
LatinCrypt 2019

Security of Masked
Implementations
Sonia Belaïd

Side-Channel Attacks

 2

Side-Channel Attacks

 3

Here is a private message.

Oä+k1Ç«Û\®
öWSe8Ú2wlK
<AT«Èèú¾83
o1c(

Side-Channel Attacks

 4

Here is a private message.

Oä+k1Ç«Û\®
öWSe8Ú2wlK
<AT«Èèú¾83
o1c(

Black-box cryptanalysis: 𝒜 ← (m, c)

Side-Channel Attacks

 5

Here is a private message.

Oä+k1Ç«Û\®
öWSe8Ú2wlK
<AT«Èèú¾83
o1c(

Black-box cryptanalysis:

Side-channel analysis:

𝒜 ← (m, c)
𝒜 ← (m, c, ℒ)

Side-Channel Attacks

 6

Here is a private message.

Oä+k1Ç«Û\®
öWSe8Ú2wlK
<AT«Èèú¾83
o1c(

Black-box cryptanalysis:

Side-channel analysis:

𝒜 ← (m, c)
𝒜 ← (m, c, ℒ)

Overview of this talk

 Masking Countermeasure

Definition and implementation

 Leakage Models

Definitions, pros, and cons

 Verification of Small Implementations
Example of tools to verify small implementations

 Composition
How to compose small implementations into larger secure
ones

 7

Masking Countermeasure

 8

How to thwart SCA?

 9

p c

k

Problem: the leakage is key-dependent

How to thwart SCA?

 10

p c

k

Problem: the leakage is key-dependent

Solution: Masking (make the leakage random)

How to thwart SCA?

 11

p c

k

for each sensitive value v ← f(p, k)

Problem: the leakage is key-dependent

Solution: Masking (make the leakage random)

How to thwart SCA?

 12

p c

k

for each sensitive value v ← f(p, k)

v1 ← $ v2 ← $ vn−1 ← $…

Problem: the leakage is key-dependent

Solution: Masking (make the leakage random)

How to thwart SCA?

 13

p c

k

for each sensitive value v ← f(p, k)

v0 ← v ⊕ (
n−1

⨁
i=1

vi) v1 ← $ v2 ← $ vn−1 ← $…

Problem: the leakage is key-dependent

Solution: Masking (make the leakage random)

Masking in Practice
Masking linear operations

 14

z ← x ⊕ y
x = x0 ⊕ x1 ⊕ … ⊕ xn−1

y = y0 ⊕ y1 ⊕ … ⊕ yn−1

Masking in Practice
Masking linear operations

 15

z ← x ⊕ y

z = (x0 ⊕ y0, x1 ⊕ y1, …, xn−1 ⊕ yn−1)

x = x0 ⊕ x1 ⊕ … ⊕ xn−1

y = y0 ⊕ y1 ⊕ … ⊕ yn−1

Masking in Practice
Masking linear operations

Masking non linear operations

Cannot be done share by share

 16

z ← x ⊕ y

z = (x0 ⊕ y0, x1 ⊕ y1, …, xn−1 ⊕ yn−1)

x = x0 ⊕ x1 ⊕ … ⊕ xn−1

y = y0 ⊕ y1 ⊕ … ⊕ yn−1

for i = 0 to t

ri, j ← $

for j = i + 1 to t

rj,i ← (ri, j ⊕ xiyj) ⊕ xjyi

for i = 0 to t
zi ← xiyi

for j = 0 to t, j ≠ i
zi ← zi ⊕ ri, j

Leakage Models

 17

Security of an implementation
How to evaluate the security of an implementation?

 18

Security of an implementation
How to evaluate the security of an implementation?

Integrate it on a device and try to attack it

Not always possible

 19

Security of an implementation
How to evaluate the security of an implementation?

Integrate it on a device and try to attack it

Not always possible

Model the leakage and prove its security or exhibit an attack

 20

Noisy Leakage Model

Leakage

Every variable leaks

Leakage = noisy function of the value

 21

S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power- analysis attacks. CRYPTO’99

E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security proof. EUROCRYPT 2013

Random Probing Model

Leakage

Every variable leaks with probability p

Leakage = exact value

 22

Probing Model
Leakage

Only t variables leak in the implementation

Leakage = exact value

Security in the t-probing model

Implementation such that any set of t intermediate variables
is independent from the secret

 23

Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO 2003

Reductions

 24

realism

co
nv

en
ie

nc
e

fo
r

se
cu

ri
ty

 p
ro

of
s t-probing model

p-random
probing model

noisy leakage
model

Reductions

 25

realism

co
nv

en
ie

nc
e

fo
r

se
cu

ri
ty

 p
ro

of
s t-probing model

p-random
probing model

noisy leakage
model

A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing attacks to noisy leakage. EUROCRYPT 2014

Verification of Small Implementations

 26

Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

2 shares

1-probing secure?

 27

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

y ← w ⊕ r

x ← a0 ⋅ b1

w ← v ⊕ x

z ← a1 ⋅ b0

c1 ← y ⊕ z
return (c0, c1)

Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

Independent from secrets?

 28

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

y ← w ⊕ r

x ← a0 ⋅ b1

w ← v ⊕ x

z ← a1 ⋅ b0

c1 ← y ⊕ z
return (c0, c1)

Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

Independent from secrets?

 29

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

y ← w ⊕ r

x ← a0 ⋅ b1

w ← v ⊕ x

z ← a1 ⋅ b0

c1 ← y ⊕ z
return (c0, c1)

w = v ⊕ x
w = a1 ⋅ b1 ⊕ a0 ⋅ b1

w = a ⋅ b1

Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

3 shares

 30

function example(a0, a1, a2, b0, b1, b2)
r00, r01, r02, r12 ← $

t ← a0 ⋅ b1

t ← a0 ⋅ b0
c0 ← t ⊕ r00

t ← t ⊕ r01
c0 ← c0 ⊕ t

return (c0, c1, c2)

t ← a0 ⋅ b2
t ← t ⊕ r02

c0 ← c0 ⊕ t

t ← a1 ⋅ b1

t ← a1 ⋅ b0
c1 ← t ⊕ r01

c1 ← c1 ⊕ t
…

Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

3 shares

33 intermediate variables

 31

function example(a0, a1, a2, b0, b1, b2)
r00, r01, r02, r12 ← $

t ← a0 ⋅ b1

t ← a0 ⋅ b0
c0 ← t ⊕ r00

t ← t ⊕ r01
c0 ← c0 ⊕ t

return (c0, c1, c2)

t ← a0 ⋅ b2
t ← t ⊕ r02

c0 ← c0 ⊕ t

t ← a1 ⋅ b1

t ← a1 ⋅ b0
c1 ← t ⊕ r01

c1 ← c1 ⊕ t
…

(33
2) = 528 couples to verify

Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

3 shares

33 intermediate variables

 32

function example(a0, a1, a2, b0, b1, b2)
r00, r01, r02, r12 ← $

t ← a0 ⋅ b1

t ← a0 ⋅ b0
c0 ← t ⊕ r00

t ← t ⊕ r01
c0 ← c0 ⊕ t

return (c0, c1, c2)

t ← a0 ⋅ b2
t ← t ⊕ r02

c0 ← c0 ⊕ t

t ← a1 ⋅ b1

t ← a1 ⋅ b0
c1 ← t ⊕ r01

c1 ← c1 ⊕ t
…

(33
2) = 528 couples to verify

(n
t) tuples to verify

Proof in the Random Probing Model
Reminder: an implementation is p-random probing secure iff
the probability to get a tuple dependent from the secret is
negligible given that each variable leaks with probability p

 33

function example(a0, a1, a2, b0, b1, b2)
r00, r01, r02, r12 ← $

t ← a0 ⋅ b1

t ← a0 ⋅ b0
c0 ← t ⊕ r00

t ← t ⊕ r01
c0 ← c0 ⊕ t

return (c0, c1, c2)

t ← a0 ⋅ b2
t ← t ⊕ r02

c0 ← c0 ⊕ t

t ← a1 ⋅ b1

t ← a1 ⋅ b0
c1 ← t ⊕ r01

c1 ← c1 ⊕ t
…

n

∑
i=1

(n
i) tuples to verify

Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

Two methods to verify t-probing security of small
implementations

Theoretical proof from the structure of the algorithm

Automatic proofs with a tool

 34

Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

Two methods to verify t-probing security of small
implementations

Theoretical proof from the structure of the algorithm

Automatic proofs with a tool

 35

Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

Two methods to verify t-probing security of small
implementations

Theoretical proof from the structure of the algorithm

Automatic proofs with a tool

 36

Recent Automatic Tools
maskVerif [1,2]

Originally built in 2015, then extended in 2019

Probing security

CheckMasks [3]

In CommonLisp

Faster with some details on the algorithm structure

Probing security

Bloem et al. [4]

Probing security with physical defaults

 37

[1] G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y. Strub. Verified proofs of higher-order masking. EUROCRYPT 2015
[2] G. Barthe, S. Belaïd, G. Cassiers, P.-A. Fouque, B. Grégoire, and F.-X. Standaert. maskVerif: Automated Verification of Higher-Order Masking
in Presence of Physical Defaults. ESORICS 2019
[3] J.-S. Coron. Formal verification of side-channel countermeasures via elementary circuit transformations. ACNS 2017  
[4] R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. Formal verification of masked hardware implementations in the
presence of glitches. EUROCRYPT 2018

Focus on maskVerif

 38

maskVerif

Security order t

Focus on maskVerif

 39

maskVerif

Security order t

Security proof
or potential

attacks

Focus on maskVerif

 40

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r

Focus on maskVerif
Determine whether a tuple is independent from the secrets

 41

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r

Focus on maskVerif
Determine whether a tuple is independent from the secrets

 42

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r

w = a1 ⋅ b1 ⊕ r ⊕ a0 ⋅ b1

Focus on maskVerif
Determine whether a tuple is independent from the secrets

Rule 1: secrets?

 43

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r

w = a1 ⋅ b1 ⊕ r ⊕ a0 ⋅ b1

Focus on maskVerif
Determine whether a tuple is independent from the secrets

Rule 1: secrets?

Rule 2: random values?

 44

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r

w = a1 ⋅ b1 ⊕ r ⊕ a0 ⋅ b1

Focus on maskVerif
Determine whether a tuple is independent from the secrets

Rule 1: secrets?

Rule 2: random values?

 45

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r

w = r

Focus on maskVerif
Determine whether a tuple is independent from the secrets

Rule 1: secrets?

Rule 2: random values?

Go through all tuples

Verify bigger sets

 46

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r

w = r

Focus on maskVerif
Determine whether a tuple is independent from the secrets

Rule 1: secrets?

Rule 2: random values?

Go through all tuples

Verify bigger sets

Extensions

Extended probing model

 47

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r

w = r

Focus on maskVerif

 48

• Examples of classical implementations

• Until 6 shares

• In the presence of glitches (HW)

first-order masking (2 shares)

second-order masking (3 shares)

third-order masking (4 shares)

fourth-order masking (5 shares)

fifth-order masking (6 shares)

Main Challenges

More efficient automatic verification tools

 49

Main Challenges

More efficient automatic verification tools

Closer to the reality of embedded devices

Takes implementations in Assembly language

Proof in more accurate models

 50

Composition

 51

Composition of gadgets

 52

[1] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO 2003  

Composition of gadgets

Random values

[1] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO 2003  
[2] M. Rivain and E. Prouff. Provably secure higher-order masking of AES. CHES 2010

 53

Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

How to reason on composition?

 54

Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

How to reason on composition?

Stronger property: non-interference

An implementation is t-non-interfering iff any set of at most t
variables can be simulated with at most t input shares

 55

Composition of gadgets

 56

!"

!#

!$

!%

&" observations

&# observations

&$ observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

 57

!"

!#

!$

!%

&" observations

&# observations

&$ observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

 58

!"

!#

!$

!%

&" observations

&# + &%
observations

&$ + &%
observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

 59

!"

!#

!$

!%

&" observations

&# + &%
observations

&$ + &%
observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

 60

!"

!#

!$

!%

&" observations

&# + &$ + 2&%
observations

&$ + &%
observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

 61

!"

!#

!$

!%

&" observations

&# + &$ + 2&% ≤ &	?
observations

&$ + &%
observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

How to reason of composition?

Stronger property: non-interference

An implementation is t-non-interfering iff any set of at most t
variables can be simulated with at most t input shares

Stronger property: strong non-interference

An implementation is t-strong non-interfering iff any set of

• t1 internal variables

• t2 output variables

can be simulated with at most t1 input shares

 62

Composition of gadgets

 63

!"

!#

!$

!%

&" observations

&# observations

&$ observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(observations

Composition of gadgets

 64

!"

!#

!$

!%

&" observations

&# observations

&$ observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(observations

Composition of gadgets

 65

!"

!#

!$

!%

&" observations

&# observations

&$ + &% observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(+ &% (output)
observations

Composition of gadgets

 66

!"

!#

!$

!%

&" observations

&# observations

&$ + &% observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(+ &% (output)
observations

Composition of gadgets

 67

!"

!#

!$

!%

&" observations

&# + &$ + &(+ &% ≤ & !
observations

&$ + &% observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(+ &% (output)
observations

Composition techniques
Compose NI/SNI gadgets as shown

Tool maskComp

Compose standard circuits in the probing model

Tool tightPROVE

Exact methods restricted to circuits from addition, ISW
multiplications, and refresh gadgets

Compose gadgets with stronger properties

Example: PINI

 68

Main Challenges

Being able to compose any kind of gadgets without loss of
efficiency

 69

Main Challenges

Being able to compose any kind of gadgets without loss of
efficiency

Compose in more realistic leakage models

 70

Conclusion

 71

Summary
Side-channel attacks are very powerful

Few seconds to recover the key on some software devices

Cheap equipments

 72

Summary
Side-channel attacks are very powerful

Few seconds to recover the key on some software devices

Cheap equipments

Masking is the most widely deployed countermeasure

Numerous works

Difficult to build secure constructions

 73

Summary
Side-channel attacks are very powerful

Few seconds to recover the key on some software devices

Cheap equipments

Masking is the most widely deployed countermeasure

Numerous works

Difficult to build secure constructions

Verification

Automatic tools

Composition

 74

Challenges
Efficiency

The least possible randomness

The least possible operations

 75

Challenges
Efficiency

The least possible randomness

The least possible operations

Security

Theoretical proofs of existing schemes

Automatic tools to verify the security of implementations

 76

Challenges
Efficiency

The least possible randomness

The least possible operations

Security

Theoretical proofs of existing schemes

Automatic tools to verify the security of implementations

Practicality

Security of implementations under leakage models as close
as possible to the reality

 77

Thank you.
Questions?

 78

