On the Security of Composed Masked Implementations with Least Refreshing

Sonia Belaïd

March, 16th 2018

1 Introduction

2 Composition of Masked Circuits

3 Improved Composition of Masked Circuits

4 Conclusion

1 Introduction

2 Composition of Masked Circuits

3 Improved Composition of Masked Circuits

Power Analysis Attacks

Masking

- sound countermeasure which splits every sensitive variable x into t + 1 shares $(x_i)_{0 \le i \le t}$ such that
 - ▶ for every $1 \le i \le t$, x_i is picking uniformly at random
 - $x_0 \leftarrow x \oplus x_1 \oplus \cdots \oplus x_t$
- $\hfill any strict subvector of at most <math display="inline">t$ shares is independent from x
- *t* is called *masking order* or *security order*

Leakage Models

• Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret

Leakage Models

Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
 - a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables

Leakage Models

Probing model by Ishai, Sahai, and Wagner (Crypto 2003)

- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
 - a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables
- Reduction by Duc, Dziembowski, and Faust (EC 2014)
 - ► t-probing security ⇒ security in the noisy leakage model for some level of noise

Probing Model

variables: secret, shares, constant

• masking order t = 3

Probing Model

variables: secret, shares, constant

• masking order t = 3

Probing Model

variables: secret, shares, constant

• masking order t = 3

Non-Interference (NI)

- t-NI ⇒ t-probing secure
- a circuit is t-NI iff any set of t intermediate variables can be perfectly simulated with at most t shares of each input

Non-Interference (NI)

- t-NI \Rightarrow t-probing secure
- a circuit is t-NI iff any set of t intermediate variables can be perfectly simulated with at most t shares of each input

1 Introduction

2 Composition of Masked Circuits

3 Improved Composition of Masked Circuits

Until Recently

- composition probing secure for 2t + 1 shares
- no solution for t+1 shares

First Proposal

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

• Example: AES S-box on $GF(2^8)$

Require: Encoding [x]Ensure: Fresh encoding [x]for i = 1 to t do $r \leftarrow \$$ $x_0 \leftarrow x_0 + r$ $x_i \leftarrow x_i + r$ end for return [x]

First Proposal

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)

• Example: AES S-box on $GF(2^8)$

 \Rightarrow Flaw from t = 2 (FSE 2013: Coron, Prouff, Rivain, and Roche)

Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
Example: AES S-box on GF(2⁸)

Constraint: $t_0 + t_1 + t_2 + t_3 \leq t$

Second Proposal

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on GF(2⁸)

Require: Encoding [x]Ensure: Fresh encoding [x]for i = 0 to t do for j = i + 1 to t do $r \leftarrow \$$ $x_i \leftarrow x_i + r$ $x_j \leftarrow x_j + r$ end for return [x]

Second Proposal

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on GF(2⁸)

Require: Encoding [x]Ensure: Fresh encoding [x]for i = 0 to t do for j = i + 1 to t do $r \leftarrow \$$ $x_i \leftarrow x_i + r$ $x_j \leftarrow x_j + r$ end for return [x]

 \Rightarrow Formal security proof for any order t

Strong Non-Interference (SNI)

• t-SNI \Rightarrow t-NI \Rightarrow t-probing secure

a circuit is t-SNI iff any set of t intermediate variables, whose t₁ on the internal variables and t₂ and the outputs, can be perfectly simulated with at most t₁ shares of each input

Strong Non-Interference (SNI)

- $t\text{-SNI} \Rightarrow t\text{-NI} \Rightarrow t\text{-probing secure}$
- a circuit is t-SNI iff any set of t intermediate variables, whose t₁ on the internal variables and t₂ and the outputs, can be perfectly simulated with at most t₁ shares of each input

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

 Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)

Tool maskComp

- from t-NI and t-SNI gadgets ⇒ build a t-NI circuit by inserting t-SNI regfresh gadgets at carefully chosen locations
- formally proven

1 Introduction

2 Composition of Masked Circuits

3 Improved Composition of Masked Circuits

Limitations of maskComp

- maskComp adds a refresh gadget to Circuit 1
- but Circuit 1 was already t-probing secure

Figure: Circuit 1.

Figure: Circuit 1 after maskComp.

New Proposal

- Joint work with Dahmun Goudarzi and Matthieu Rivain
- Apply to tight shared circuits:
 - sharewise additions,
 - ISW-multiplications,
 - ISW-refresh gadgets
- Determine exactly whether a tight shared circuit is probing secure for any order t
 - 1. Reduction to a simplified problem
 - 2. Resolution of the simplified problem
 - 3. Extension to larger circuits

First Step: Game 0

 $\mathsf{ExpReal}(\mathcal{A}, C)$:

- 1: $(\mathcal{P}, x_1, \dots, x_n) \leftarrow \mathcal{A}()$ 2: $[x_1] \leftarrow \operatorname{Enc}(x_1), \dots, [x_n] \leftarrow \operatorname{Enc}(x_n)$ 3: $(v_1, \dots, v_t) \leftarrow C([x_1], \dots, [x_n])_{\mathcal{P}}$ 4: Return (v_1, \dots, v_t)
- $\begin{array}{l} \displaystyle \frac{\mathsf{ExpSim}(\mathcal{A},\mathcal{S},C):}{1:\ (\mathcal{P},x_1,\ldots,x_n)\leftarrow\mathcal{A}()} \\ 2:\ (v_1,\ldots,v_t)\leftarrow\mathcal{S}(\mathcal{P}) \\ 3:\ \mathsf{Return}\ (v_1,\ldots,v_t) \end{array}$

Figure: *t*-probing security game.

A shared circuit C is *t*-probing secure iff $\forall A, \exists S$ that wins the *t*-probing security game defined in Figure 3, i.e., the random experiments ExpReal(A, C) and ExpSim(A, S, C) output identical distributions.

First Step: Game 1

- Probes on multiplication gadgets are replaced by probes on their inputs
- Probes on refresh gadgets are replaced by probes on their input
- Probes on addition gadgets are replaced by probes on their inputs or their output

First Step: Game 2

• The tight shared circuit can be replaced by a tight shared circuit of multiplicative depth one with an extended input.

First Step: Game 3

The attacker is restricted to probes on pairs of multiplication inputs.

Second Step: Resolution Method

- for each linear combination [c] that is an operand of a multiplication, draw a list of multiplications
 - $\mathcal{G}_1 = \{([c], b_i^1); \ 1 \le i \le m_1\}, \ \mathsf{let} \ \mathcal{U}_1 = < b_i^1 > 0$
 - $\mathcal{G}_2 = \mathcal{G}_1 \cup \{([c] + \mathcal{U}_1, b_i^2); 1 \le i \le m_2\}, \text{ let } \mathcal{U}_2 = \mathcal{U}_1 \cup \langle b_i^2 \rangle$
 - ▶ $\mathcal{G}_3 = \mathcal{G}_2 \cup \{([c] + \mathcal{U}_2, b_i^3); 1 \le i \le m_3\}, \text{ let } \mathcal{U}_3 = \mathcal{U}_2 \cup \langle b_i^3 \rangle$ ▶ ...

at each step i,

- ▶ if $[c] \in U_i$, then stop there is a probing attack on [c]
- ▶ if $G_i = G_{i-1}$, then stop and consider another combination

- Operands are: $[c_1]$, $[c_2]$, $[c_3]$, $[c_4]$, and $[c_5]$.
- Multiplications are $([c_1], [c_2])$, $([c_4], [c_5])$, and $([c_3], [c_4])$.
- 1. Consider $[c_1]$.
 - $\mathcal{G}_1 = ([c_1], [c_2])$ and $\mathcal{U}_1 = [c_2]$

- Operands are: $[c_1]$, $[c_2]$, $[c_3]$, $[c_4]$, and $[c_5]$.
- Multiplications are $([c_1], [c_2])$, $([c_4], [c_5])$, and $([c_3], [c_4])$.
- 1. Consider $[c_1]$.
 - $\mathcal{G}_1 = ([c_1], [c_2])$ and $\mathcal{U}_1 = [c_2]$
 - $\mathcal{G}_2 = \mathcal{G}_1 \cup \{([c_4], [c_5]), ([c_4], [c_3])\}$ since $[c_4] = [c_1] + [c_2]$ and $\mathcal{U}_2 = \langle [c_2], [c_3], [c_5] \rangle$.

- Operands are: $[c_1]$, $[c_2]$, $[c_3]$, $[c_4]$, and $[c_5]$.
- Multiplications are $([c_1], [c_2])$, $([c_4], [c_5])$, and $([c_3], [c_4])$.
- 1. Consider $[c_1]$.
 - $\mathcal{G}_1 = ([c_1], [c_2])$ and $\mathcal{U}_1 = [c_2]$
 - $\mathcal{G}_2 = \mathcal{G}_1 \cup \{([c_4], [c_5]), ([c_4], [c_3])\}$ since $[c_4] = [c_1] + [c_2]$ and $\mathcal{U}_2 = \langle [c_2], [c_3], [c_5] \rangle$.

•
$$\mathcal{G}_3 = \mathcal{G}_2$$
, there is no attack on $[c_1]$.

- Operands are: $[c_1]$, $[c_2]$, $[c_3]$, $[c_4]$, and $[c_5]$.
- Multiplications are $([c_1], [c_2])$, $([c_4], [c_5])$, and $([c_3], [c_4])$.
- 2. Consider $[c_2]$.
 - $\mathcal{G}_1 = ([c_2], [c_1])$ and $\mathcal{U}_1 = [c_1]$

- Operands are: $[c_1]$, $[c_2]$, $[c_3]$, $[c_4]$, and $[c_5]$.
- Multiplications are $([c_1], [c_2])$, $([c_4], [c_5])$, and $([c_3], [c_4])$.
- 2. Consider $[c_2]$.
 - $\mathcal{G}_1 = ([c_2], [c_1])$ and $\mathcal{U}_1 = [c_1]$
 - $\mathcal{G}_2 = \mathcal{G}_1 \cup \{([c_4], [c_5]), ([c_4], [c_3])\}$ since $[c_4] = [c_2] + [c_1]$ and $\mathcal{U}_2 = \langle [c_1], [c_3], [c_5] \rangle$.

- Operands are: $[c_1]$, $[c_2]$, $[c_3]$, $[c_4]$, and $[c_5]$.
- Multiplications are $([c_1], [c_2])$, $([c_4], [c_5])$, and $([c_3], [c_4])$.
- 2. Consider $[c_2]$.
 - $\mathcal{G}_1 = ([c_2], [c_1])$ and $\mathcal{U}_1 = [c_1]$
 - ▶ $\mathcal{G}_2 = \mathcal{G}_1 \cup \{([c_4], [c_5]), ([c_4], [c_3])\}$ since $[c_4] = [c_2] + [c_1]$ and $\mathcal{U}_2 = < [c_1], [c_3], [c_5] >$.
 - ▶ $[c_2] \in \mathcal{U}_2(=<[c_1], [c_3], [c_5] >)$ since $[c_2] = [c_3] + [c_5]$ so there is an attack!

Second Step: Bitslice AES S-box

Bitslice implementation from Goudarzi and Rivain

- sharewise additions
- ▶ 32 ISW-multiplication gadgets
- ▶ 32 ISW-refresh gadgets

Second Step: Bitslice AES S-box

Bitslice implementation from Goudarzi and Rivain

- sharewise additions
- ▶ 32 ISW-multiplication gadgets
- ▶ 32 ISW-refresh gadgets
- maskComp
 - sharewise additions
 - ▶ 32 ISW-multiplication gadgets
 - ▶ 32 ISW-refresh gadgets

Second Step: Bitslice AES S-box

Bitslice implementation from Goudarzi and Rivain

- sharewise additions
- 32 ISW-multiplication gadgets
- ▶ 32 ISW-refresh gadgets
- maskComp
 - sharewise additions
 - ▶ 32 ISW-multiplication gadgets
 - 32 ISW-refresh gadgets
- New method
 - sharewise additions
 - ▶ 32 ISW-multiplication gadgets
 - 0 ISW-refresh gadget

Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit $C = C_2 \circ C_1$ composed of two sequential circuits:

- a *t*-probing secure circuit C₁ whose outputs are all outputs of *t*-SNI gadgets,
- a *t*-probing secure circuit C_2 whose inputs are C_1 's outputs.

is *t*-probing secure.

Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit $C = C_2 \circ C_1$ composed of two sequential circuits:

- a *t*-linear injective circuit C₁, exclusively composed of sharewise additions,
- a *t*-probing secure circuit C_2 whose inputs are C_1 's outputs.
- is *t*-probing secure.

Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit $C = C_1 || C_2$ composed of two parallel *t*-probing secure circuits which operate on independent input sharings is *t*-probing secure.

Third Step: SPN Block Ciphers

Proposition. Let C be SPNblock cipher defined as a tight shared circuit. If both conditions

- S's and KS's outputs are t-SNI gadgets' outputs
- 2. S and KS are t-probing secure

are fulfilled, then C is t-probing secure.

1 Introduction

2 Composition of Masked Circuits

3 Improved Composition of Masked Circuits

4 Conclusion

Conclusion

In a nutshell...

- Method to exactly determine whether or not a tight shared circuit is probing secure for any t
- Significant gain in practice

To continue...

- Extend these results to more general circuits
- Apply this method to reduce randomness on existing applications