=ay1 +yz2,m)

z] < sic+y1

Iz < sS2Cct+Yy2

. if zp or zg ¢ R _ then restart
return o = (z1, z2, C)

gRwpe

(V1,)0<i<a
(y2,i)o<i<d

Masking GLP Signature

Algorithm 13 GLP signature

Require: m, pk, sk

Ensure: Signature o

Dynye &Ry

c <+ H(r =ayy +y2,m)

z] < s1c+y1

Iz < S2Cc+Yy2

. if zp or zg ¢ R _ then restart
return o = (z1, z2, C)

AR S

(¥1,i)o<i<a (s1,i)o<i<a

o
(y2,i)o<i<d
"

(¥2,i)o<i<a

(s2,i)o<i<d

Masking GLP Signature

Algorithm 14 GLP signature

Require: m, pk, sk

Ensure: Signature o

Dynye &Ry

c <+ H(r =ayy1 +y2,m)

z] < s1c+y1

Iz < sS2Cct+Yy2

o if zy or zo ¢ Ry _, then restart
return o = (z1,z9,¢C)

AR

(s1,i)o<i<d

(¥1,i)o<i<a

(z1,i)0<i<d

ol
) FullAdd > —
(¥1,i)o<i<a
Hl
(y2.i)o<i<d (z2.1)0<i 7)
2 — FullAdd g

(z2,i)o<i<d

(¥2,i)o<i<a

24 /31

Masking GLP Signature

= DG: generation of sharings for coefficients x € [—k, k]
= H': ayi+y2

= FullAdd: refresh then add

® Hash: unmasked

= RS: some details follow

= H?: linear function

® FullAdd: refresh then add

25 /31

Masking GLP Signature

= Rejection Sampling: are coefficients of z1 and zs in
[—k+ o,k —a]?

26 /31

Masking GLP Signature

= Rejection Sampling: are coefficients of z1 and zs in
[—k+ o,k —a]?

1. convert mod-p arithmetic sharing into Boolean masking

26 /31

Masking GLP Signature

= Rejection Sampling: are coefficients of z1 and zs in
[—k+ o,k —a]?
1. convert mod-p arithmetic sharing into Boolean masking

2. as in Data Generation, compute the masked difference with
k — « difference

26 /31

Masking GLP Signature

= Rejection Sampling: are coefficients of z1 and zs in
[—k+ o,k —a]?
1. convert mod-p arithmetic sharing into Boolean masking
2. as in Data Generation, compute the masked difference with
k — « difference
3. securely check the most significant bit

26 /31

Masking GLP Signature

Algorithm 15 GLP signature

Require: m, pk, sk

Ensure: Signature o

Dynye SRy

c <+ H(r =ayy +y2,m)

z] < s1c+y1

Iz < s2Cc+Yy2

o if zy orzg ¢ Ry _ then restart
return o = (z1, 22, C)

aRwpe

(s1,io<i<d

(y1,i)o<i<a

(21,i)o<i<d

(ym)ag«s
(y2,i)o<i<d
"

(z2,i)o<i<d

(y2,i)o<i<a

z)
FullAdd > —>
2
FullAdd > —>

27/31

Implementation of the Countermeasure

28 /31

unoptimized implementation

based on a public domain implementation called GLYPH
(n =1024, p = 59393, k = 16383, and « = 16)

Implementation results. Timings are provided for 100 executions
of the signing and verification algorithms, on one core of an Intel Core
i7-3770 CPU-based desktop machine.

Number of shares (d +1) Unprotected 2 3 4 5 6
Total CPU time (s) 0.540 8.15 164 395 62.1 111
Masking overhead — x15 x30 x73 x115 %206

29/31

Post-Quantum Schemes

Power Analysis Attacks and Masking
Contribution: Higher-Order Masking of GLP
Implementation of the Countermeasure

5 = Conclusion

30/31

In a nutshell...
Higher-order masking of GLP with proof in the probing model
New security notions to mask lattice-based signatures

To continue...
Extend these results to other lattice-based signatures

Extend these results to other post-quantum schemes

31/31

	Post-Quantum Schemes
	Power Analysis Attacks and Masking
	Contribution: Higher-Order Masking of GLP
	Implementation of the Countermeasure
	Conclusion

