On the Security of Composed Masked
Implementations with Least Refreshing

Sonia Belaid

March, 16th 2018

]

CRYPTOCGXPERTS "

O

1/34



Introduction

Composition of Masked Circuits

Improved Composition of Masked Circuits

Conclusion

34



1 » Introduction

3/34



Power Analysis Attacks

/34



sound countermeasure which splits every sensitive variable
into t 4 1 shares (z;)o<i<¢ such that

» for every 1 <1 <, x; is picking uniformly at random

> Tp<— 1D DDy
any strict subvector of at most ¢ shares is independent from

t is called masking order or security order



Leakage Models

= Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
» a circuit is t-probing secure iff any set composed of the exact
values of at most ¢ intermediate variables is independent from

raes

6/34



Leakage Models

= Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

» a circuit is t-probing secure iff any set composed of the exact
values of at most ¢ intermediate variables is independent from
the secret

= Noisy leakage model by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)

» a circuit is secure in the noisy leakage model iff the adversary
cannot recover information on the secret from the noisy values
of all the intermediate variables

6/34



by Ishai, Sahai, and Wagner (Crypto 2003)
» a circuit is t-probing secure iff any set composed of the
of at most ¢ intermediate variables is independent from
the secret
by Chari, Jutla, Rao, and Rohatgi
(Crypto 1999) then Rivain and Prouff (EC 2013)
» a circuit is secure in the noisy leakage model iff the adversary
cannot recover information on the secret from the noisy values
of all the intermediate variables

by Duc, Dziembowski, and Faust (EC 2014)

» t-probing security = security in the noisy leakage model for
some level of noise

34



Probing Model

m variables: secret, shares, constant

= masking order t = 3

function Ex-t3(, 71,10, 13, ¢):
(*ro,z1,00 =8 %)
(¥os=x+x0+azi a0 *)

o < $
T < $
Yo < 1o+ 710
Y1 I3+
ty <1 +71o
ty < (11 +7ro) + 10
Yo — (,1‘1 “+ 7o+ ,1‘2) —+ 7
Y3 < c+ry
return(yo, y1, Y2, ¥3)

7/34



Probing Model

m variables: secret, shares, constant

= masking order t = 3

function Ex-t3(, 71,10, 13, ¢):
(¥ o, x1,00=8 %)
(* r3=x+x0+ 11+ 22 *)

rg < $
independent from

Yo < 1o+ 1o
Yy 3+
ty <11 +10
(1 +7ro) 4+ 20
— (v +ro+a)+r
—c+1r
return(yo, y1, Y2, y3)

the secret?

7/34



Probing Model

m variables: secret, shares, constant

= masking order t = 3

function Ex-t3(, 71,10, 13, ¢):
(¥ o, x1,00=8 %)
(* 3 =x+ w0+ x + 2o *)

o < $
] r < $
independent from — a0+ 10
the secret? — 541
111 +710

to « (11 + 7o) + 10
— (11 +ro+a0)+r
Y3 < c+ry
return(yo, y1, Y2, y3)

7/34



t-NI = t-probing secure
a circuit is t-NI iff any set of ¢ intermediate variables can be
perfectly simulated with at most ¢ shares of each input

function Ex-t3( v, 71,10, 13, ¢):

(* wo, 21, =8$%)
(Fos=z4+z0+z + *)

Ty < $
can be simulated ‘T : § I
with and @ "o
1 +r1
\@H + 1o
2 (11 +70) +

Yo < (114104 12) +71
Y3 < c+ry
return(yo, y1, Y2, y3)

34



Non-Interference (NI)

= ¢-NI = t-probing secure

= a circuit is t-NI iff any set of ¢ intermediate variables can be
perfectly simulated with at most ¢ shares of each input

g

Ex-t3 ))>> 3

=x+arg+x + .172)

observations

Yo Y1 Y2 Y3

9/34



Composition of Masked Circuits

10 /34



Until Recently

= composition probing secure for 2¢ 4 1 shares

= no solution for ¢ + 1 shares

11/34



Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
Example: AES S-box on GF(2%)

[z]

[®

Require: Encoding [z]
Ensure: Fresh encoding [z]
for i =1 to ¢t do
r$
xo < xo + 71
Ti < T + T
end for
return [z]

12 /34



Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
Example: AES S-box on GF(2%)

x
2] 2 Require: Encoding [z]
@ Ensure: Fresh encoding [z]
for i =1 to ¢t do
r$
E xo < xo + 71
Ti < T + T

end for
return [z]

= Flaw from ¢ = 2 (FSE 2013: Coron, Prouff, Rivain, and Roche)

12 /34



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
to+ti+to+1t3 <t

observatlons
observatlons
observatlons

t3

)
observatlons \ Y

13/34



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
to+ti+to+1t3 <t

(2]
tq
observations
B 5
observations

/X
( [x])
AN

to
observations
1)
/

3
observations

13/34



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
to+t1+to+t3 <t
to + 3
observatlons

observatlons

to + t3
observatlons

13/34



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(28%)

Constraint:
to+t1+to+t3 <t
to + 3
observatlons

observatlons

to + t3
observatlons

13/34



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+1ta+1t3 <t

t1 + 1o + 13
observations

to + t3
observations { [2]

13/34



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+1ta+1t3 <t
to + t3 [x]

observations r_\
t1 + 1o + 13
observations

13/34



Why This Flaw?

= Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
= Example: AES S-box on GF(2°%)

Constraint:
to+t1+1ta+1t3 <t

to + 3
+t1 + 12 + tg{ [I]

observations @ }
{ (-

13/34



Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN!)
Example: AES S-box on GF(2%)

Require: Encoding [z]

z
2] 2 Ensure: Fresh encoding [z]
@ for i =0 to t do
for j=i+1totdo
7] r<$
T x; +r
Tj— x5+

end for
end for
return [z]

14 /34



Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN!)
Example: AES S-box on GF(2%)

[z] Require: Encoding [z]
2] Ensure: Fresh encoding [z]

@ for i =0 tot do
for j=i+1totdo
ﬂ r<$
T <X + 71
Tj— x5+
end for

end for
return [z]

= Formal security proof for any order ¢

14 /34



Strong Non-Interference (SNI)

= {-SNI = t-NI = t-probing secure

= a circuit is t-SNI iff any set of ¢ intermediate variables, whose
t1 on the internal variables and ¢ and the outputs, can be
perfectly simulated with at most 7 shares of each input

function Ex-t3(0, 71, 10, 13, ¢):
=57
(*rs=x+x0+ 21+ 20 *)
require 1 and 1 ro <+ $
to be perfectly ri <+ $
simulated = not F Lo +To

3-SNI since yq is 1 ag+r
an output variable 1+
2 (11 4+ 10) + 10

ya < (1 +ro+aro)+r
Y3 —c+ry
return(yo, y1, Y2, Y3)

15/34



Strong Non-Interference (SNI)

= t-SNI = ¢t-NI = t-probing secure

= a circuit is t-SNI iff any set of ¢ intermediate variables, whose
t1 on the internal variables and ¢ and the outputs, can be
perfectly simulated with at most /; shares of each input

R74

Refresh 2 |nterr_la|
) ) > ) observations

y(/@l{)z\n\y:}) } + 1 output

observation

16 /34



Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN!)

Example: AES S-box on GF(2%)

Constraint:
to+t1+ta+1t3 <t

observatlons
observatlons
observatlons

observatlons

17 /34



Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN!)

Example: AES S-box on GF(2%)

Constraint:
to+t1+ta+1t3 <t

ob! ervat|ons
observatlons
ob ervat|ons

observatlons

17 /34



Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN!)

Example: AES S-box on GF(2%)

Constraint:
to+t1+to+t3 <t
to + 3
observatlons

observatlons

2‘2 internal observations
t3 output observations

17 /34



Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN!)

Example: AES S-box on GF(2%)

Constraint:
to+t1+to+t3 <t
to + 3
observatlons

observatmns\
2‘2 internal observations
t3 output observations

17 /34



Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SNI)

Example: AES S-box on GF(2%)

Constraint:
to+1t1+1la+1t3 <t
to + 13
observatlons
t1 + 12
observations

t3 output observations

17 /34



Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SNI)

Example: AES S-box on GF(2%)

Constraint:
to+1t1+1la+1t3 <t

t1 + 12
observatlons

E } t3 output observations

to + 13
observatlons

17 /34



Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini
(CCS 2016): add refresh gadgets (SN!)

Example: AES S-box on GF(2%)

Constraint:
to+t1+ta+t3 <t

to + t3
+t1 + o { [z]

observations @ }

E } ts output ob-

servations

17 /34



from t-NI and ¢-SNI gadgets = build a ¢-Nl circuit by
inserting t-SNI regfresh gadgets at carefully chosen locations

formally proven

Implementation in t-NI secure
C language with — —— implementation
no countermeasure in C language

18 /34



Improved Composition of Masked Circuits

19/34



Limitations of maskComp

= maskComp adds a refresh gadget to Circuit 1
= but Circuit 1 was already t-probing secure

[z1] [ [21] [2]

(29 -
Figure: Circuit 1. Figure: Circuit 1 after

maskComp.

20 /34



Joint work with Dahmun Goudarzi and Matthieu Rivain
Apply to

» sharewise additions,

» ISW-multiplications,

» ISW-refresh gadgets
Determine whether a tight shared circuit is probing
secure for any order t

Reduction to a simplified problem
Resolution of the simplified problem
Extension to larger circuits

21/34



ExpReal(A, C): ExpSim(4, S, C)

L (P,a1,...,2n) < A 1 (Poat,... an) ¢ AQ)
2: [z1] - Enc(z1),...,[zn] < Enc(zy) 2: (v1,...,v) < S(P)
30 (v1,...,08) = C([z1], ... [za])p 3: Return (vi,...,v¢)
4: Return (vi,..., vt)
t-probing security game.
A shared circuit C'is iff V. A, 3 S that wins the

t-probing security game defined in Figure 3, i.e., the random
experiments ExpReal(A, C) and ExpSim(A, S, C) output identical
distributions.

22 /34



Probes on multiplication gadgets are replaced by probes on
their inputs

Probes on refresh gadgets are replaced by probes on their
input

Probes on addition gadgets are replaced by probes on their
inputs or their output

[z1] [z2] (23]

[v2]

/Qi‘):s] ﬂm]

1vs] Lo

23 /34



First Step: Game 2

= The tight shared circuit can be replaced by a tight shared
circuit of multiplicative depth one with an extended input.

[w2] [3]

[z1] [l [ws] [zd]  [ws]  [we]  [wr] (]

24 /34



First Step: Game 3

= The attacker is restricted to probes on pairs of multiplication
inputs.

25/34



Second Step: Resolution Method

= for each linear combination [c] that is an operand of a
multiplication, draw a list of multiplications

» G ={([c],b}); 1 <i<mq}, let Uy =< b} >
> Go =G U{([c] +Us,b%); 1 <i<my}, let Uy =UU < b2 >
> G3 = Go U{([c] + U, b3); 1 <i<mg}, letUs =UsU < b} >
> ...

= at each step 1,
» if [¢] € U;, then stop there is a probing attack on [¢]
» if G; = G,_1, then stop and consider another combination

26 /34



Second Step: Example

u Operands are: [c1], [c2], [cs], [ca], and [c5].
= Multiplications are ([e1], [e2]), ([ca], [e5]), and ([es], [c4])-

1. Consider [cq].
> G1 = ([c1], [e2]) and Uy = [e2]
[z3] = [es]

[21] = [el] [o] = [e2]

27 /34



Second Step: Example

= Operands are: [c1], [c2], [e3], [ca], and [cs].
= Multiplications are ([c1], [e2]), ([ca], [c5]), and ([es], [c4])-

1. Consider [cq].

> G1 = ([e1], [c2]) and Uy = [c5]

> Go = G1 U{([ea]; [c5]), ([04] [cs])} since [c4] = [c1] + [c2] and
Uy =< [CQ]a[ 3]a[ ]

= [e2] [z3] = [cs]

[z1] = [e1] £

27 /34



Second Step: Example

= Operands are: [c1], [c2], [e3], [ca], and [cs].
= Multiplications are ([c1], [e2]), ([ca], [c5]), and ([e3], [c4])-

1. Consider [c1].
> G1 = ([e1], [e2]) and Uy = [co]
> Ga = G1 U {([ea], [e5]), ([ca], [es]) } since [ca] = [e1] + [c2] and
Us =< [CQ], [63], [05] >,
» G35 = Go, there is no attack on [c1].

[z1] = [e1] [z] = [c2] [23] = [cs]

| | |

27 /34



Second Step: Example

u Operands are: [c1], [c2], [cs], [ca], and [c5].
= Multiplications are ([e1], [e2]), ([ca], [e5]), and ([es], [c4])-

2. Consider [ca].
> G1 = ([e2], [er]) and Uy = [e4]
[z3] = [es]

[21] = [el] [o] = [e2]

27 /34



Second Step: Example

= Operands are: [c1], [c2], [e3], [ca], and [cs].
= Multiplications are ([c1], [e2]), ([ca], [c5]), and ([es], [c4])-

2. Consider [ca].
> G1 = ([ea]: [e1]) and Uy = [e:]
> Ga =G U {([ea], [es]), ([04] [es])} since [ea] = [eo] 4 [e1] and
Uy =< [Cl]a[ 3]a[ ]
= [e2] [z3] = [cs]

[z1] = [e1] £

27 /34



Second Step: Example

= Operands are: [c1], [c2], [e3], [ca], and [cs].
= Multiplications are ([c1], [e2]), ([ca], [c5]), and ([es], [c4])-

2. Consider [c2].
> G1 = ([e2], [1]) and Uy = [e1]
> Ga = G1 U{([ea], [es]), ([cal [es])} since [ea] = [ea] + [e1] and
U =< [Cl]a[ 3]7[ ]
> [e2] € Us(=< [c1], [es], [05] >) since [ca] = [e3] + [e5] so there
is an attack!

[z1] = [e1] [x2] = [co [z3] = [c3]

27 /34



Second Step: Bitslice AES S-box

= Bitslice implementation from Goudarzi and Rivain

» sharewise additions
» 32 ISW-multiplication gadgets
» 32 ISW-refresh gadgets

28/34



Second Step: Bitslice AES S-box

= Bitslice implementation from Goudarzi and Rivain
» sharewise additions
» 32 ISW-multiplication gadgets
» 32 ISW-refresh gadgets
= maskComp
» sharewise additions
» 32 ISW-multiplication gadgets
» 32 ISW-refresh gadgets

28/34



Second Step: Bitslice AES S-box

= Bitslice implementation from Goudarzi and Rivain
» sharewise additions
» 32 ISW-multiplication gadgets
» 32 ISW-refresh gadgets

= maskComp
» sharewise additions
» 32 ISW-multiplication gadgets
» 32 ISW-refresh gadgets

= New method
» sharewise additions
» 32 ISW-multiplication gadgets
» 0 ISW-refresh gadget

28 /34



Proposition. A tight shared circuit C' = Cy o C'; composed of two
sequential circuits:

a t-probing secure circuit C'y whose outputs are all outputs of

t-SNI gadgets,

a t-probing secure circuit C's whose inputs are C''s outputs.
is t-probing secure.

l t-private circuit

t-private circuit

)

29 /34



Proposition. A tight shared circuit C' = (5 o ' composed of two
sequential circuits:

a t-linear injective circuit C7, exclusively composed of
sharewise additions,

a t-probing secure circuit C'o whose inputs are C''s outputs.

is t-probing secure.

|

’ t-linear injective circuit

I

t-private circuit

[

30/34



Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit C' = C||Cy composed of two
parallel t-probing secure circuits which operate on independent
input sharings is t-probing secure.

| |
t-private circuit t-private circuit
l l

31/34



Proposition. Let C be SPN-
block cipher defined as a tight
shared circuit. If both condi-
tions

S's and KS's outputs are
t-SNI gadgets’ outputs
S and KS are t-probing
secure

are fulfilled, then C is t-
probing secure.

P
—k
KS
T fmear infective Gt @*% By
,,,,,,,,,, e "
S
[ 1| KS
| L |
I - I
! t-linear injective circuit € %7 -1
,,,,,,,,,, oy S —
S
r-- oo 1| KS
| L |
I - I
I t-linear injective circuit € % ]
+
+
c

34



4 » Conclusion

33/34



In a nutshell...

Method to exactly determine whether or not a tight shared
circuit is probing secure for any ¢

Significant gain in practice

To continue...
Extend these results to more general circuits

Apply this method to reduce randomness on existing
applications

34 /34



	Introduction
	Composition of Masked Circuits
	Improved Composition of Masked Circuits
	Conclusion

