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Overview of this talk

   Masking Countermeasure

Definition and implementation

   Leakage Models

Definitions, pros, and cons

   Verification of Small Implementations
Example of tools to verify small implementations

   Composition
How to compose small implementations into larger secure 
ones
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for each sensitive value v ← f(p, k)

v0 ← v ⊕ (
n−1

⨁
i=1

vi) v1 ← $ v2 ← $ vn−1 ← $…

Problem: the leakage is key-dependent

Solution: Masking (make the leakage random)



Masking in Practice
Masking linear operations
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z ← x ⊕ y
x = x0 ⊕ x1 ⊕ … ⊕ xn−1

y = y0 ⊕ y1 ⊕ … ⊕ yn−1



Masking in Practice
Masking linear operations
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z ← x ⊕ y

z = (x0 ⊕ y0, x1 ⊕ y1, …, xn−1 ⊕ yn−1)

x = x0 ⊕ x1 ⊕ … ⊕ xn−1

y = y0 ⊕ y1 ⊕ … ⊕ yn−1



Masking in Practice
Masking linear operations

Masking non linear operations

Cannot be done share by share
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z ← x ⊕ y

z = (x0 ⊕ y0, x1 ⊕ y1, …, xn−1 ⊕ yn−1)

x = x0 ⊕ x1 ⊕ … ⊕ xn−1

y = y0 ⊕ y1 ⊕ … ⊕ yn−1

for i = 0 to t

ri, j ← $

for j = i + 1 to t

rj,i ← (ri, j ⊕ xiyj) ⊕ xjyi

for i = 0 to t
zi ← xiyi

for j = 0 to t, j ≠ i
zi ← zi ⊕ ri, j



Leakage Models
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Security of an implementation
How to evaluate the security of an implementation?
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Security of an implementation
How to evaluate the security of an implementation?

Integrate it on a device and try to attack it

Not always possible

Model the leakage and prove its security or exhibit an attack
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Noisy Leakage Model

Leakage

Every variable leaks

Leakage = noisy function of the value
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S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power- analysis attacks. CRYPTO’99

E. Prouff and M. Rivain. Masking against side-channel attacks: A formal security proof. EUROCRYPT 2013 



Random Probing Model

Leakage

Every variable leaks with probability p

Leakage = exact value
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Probing Model
Leakage

Only t variables leak in the implementation

Leakage = exact value

Security in the t-probing model

Implementation such that any set of t intermediate variables 
is independent from the secret
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Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO 2003 
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A. Duc, S. Dziembowski, and S. Faust. Unifying leakage models: From probing attacks to noisy leakage. EUROCRYPT 2014 



Verification of Small Implementations
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Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of 
at most t variables is independent from the secret

2 shares

1-probing secure?
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function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

y ← w ⊕ r

x ← a0 ⋅ b1

w ← v ⊕ x

z ← a1 ⋅ b0

c1 ← y ⊕ z
return (c0, c1)
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function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

y ← w ⊕ r

x ← a0 ⋅ b1

w ← v ⊕ x

z ← a1 ⋅ b0

c1 ← y ⊕ z
return (c0, c1)

w = v ⊕ x
w = a1 ⋅ b1 ⊕ a0 ⋅ b1

w = a ⋅ b1



Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of 
at most t variables is independent from the secret

3 shares
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function example(a0, a1, a2, b0, b1, b2)
r00, r01, r02, r12 ← $

t ← a0 ⋅ b1

t ← a0 ⋅ b0
c0 ← t ⊕ r00

t ← t ⊕ r01
c0 ← c0 ⊕ t

return (c0, c1, c2)

t ← a0 ⋅ b2
t ← t ⊕ r02

c0 ← c0 ⊕ t

t ← a1 ⋅ b1

t ← a1 ⋅ b0
c1 ← t ⊕ r01

c1 ← c1 ⊕ t
…
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function example(a0, a1, a2, b0, b1, b2)
r00, r01, r02, r12 ← $

t ← a0 ⋅ b1

t ← a0 ⋅ b0
c0 ← t ⊕ r00

t ← t ⊕ r01
c0 ← c0 ⊕ t

return (c0, c1, c2)

t ← a0 ⋅ b2
t ← t ⊕ r02

c0 ← c0 ⊕ t

t ← a1 ⋅ b1

t ← a1 ⋅ b0
c1 ← t ⊕ r01

c1 ← c1 ⊕ t
…

(33
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Proof in the Random Probing Model
Reminder: an implementation is p-random probing secure iff 
the probability to get a tuple dependent from the secret is 
negligible given that each variable leaks with probability p
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function example(a0, a1, a2, b0, b1, b2)
r00, r01, r02, r12 ← $

t ← a0 ⋅ b1

t ← a0 ⋅ b0
c0 ← t ⊕ r00

t ← t ⊕ r01
c0 ← c0 ⊕ t

return (c0, c1, c2)

t ← a0 ⋅ b2
t ← t ⊕ r02

c0 ← c0 ⊕ t

t ← a1 ⋅ b1

t ← a1 ⋅ b0
c1 ← t ⊕ r01

c1 ← c1 ⊕ t
…

n

∑
i=1

(n
i )  tuples to verify



Proof in the Probing Model
Reminder: an implementation is t-probing secure iff any set of 
at most t variables is independent from the secret

Two methods to verify t-probing security of small 
implementations

Theoretical proof from the structure of the algorithm

Automatic proofs with a tool
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Recent Automatic Tools
maskVerif [1,2]

Originally built in 2015, then extended in 2019

Probing security

CheckMasks [3]

In CommonLisp

Faster with some details on the algorithm structure

Probing security

Bloem et al. [4]

Probing security with physical defaults

 37

[1]   G. Barthe, S. Belaïd, F. Dupressoir, P.-A. Fouque, B. Grégoire, and P.-Y. Strub. Verified proofs of higher-order masking. EUROCRYPT 2015
[2]   G. Barthe, S. Belaïd, G. Cassiers, P.-A. Fouque, B. Grégoire, and F.-X. Standaert. maskVerif: Automated Verification of Higher-Order Masking 
in Presence of Physical Defaults. ESORICS 2019  
[3]   J.-S. Coron. Formal verification of side-channel countermeasures via elementary circuit transformations. ACNS 2017  
[4]   R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Winter. Formal verification of masked hardware implementations in the 
presence of glitches. EUROCRYPT 2018 



Focus on maskVerif
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maskVerif

Security order t

Security proof 
or potential 

attacks



Focus on maskVerif
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function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r



Focus on maskVerif
Determine whether a tuple is independent from the secrets
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Focus on maskVerif
Determine whether a tuple is independent from the secrets

Rule 1: secrets?
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Rule 2: random values?
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Focus on maskVerif
Determine whether a tuple is independent from the secrets

Rule 1: secrets?

Rule 2: random values?

Go through all tuples

Verify bigger sets
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Focus on maskVerif
Determine whether a tuple is independent from the secrets

Rule 1: secrets?

Rule 2: random values?

Go through all tuples

Verify bigger sets

Extensions

Extended probing model

 47

function example(a0, a1, b0, b1)

u ← a0 ⋅ b0

c0 ← u ⊕ r

r ← $

v ← a1 ⋅ b1

x ← a0 ⋅ b1

w ← v ⊕ x
z ← a1 ⋅ b0

c1 ← y ⊕ z

return (c0, c1)

v ← v ⋅ r

w = r



Focus on maskVerif
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• Examples of classical implementations

• Until 6 shares

• In the presence of glitches (HW)

first-order masking (2 shares)

second-order masking (3 shares)

third-order masking (4 shares)

fourth-order masking (5 shares)

fifth-order masking (6 shares)



Main Challenges

More efficient automatic verification tools
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Main Challenges

More efficient automatic verification tools

Closer to the reality of embedded devices

Takes implementations in Assembly language

Proof in more accurate models

 50
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Composition of gadgets
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[1]   Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO 2003  



Composition of gadgets

Random values

[1]   Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing attacks. CRYPTO 2003  
[2]   M. Rivain and E. Prouff. Provably secure higher-order masking of AES. CHES 2010
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Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of 
at most t variables is independent from the secret

How to reason on composition?
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Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of 
at most t variables is independent from the secret

How to reason on composition?

Stronger property: non-interference

An implementation is t-non-interfering iff any set of at most t 
variables can be simulated with at most t input shares
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Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of 
at most t variables is independent from the secret

How to reason of composition?

Stronger property: non-interference

An implementation is t-non-interfering iff any set of at most t 
variables can be simulated with at most t input shares

Stronger property: strong non-interference

An implementation is t-strong non-interfering iff any set of 

• t1 internal variables

• t2 output variables

can be simulated with at most t1 input shares
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Composition of gadgets
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Composition techniques
Compose NI/SNI gadgets as shown

Tool maskComp

Compose standard circuits in the probing model

Tool tightPROVE

Exact methods restricted to circuits from addition, ISW 
multiplications, and refresh gadgets

Compose gadgets with stronger properties

Example: PINI

 68



Main Challenges

Being able to compose any kind of gadgets without loss of 
efficiency
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Main Challenges

Being able to compose any kind of gadgets without loss of 
efficiency

Compose in more realistic leakage models
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Conclusion
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Cheap equipments
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Summary
Side-channel attacks are very powerful

Few seconds to recover the key on some software devices

Cheap equipments

Masking is the most widely deployed countermeasure

Numerous works

Difficult to build secure constructions

Verification

Automatic tools

Composition
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Challenges
Efficiency

The least possible randomness

The least possible operations
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Security

Theoretical proofs of existing schemes
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Challenges
Efficiency

The least possible randomness

The least possible operations

Security

Theoretical proofs of existing schemes

Automatic tools to verify the security of implementations

Practicality

Security of implementations under leakage models as close 
as possible to the reality
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Thank you.
Questions?
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