
Masking the GLP Lattice-Based Signature

Scheme at Any Order

Sonia Beläıd

Joint Work with Gilles Barthe, Thomas Espitau, Pierre-Alain
Fouque, Benjamin Grégoire, Mélissa Rossi, and Mehdi Tibouchi

1 / 31



1 � Post-Quantum Schemes

2 � Power Analysis Attacks and Masking

3 � Contribution: Higher-Order Masking of GLP

4 � Implementation of the Countermeasure

5 � Conclusion

2 / 31



1 � Post-Quantum Schemes

2 � Power Analysis Attacks and Masking

3 � Contribution: Higher-Order Masking of GLP

4 � Implementation of the Countermeasure

5 � Conclusion

3 / 31



Post-Quantum Schemes

Context

� NIST postquantum competition

� demands for practical implementation

4 / 31



Lattice-Based Signatures

So far

� Numerous physical attacks against lattice-based schemes
(Gaussian distributions, rejection sampling)

� Few countermeasures exist

5 / 31



1 � Post-Quantum Schemes

2 � Power Analysis Attacks and Masking

3 � Contribution: Higher-Order Masking of GLP

4 � Implementation of the Countermeasure

5 � Conclusion

6 / 31



Power Analysis Attacks

7 / 31



Masking

� sound countermeasure which splits every sensitive variable x
into d+ 1 shares (xi)0≤i≤d such that

I for every 1 ≤ i ≤ d, xi is picking uniformly at random
I x0 ← x⊕ x1 ⊕ · · · ⊕ xd

� any strict subvector of at most d shares is independent from x

� d is called masking order or security order

8 / 31



Leakage Models

� Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
I a circuit is d-probing secure iff any set composed of the exact

values of at most d intermediate variables is independent from
the secret

� Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
I a circuit is secure in the noisy leakage model iff the adversary

cannot recover information on the secret from the noisy values
of all the intermediate variables

� Reduction by Duc, Dziembowski, and Faust (EC 2014)
I d-probing security ⇒ security in the noisy leakage model for

some level of noise

9 / 31



Leakage Models

� Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
I a circuit is d-probing secure iff any set composed of the exact

values of at most d intermediate variables is independent from
the secret

� Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
I a circuit is secure in the noisy leakage model iff the adversary

cannot recover information on the secret from the noisy values
of all the intermediate variables

� Reduction by Duc, Dziembowski, and Faust (EC 2014)
I d-probing security ⇒ security in the noisy leakage model for

some level of noise

9 / 31



Leakage Models

� Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
I a circuit is d-probing secure iff any set composed of the exact

values of at most d intermediate variables is independent from
the secret

� Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
I a circuit is secure in the noisy leakage model iff the adversary

cannot recover information on the secret from the noisy values
of all the intermediate variables

� Reduction by Duc, Dziembowski, and Faust (EC 2014)
I d-probing security ⇒ security in the noisy leakage model for

some level of noise

9 / 31



Probing Model

� variables: secret, shares, constant

� masking order d = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?

10 / 31



Probing Model

� variables: secret, shares, constant

� masking order d = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?

10 / 31



Probing Model

� variables: secret, shares, constant

� masking order d = 3

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

independent from
the secret?

10 / 31



Non-Interference (NI)

� d-NI ⇒ d-probing secure

� a circuit is d-NI iff any set of d intermediate variables can be
perfectly simulated with at most d shares of each input

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

can be simulated
with x0 and x1

11 / 31



Non-Interference (NI)

� d-NI ⇒ d-probing secure

� a circuit is d-NI iff any set of d intermediate variables can be
perfectly simulated with at most d shares of each input

Ex-d3
3

observations

x0 x1 x2 x3 (= x+ x0 + x1 + x2)

y0 y1 y2 y3

12 / 31



Strong Non-Interference (SNI)

� d-SNI ⇒ d-NI ⇒ d-probing secure

� a circuit is d-SNI iff any set of d intermediate variables, whose
d1 on the internal variables and d2 and the outputs, can be
perfectly simulated with at most d1 shares of each input

function Ex-t3(x0, x1, x2, x3, c):

(* x0, x1, x2 = $ *)
(* x3 = x+ x0 + x1 + x2 *)

r0 ← $

r1 ← $
y0 ← x0 + r0
y1 ← x3 + r1
t1 ← x1 + r0
t2 ← (x1 + r0) + x2
y2 ← (x1+ r0+x2)+ r1
y3 ← c+ r1

return(y0, y1, y2, y3)

require x0 and x1
to be perfectly
simulated ⇒ not
3-SNI since y0 is
an output variable

13 / 31



Strong Non-Interference (SNI)

� d-SNI ⇒ d-NI ⇒ d-probing secure

� a circuit is d-SNI iff any set of d intermediate variables, whose
d1 on the internal variables and d2 and the outputs, can be
perfectly simulated with at most d1 shares of each input

Ex-d3
2 internal

observations

+ 1 output
observation

x0 x1 x2 x3

y0 y1 y2 y3

14 / 31



Composition

� From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

� Example: AES S-box on GF(28)

Constraint:
d0+d1+d2+d3 6 d

[x]

[·2]

R

[×]

d0
observations

d1
observations

d2
observations

d3
observations

15 / 31



Composition

� From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

� Example: AES S-box on GF(28)

Constraint:
d0+d1+d2+d3 6 d

[x]

[·2]

R

[×]

d0
observations

d1
observations

d2
observations

d3
observations

15 / 31



Composition

� From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

� Example: AES S-box on GF(28)

Constraint:
d0+d1+d2+d3 6 d

[x]

[·2]

R

[×]

d0 + d3
observations

d1
observations

d2 internal observations
t3 output observations

15 / 31



Composition

� From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

� Example: AES S-box on GF(28)

Constraint:
d0+d1+d2+d3 6 d

[x]

[·2]

R

[×]

d0 + d3
observations

d1
observations

d2 internal observations
t3 output observations

15 / 31



Composition

� From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

� Example: AES S-box on GF(28)

Constraint:
d0+d1+d2+d3 6 d

[x]

[·2]

R

[×]

d0 + d3
observations

d1 + d2
observations

d3 output observations

15 / 31



Composition

� From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

� Example: AES S-box on GF(28)

Constraint:
d0+d1+d2+d3 6 d

[x]

[·2]

R

[×]

d0 + d3
observations

d1 + d2
observations

d3 output observations

15 / 31



Composition

� From NI and SNI gadgets, we are able to build a NI circuit by
adding SNI refresh gadgets when necessary

� Example: AES S-box on GF(28)

Constraint:
d0+d1+d2+d3 6 d

[x]

[·2]

R

[×]

d0 + d3
+d1 + d2

observations

d3 output ob-
servations

15 / 31



1 � Post-Quantum Schemes

2 � Power Analysis Attacks and Masking

3 � Contribution: Higher-Order Masking of GLP

4 � Implementation of the Countermeasure

5 � Conclusion

16 / 31



GLP Features

� Introduced at CHES 2012 by Tim Güneysu, Vadim
Lyubashevsky, and Thomas Pöppelmann

� No Gaussians, only uniform distributions

� Probabilistic algorithm

� Rejection sampling

17 / 31



GLP Key Derivation

R =
Zp[x]
xn+1

Rk : coefficients in the range
[−k, k]

Algorithm 1 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←− R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←− R

3: t ← as1 + s2
4: sk ← (s1, s2)
5: pk ← (a, t)

� Based on the Decisional Compact Knapsack problem

18 / 31



GLP Signature

� Fiat–Shamir with abort signature

Algorithm 2 GLP signature

Require: m, pk, sk
Ensure: Signature σ

1: y1,y2
$←− Rk Random generation

2: c ← H(r = ay1 + y2,m) Commitment
3: z1 ← s1c+ y1

4: z2 ← s2c+ y2

5: if z1 or z2 /∈ Rk−α then restart Rejection Sampling
return σ = (z1, z2, c)

Verification z1, z2 ∈ Rk−α and c = H(az1 + z2 − tc,m)

19 / 31



Masking GLP Key Derivation

Algorithm 3 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←− R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←− R

3: t ← as1 + s2
4: sk ← (s1, s2)
5: pk ← (a, t)

DG

DG

(s1,i)0≤i≤d

(s2,i)0≤i≤d

a

H1
(ti)0≤i≤d

(s1,i)0≤i≤d

(s2,i)0≤i≤d

FullAdd
t

20 / 31



Masking GLP Key Derivation

Algorithm 4 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←− R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←− R

3: t ← as1 + s2
4: sk ← (s1, s2)
5: pk ← (a, t)

DG

DG

(s1,i)0≤i≤d

(s2,i)0≤i≤d

a

H1
(ti)0≤i≤d

(s1,i)0≤i≤d

(s2,i)0≤i≤d

FullAdd
t

20 / 31



Masking GLP Key Derivation

Algorithm 5 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←− R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←− R

3: t ← as1 + s2
4: sk ← (s1, s2)
5: pk ← (a, t)

DG

DG

(s1,i)0≤i≤d

(s2,i)0≤i≤d

a

H1
(ti)0≤i≤d

(s1,i)0≤i≤d

(s2,i)0≤i≤d

FullAdd
t

20 / 31



Masking GLP Key Derivation

Algorithm 6 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←− R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←− R

3: t ← as1 + s2
4: sk ← (s1, s2)
5: pk ← (a, t)

DG

DG

(s1,i)0≤i≤d

(s2,i)0≤i≤d

a

H1
(ti)0≤i≤d

(s1,i)0≤i≤d

(s2,i)0≤i≤d

FullAdd
t

20 / 31



Masking GLP Key Derivation

Algorithm 7 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←− R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←− R

3: t ← as1 + s2
4: sk ← (s1, s2)
5: pk ← (a, t)

DG

DG

(s1,i)0≤i≤d

(s2,i)0≤i≤d

a

H1
(ti)0≤i≤d

(s1,i)0≤i≤d

(s2,i)0≤i≤d

FullAdd
t

20 / 31



Security of Individual Gadgets

� Each sensitive variable must be masked
I mod-p arithmetic masking
I w-bit Boolean masking

� Each block (or sub-block) which manipulates secret data is
individually proven according to one of the three properties
I Non-Interference (NI)
I Strong Non-Interference (SNI)
I Non-Interference with public Outputs (NIo)

21 / 31



Masking GLP Key Derivation

� DG: generation of sharings for coefficients x ∈ [−k, k]
(k = 1)

1. generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2. (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3. b← unmask δ’s most significant bit
4. b equals 0 iff x ≥ 2k + 1
5. convert (xi)0≤i≤d to an arithmetic masking

� H1: t← as1 + s2

� FullAdd: refresh then add

22 / 31



Masking GLP Key Derivation

� DG: generation of sharings for coefficients x ∈ [−k, k]
(k = 1)

1. generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2. (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3. b← unmask δ’s most significant bit
4. b equals 0 iff x ≥ 2k + 1
5. convert (xi)0≤i≤d to an arithmetic masking

� H1: t← as1 + s2

� FullAdd: refresh then add

22 / 31



Masking GLP Key Derivation

� DG: generation of sharings for coefficients x ∈ [−k, k]
(k = 1)

1. generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2. (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3. b← unmask δ’s most significant bit
4. b equals 0 iff x ≥ 2k + 1
5. convert (xi)0≤i≤d to an arithmetic masking

� H1: t← as1 + s2

� FullAdd: refresh then add

22 / 31



Masking GLP Key Derivation

� DG: generation of sharings for coefficients x ∈ [−k, k]
(k = 1)

1. generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2. (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3. b← unmask δ’s most significant bit
4. b equals 0 iff x ≥ 2k + 1

5. convert (xi)0≤i≤d to an arithmetic masking

� H1: t← as1 + s2

� FullAdd: refresh then add

22 / 31



Masking GLP Key Derivation

� DG: generation of sharings for coefficients x ∈ [−k, k]
(k = 1)

1. generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2. (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3. b← unmask δ’s most significant bit
4. b equals 0 iff x ≥ 2k + 1
5. convert (xi)0≤i≤d to an arithmetic masking

� H1: t← as1 + s2

� FullAdd: refresh then add

22 / 31



Masking GLP Key Derivation

� DG: generation of sharings for coefficients x ∈ [−k, k]
(k = 1)

1. generate a Boolean sharing of x:

∀0 ≤ i ≤ d, xi ← [0, 2w0 − 1]

where 2w0 > 2k + 1 ≥ 2w0−1

2. (δi)0≤i≤d ← (xi)0≤i≤d − (ki)0≤i≤d

3. b← unmask δ’s most significant bit
4. b equals 0 iff x ≥ 2k + 1
5. convert (xi)0≤i≤d to an arithmetic masking

� H1: t← as1 + s2

� FullAdd: refresh then add

22 / 31



Masking GLP Key Derivation

Algorithm 8 GLP key derivation

Ensure: Signing key sk, verification key pk

1: s1, s2
$←− R1 //s1 and s2 have coefficients in {−1, 0, 1}

2: a
$←− R

3: t ← as1 + s2
4: sk ← (s1, s2)
5: pk ← (a, t)

DG

DG

(s1,i)0≤i≤d

(s2,i)0≤i≤d

a

H1
(ti)0≤i≤d

(s1,i)0≤i≤d

(s2,i)0≤i≤d

FullAdd
t

Not masked Non interferent Non interferent with public outputs
23 / 31



Masking GLP Signature

Algorithm 9 GLP signature

Require: m, pk, sk
Ensure: Signature σ

1: y1,y2
$←− Rk

2: c← H(r = ay1 + y2,m)

3: z1 ← s1c + y1

4: z2 ← s2c + y2

5: if z1 or z2 /∈ Rk−α then restart
return σ = (z1, z2, c)

DG

DG

(y1,i)0≤i≤d

(y2,i)0≤i≤d

H1

a

(ri)0≤i≤d
FullAdd

r
Hash

m

c

(s1,i)0≤i≤d

(s2,i)0≤i≤d

H1

H1

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

RS
RejSp

H2

H2

(z1,i)0≤i≤d

(z2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

FullAdd

FullAdd

z1

z2

c

24 / 31



Masking GLP Signature

Algorithm 10 GLP signature

Require: m, pk, sk
Ensure: Signature σ

1: y1,y2
$←− Rk

2: c← H(r = ay1 + y2,m)

3: z1 ← s1c + y1

4: z2 ← s2c + y2

5: if z1 or z2 /∈ Rk−α then restart
return σ = (z1, z2, c)

DG

DG

(y1,i)0≤i≤d

(y2,i)0≤i≤d

H1

a

(ri)0≤i≤d

FullAdd
r

Hash

m

c

(s1,i)0≤i≤d

(s2,i)0≤i≤d

H1

H1

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

RS
RejSp

H2

H2

(z1,i)0≤i≤d

(z2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

FullAdd

FullAdd

z1

z2

c

24 / 31



Masking GLP Signature

Algorithm 11 GLP signature

Require: m, pk, sk
Ensure: Signature σ

1: y1,y2
$←− Rk

2: c← H(r = ay1 + y2,m)

3: z1 ← s1c + y1

4: z2 ← s2c + y2

5: if z1 or z2 /∈ Rk−α then restart
return σ = (z1, z2, c)

DG

DG

(y1,i)0≤i≤d

(y2,i)0≤i≤d

H1

a

(ri)0≤i≤d
FullAdd

r

Hash

m

c

(s1,i)0≤i≤d

(s2,i)0≤i≤d

H1

H1

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

RS
RejSp

H2

H2

(z1,i)0≤i≤d

(z2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

FullAdd

FullAdd

z1

z2

c

24 / 31



Masking GLP Signature

Algorithm 12 GLP signature

Require: m, pk, sk
Ensure: Signature σ

1: y1,y2
$←− Rk

2: c← H(r = ay1 + y2,m)

3: z1 ← s1c + y1

4: z2 ← s2c + y2

5: if z1 or z2 /∈ Rk−α then restart
return σ = (z1, z2, c)

DG

DG

(y1,i)0≤i≤d

(y2,i)0≤i≤d

H1

a

(ri)0≤i≤d
FullAdd

r
Hash

m

c

(s1,i)0≤i≤d

(s2,i)0≤i≤d

H1

H1

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

RS
RejSp

H2

H2

(z1,i)0≤i≤d

(z2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

FullAdd

FullAdd

z1

z2

c

24 / 31



Masking GLP Signature

Algorithm 13 GLP signature

Require: m, pk, sk
Ensure: Signature σ

1: y1,y2
$←− Rk

2: c← H(r = ay1 + y2,m)

3: z1 ← s1c + y1

4: z2 ← s2c + y2

5: if z1 or z2 /∈ Rk−α then restart
return σ = (z1, z2, c)

DG

DG

(y1,i)0≤i≤d

(y2,i)0≤i≤d

H1

a

(ri)0≤i≤d
FullAdd

r
Hash

m

c

(s1,i)0≤i≤d

(s2,i)0≤i≤d

H1

H1

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

RS
RejSp

H2

H2

(z1,i)0≤i≤d

(z2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

FullAdd

FullAdd

z1

z2

c

24 / 31



Masking GLP Signature

Algorithm 14 GLP signature

Require: m, pk, sk
Ensure: Signature σ

1: y1,y2
$←− Rk

2: c← H(r = ay1 + y2,m)

3: z1 ← s1c + y1

4: z2 ← s2c + y2

5: if z1 or z2 /∈ Rk−α then restart
return σ = (z1, z2, c)

DG

DG

(y1,i)0≤i≤d

(y2,i)0≤i≤d

H1

a

(ri)0≤i≤d
FullAdd

r
Hash

m

c

(s1,i)0≤i≤d

(s2,i)0≤i≤d

H1

H1

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

RS
RejSp

H2

H2

(z1,i)0≤i≤d

(z2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

FullAdd

FullAdd

z1

z2

c
24 / 31



Masking GLP Signature

� DG: generation of sharings for coefficients x ∈ [−k, k]
� H1: ay1 + y2

� FullAdd: refresh then add

� Hash: unmasked

� RS: some details follow

� H2: linear function

� FullAdd: refresh then add

25 / 31



Masking GLP Signature

� Rejection Sampling: are coefficients of z1 and z2 in

[−k + α, k − α]?

1. convert mod-p arithmetic sharing into Boolean masking
2. as in Data Generation, compute the masked difference with

k − α difference
3. securely check the most significant bit

26 / 31



Masking GLP Signature

� Rejection Sampling: are coefficients of z1 and z2 in

[−k + α, k − α]?
1. convert mod-p arithmetic sharing into Boolean masking

2. as in Data Generation, compute the masked difference with
k − α difference

3. securely check the most significant bit

26 / 31



Masking GLP Signature

� Rejection Sampling: are coefficients of z1 and z2 in

[−k + α, k − α]?
1. convert mod-p arithmetic sharing into Boolean masking
2. as in Data Generation, compute the masked difference with

k − α difference

3. securely check the most significant bit

26 / 31



Masking GLP Signature

� Rejection Sampling: are coefficients of z1 and z2 in

[−k + α, k − α]?
1. convert mod-p arithmetic sharing into Boolean masking
2. as in Data Generation, compute the masked difference with

k − α difference
3. securely check the most significant bit

26 / 31



Masking GLP Signature

Algorithm 15 GLP signature

Require: m, pk, sk
Ensure: Signature σ

1: y1,y2
$←− Rk

2: c← H(r = ay1 + y2,m)

3: z1 ← s1c + y1

4: z2 ← s2c + y2

5: if z1 or z2 /∈ Rk−α then restart
return σ = (z1, z2, c)

DG

DG

(y1,i)0≤i≤d

(y2,i)0≤i≤d

H1

a

(ri)0≤i≤d
FullAdd

r
Hash

m

c

(s1,i)0≤i≤d

(s2,i)0≤i≤d

H1

H1

(y1,i)0≤i≤d

(y2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

RS
RejSp

H2

H2

(z1,i)0≤i≤d

(z2,i)0≤i≤d

(z1,i)0≤i≤d

(z2,i)0≤i≤d

FullAdd

FullAdd

z1

z2

c

Not masked Non interferent Non interferent with public outputs

27 / 31



1 � Post-Quantum Schemes

2 � Power Analysis Attacks and Masking

3 � Contribution: Higher-Order Masking of GLP

4 � Implementation of the Countermeasure

5 � Conclusion

28 / 31



Implementation

� unoptimized implementation

� based on a public domain implementation called GLYPH
(n = 1024, p = 59393, k = 16383, and α = 16)

Table: Implementation results. Timings are provided for 100 executions
of the signing and verification algorithms, on one core of an Intel Core
i7-3770 CPU-based desktop machine.

Number of shares (d+ 1) Unprotected 2 3 4 5 6

Total CPU time (s) 0.540 8.15 16.4 39.5 62.1 111

Masking overhead — ×15 ×30 ×73 ×115 ×206

29 / 31



1 � Post-Quantum Schemes

2 � Power Analysis Attacks and Masking

3 � Contribution: Higher-Order Masking of GLP

4 � Implementation of the Countermeasure

5 � Conclusion

30 / 31



Conclusion

In a nutshell...

� Higher-order masking of GLP with proof in the probing model

� New security notions to mask lattice-based signatures

To continue...

� Extend these results to other lattice-based signatures

� Extend these results to other post-quantum schemes

31 / 31


	Post-Quantum Schemes
	Power Analysis Attacks and Masking
	Contribution: Higher-Order Masking of GLP
	Implementation of the Countermeasure
	Conclusion

