On the Security of Composed Masked Implementations with Least Refreshing

Sonia Belaïd

March, 16th 2018

CRYPTOEXPERTS ${ }^{\text {吅 }}$

1 - Introduction

2 - Composition of Masked Circuits
3. Improved Composition of Masked Circuits

4 - Conclusion

1. Introduction
2. Composition of Masked Circuits
3. Improved Composition of Masked Circuits
4. Conclusion

Power Analysis Attacks

Masking

- sound countermeasure which splits every sensitive variable x into $t+1$ shares $\left(x_{i}\right)_{0 \leq i \leq t}$ such that
- for every $1 \leq i \leq t, x_{i}$ is picking uniformly at random
- $x_{0} \leftarrow x \oplus x_{1} \oplus \cdots \oplus x_{t}$
- any strict subvector of at most t shares is independent from x
- t is called masking order or security order

Leakage Models

- Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret

Leakage Models

- Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
- a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables

Leakage Models

- Probing model by Ishai, Sahai, and Wagner (Crypto 2003)
- a circuit is t-probing secure iff any set composed of the exact values of at most t intermediate variables is independent from the secret
- Noisy leakage model by Chari, Jutla, Rao, and Rohatgi (Crypto 1999) then Rivain and Prouff (EC 2013)
- a circuit is secure in the noisy leakage model iff the adversary cannot recover information on the secret from the noisy values of all the intermediate variables
- Reduction by Duc, Dziembowski, and Faust (EC 2014)
- t-probing security \Rightarrow security in the noisy leakage model for some level of noise

Probing Model

- variables: secret, shares, constant
- masking order $t=3$

```
function \(\operatorname{Ex-t} 3\left(x_{0}, x_{1}, x_{2}, x_{3}, c\right)\) :
    \(\left(^{*} x_{0}, x_{1}, x_{2}=\$^{*}\right)\)
    \(\left({ }^{*} x_{3}=x+x_{0}+x_{1}+x_{2}{ }^{*}\right)\)
        \(r_{0} \leftarrow \$\)
        \(r_{1} \leftarrow \$\)
        \(y_{0} \leftarrow x_{0}+r_{0}\)
        \(y_{1} \leftarrow x_{3}+r_{1}\)
        \(t_{1} \leftarrow x_{1}+r_{0}\)
        \(t_{2} \leftarrow\left(x_{1}+r_{0}\right)+x_{2}\)
        \(y_{2} \leftarrow\left(x_{1}+r_{0}+x_{2}\right)+r_{1}\)
        \(y_{3} \leftarrow c+r_{1}\)
\(\operatorname{return}\left(y_{0}, y_{1}, y_{2}, y_{3}\right)\)
```


Probing Model

- variables: secret, shares, constant
- masking order $t=3$

Probing Model

- variables: secret, shares, constant
- masking order $t=3$

Non-Interference (NI)

- t-NI $\Rightarrow t$-probing secure
- a circuit is $t-\mathrm{NI}$ iff any set of t intermediate variables can be perfectly simulated with at most t shares of each input

Non-Interference (NI)

- t - $\mathrm{NI} \Rightarrow t$-probing secure
- a circuit is t - NI iff any set of t intermediate variables can be perfectly simulated with at most t shares of each input

1 - Introduction

2 - Composition of Masked Circuits
3. Improved Composition of Masked Circuits

Conclusion

Until Recently

- composition probing secure for $2 t+1$ shares
- no solution for $t+1$ shares

First Proposal

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Require: Encoding $[x]$
Ensure: Fresh encoding $[x]$
for $i=1$ to t do
$r \leftarrow \$$
$x_{0} \leftarrow x_{0}+r$
$x_{i} \leftarrow x_{i}+r$
end for
return $[x]$

First Proposal

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Require: Encoding $[x]$
Ensure: Fresh encoding $[x]$
for $i=1$ to t do
$r \leftarrow \$$
$x_{0} \leftarrow x_{0}+r$
$x_{i} \leftarrow x_{i}+r$
end for
return $[x]$

\Rightarrow Flaw from $t=2$ (FSE 2013: Coron, Prouff, Rivain, and Roche)

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:
$t_{0}+t_{1}+t_{2}+t_{3} \leqslant t$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:
$t_{0}+t_{1}+t_{2}+t_{3} \leqslant t$

Why This Flaw?

- Rivain and Prouff (CHES 2010): add refresh gadgets (NI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:
$t_{0}+t_{1}+t_{2}+t_{3} \leqslant t$

Second Proposal

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$


```
Require: Encoding \([x]\)
Ensure: Fresh encoding \([x]\)
    for \(i=0\) to \(t\) do
        for \(j=i+1\) to \(t\) do
        \(r \leftarrow \$\)
        \(x_{i} \leftarrow x_{i}+r\)
        \(x_{j} \leftarrow x_{j}+r\)
        end for
    end for
    return \([x]\)
```


Second Proposal

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

\Rightarrow Formal security proof for any order t

Strong Non-Interference (SNI)

- t-SNI $\Rightarrow t$-NI $\Rightarrow t$-probing secure
- a circuit is t-SNI iff any set of t intermediate variables, whose t_{1} on the internal variables and t_{2} and the outputs, can be perfectly simulated with at most t_{1} shares of each input

Strong Non-Interference (SNI)

- t-SNI $\Rightarrow t$-NI $\Rightarrow t$-probing secure
- a circuit is t-SNI iff any set of t intermediate variables, whose t_{1} on the internal variables and t_{2} and the outputs, can be perfectly simulated with at most t_{1} shares of each input

Why It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:
$t_{0}+t_{1}+t_{2}+t_{3} \leqslant t$

Why It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:
$t_{0}+t_{1}+t_{2}+t_{3} \leqslant t$

Why It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Why It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Why It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Constraint:

$$
t_{0}+t_{1}+t_{2}+t_{3} \leqslant t
$$

Why It Works?

- Barthe, B., Dupressoir, Fouque, Grégoire, Strub, Zucchini (CCS 2016): add stronger refresh gadgets (SNI)
- Example: AES S-box on $\operatorname{GF}\left(2^{8}\right)$

Tool maskComp

- from t-NI and t-SNI gadgets \Rightarrow build a t-NI circuit by inserting t-SNI regfresh gadgets at carefully chosen locations
- formally proven

Implementation in
C language with
no countermeasure

1 - Introduction
2. Composition of Masked Circuits
3. Improved Composition of Masked Circuits

Limitations of maskComp

- maskComp adds a refresh gadget to Circuit 1
- but Circuit 1 was already t-probing secure

Figure: Circuit 1.
Figure: Circuit 1 after maskComp.

New Proposal

- Joint work with Dahmun Goudarzi and Matthieu Rivain
- Apply to tight shared circuits:
- sharewise additions,
- ISW-multiplications,
- ISW-refresh gadgets
- Determine exactly whether a tight shared circuit is probing secure for any order t

1. Reduction to a simplified problem
2. Resolution of the simplified problem
3. Extension to larger circuits

First Step: Game 0

ExpReal (\mathcal{A}, C) :
1: $\left(\mathcal{P}, x_{1}, \ldots, x_{n}\right) \leftarrow \mathcal{A}()$

$$
\operatorname{ExpSim}(\mathcal{A}, \mathcal{S}, C):
$$

2: $\left[x_{1}\right] \leftarrow \operatorname{Enc}\left(x_{1}\right), \ldots,\left[x_{n}\right] \leftarrow \operatorname{Enc}\left(x_{n}\right)$ 1: $\left(\mathcal{P}, x_{1}, \ldots, x_{n}\right) \leftarrow \mathcal{A}()$

3: $\left(v_{1}, \ldots, v_{t}\right) \leftarrow C\left(\left[x_{1}\right], \ldots,\left[x_{n}\right]\right)_{\mathcal{P}}$
2: $\left(v_{1}, \ldots, v_{t}\right) \leftarrow \mathcal{S}(\mathcal{P})$
4: Return $\left(v_{1}, \ldots, v_{t}\right)$
3: Return $\left(v_{1}, \ldots, v_{t}\right)$

Figure: t-probing security game.

A shared circuit C is t-probing secure iff $\forall \mathcal{A}, \exists \mathcal{S}$ that wins the t-probing security game defined in Figure 3, i.e., the random experiments $\operatorname{ExpReal}(\mathcal{A}, C)$ and $\operatorname{ExpSim}(\mathcal{A}, \mathcal{S}, C)$ output identical distributions.

First Step: Game 1

- Probes on multiplication gadgets are replaced by probes on their inputs
- Probes on refresh gadgets are replaced by probes on their input
- Probes on addition gadgets are replaced by probes on their inputs or their output

First Step: Game 2

- The tight shared circuit can be replaced by a tight shared circuit of multiplicative depth one with an extended input.

First Step: Game 3

- The attacker is restricted to probes on pairs of multiplication inputs.

Second Step: Resolution Method

- for each linear combination $[c]$ that is an operand of a multiplication, draw a list of multiplications
- $\mathcal{G}_{1}=\left\{\left([c], b_{i}^{1}\right) ; 1 \leq i \leq m_{1}\right\}$, let $\mathcal{U}_{1}=<b_{i}^{1}>$
- $\mathcal{G}_{2}=\mathcal{G}_{1} \cup\left\{\left([c]+\mathcal{U}_{1}, b_{i}^{2}\right) ; 1 \leq i \leq m_{2}\right\}$, let $\mathcal{U}_{2}=\mathcal{U}_{1} \cup<b_{i}^{2}>$
- $\mathcal{G}_{3}=\mathcal{G}_{2} \cup\left\{\left([c]+\mathcal{U}_{2}, b_{i}^{3}\right) ; 1 \leq i \leq m_{3}\right\}$, let $\mathcal{U}_{3}=\mathcal{U}_{2} \cup<b_{i}^{3}>$
- ...
- at each step i,
- if $[c] \in \mathcal{U}_{i}$, then stop there is a probing attack on $[c]$
- if $\mathcal{G}_{i}=\mathcal{G}_{i-1}$, then stop and consider another combination

Second Step: Example

- Operands are: $\left[c_{1}\right],\left[c_{2}\right],\left[c_{3}\right],\left[c_{4}\right]$, and $\left[c_{5}\right]$.
- Multiplications are $\left(\left[c_{1}\right],\left[c_{2}\right]\right),\left(\left[c_{4}\right],\left[c_{5}\right]\right)$, and $\left(\left[c_{3}\right],\left[c_{4}\right]\right)$.

1. Consider $\left[c_{1}\right]$.

- $\mathcal{G}_{1}=\left(\left[c_{1}\right],\left[c_{2}\right]\right)$ and $\mathcal{U}_{1}=\left[c_{2}\right]$

Second Step: Example

- Operands are: $\left[c_{1}\right],\left[c_{2}\right],\left[c_{3}\right],\left[c_{4}\right]$, and $\left[c_{5}\right]$.
- Multiplications are $\left(\left[c_{1}\right],\left[c_{2}\right]\right),\left(\left[c_{4}\right],\left[c_{5}\right]\right)$, and $\left(\left[c_{3}\right],\left[c_{4}\right]\right)$.

1. Consider $\left[c_{1}\right]$.

- $\mathcal{G}_{1}=\left(\left[c_{1}\right],\left[c_{2}\right]\right)$ and $\mathcal{U}_{1}=\left[c_{2}\right]$
- $\mathcal{G}_{2}=\mathcal{G}_{1} \cup\left\{\left(\left[c_{4}\right],\left[c_{5}\right]\right),\left(\left[c_{4}\right],\left[c_{3}\right]\right)\right\}$ since $\left[c_{4}\right]=\left[c_{1}\right]+\left[c_{2}\right]$ and $\mathcal{U}_{2}=<\left[c_{2}\right],\left[c_{3}\right],\left[c_{5}\right]>$.

Second Step: Example

- Operands are: $\left[c_{1}\right],\left[c_{2}\right],\left[c_{3}\right],\left[c_{4}\right]$, and $\left[c_{5}\right]$.
- Multiplications are $\left(\left[c_{1}\right],\left[c_{2}\right]\right),\left(\left[c_{4}\right],\left[c_{5}\right]\right)$, and $\left(\left[c_{3}\right],\left[c_{4}\right]\right)$.

1. Consider $\left[c_{1}\right]$.

- $\mathcal{G}_{1}=\left(\left[c_{1}\right],\left[c_{2}\right]\right)$ and $\mathcal{U}_{1}=\left[c_{2}\right]$
- $\mathcal{G}_{2}=\mathcal{G}_{1} \cup\left\{\left(\left[c_{4}\right],\left[c_{5}\right]\right),\left(\left[c_{4}\right],\left[c_{3}\right]\right)\right\}$ since $\left[c_{4}\right]=\left[c_{1}\right]+\left[c_{2}\right]$ and $\mathcal{U}_{2}=<\left[c_{2}\right],\left[c_{3}\right],\left[c_{5}\right]>$.
- $\mathcal{G}_{3}=\mathcal{G}_{2}$, there is no attack on $\left[c_{1}\right]$.

Second Step: Example

- Operands are: $\left[c_{1}\right],\left[c_{2}\right],\left[c_{3}\right],\left[c_{4}\right]$, and $\left[c_{5}\right]$.
- Multiplications are $\left(\left[c_{1}\right],\left[c_{2}\right]\right),\left(\left[c_{4}\right],\left[c_{5}\right]\right)$, and $\left(\left[c_{3}\right],\left[c_{4}\right]\right)$.

2. Consider $\left[c_{2}\right]$.

- $\mathcal{G}_{1}=\left(\left[c_{2}\right],\left[c_{1}\right]\right)$ and $\mathcal{U}_{1}=\left[c_{1}\right]$

Second Step: Example

- Operands are: $\left[c_{1}\right],\left[c_{2}\right],\left[c_{3}\right],\left[c_{4}\right]$, and $\left[c_{5}\right]$.
- Multiplications are $\left(\left[c_{1}\right],\left[c_{2}\right]\right),\left(\left[c_{4}\right],\left[c_{5}\right]\right)$, and $\left(\left[c_{3}\right],\left[c_{4}\right]\right)$.

2. Consider $\left[c_{2}\right]$.

- $\mathcal{G}_{1}=\left(\left[c_{2}\right],\left[c_{1}\right]\right)$ and $\mathcal{U}_{1}=\left[c_{1}\right]$
- $\mathcal{G}_{2}=\mathcal{G}_{1} \cup\left\{\left(\left[c_{4}\right],\left[c_{5}\right]\right),\left(\left[c_{4}\right],\left[c_{3}\right]\right)\right\}$ since $\left[c_{4}\right]=\left[c_{2}\right]+\left[c_{1}\right]$ and $\mathcal{U}_{2}=<\left[c_{1}\right],\left[c_{3}\right],\left[c_{5}\right]>$.

Second Step: Example

- Operands are: $\left[c_{1}\right],\left[c_{2}\right],\left[c_{3}\right],\left[c_{4}\right]$, and $\left[c_{5}\right]$.
- Multiplications are $\left(\left[c_{1}\right],\left[c_{2}\right]\right),\left(\left[c_{4}\right],\left[c_{5}\right]\right)$, and $\left(\left[c_{3}\right],\left[c_{4}\right]\right)$.

2. Consider $\left[c_{2}\right]$.

- $\mathcal{G}_{1}=\left(\left[c_{2}\right],\left[c_{1}\right]\right)$ and $\mathcal{U}_{1}=\left[c_{1}\right]$
- $\mathcal{G}_{2}=\mathcal{G}_{1} \cup\left\{\left(\left[c_{4}\right],\left[c_{5}\right]\right),\left(\left[c_{4}\right],\left[c_{3}\right]\right)\right\}$ since $\left[c_{4}\right]=\left[c_{2}\right]+\left[c_{1}\right]$ and $\mathcal{U}_{2}=<\left[c_{1}\right],\left[c_{3}\right],\left[c_{5}\right]>$.
- $\left[c_{2}\right] \in \mathcal{U}_{2}\left(=<\left[c_{1}\right],\left[c_{3}\right],\left[c_{5}\right]>\right)$ since $\left[c_{2}\right]=\left[c_{3}\right]+\left[c_{5}\right]$ so there is an attack!

Second Step: Bitslice AES S-box

- Bitslice implementation from Goudarzi and Rivain
- sharewise additions
- 32 ISW-multiplication gadgets
- 32 ISW-refresh gadgets

Second Step: Bitslice AES S-box

- Bitslice implementation from Goudarzi and Rivain
- sharewise additions
- 32 ISW-multiplication gadgets
- 32 ISW-refresh gadgets
- maskComp
- sharewise additions
- 32 ISW-multiplication gadgets
- 32 ISW-refresh gadgets

Second Step: Bitslice AES S-box

- Bitslice implementation from Goudarzi and Rivain
- sharewise additions
- 32 ISW-multiplication gadgets
- 32 ISW-refresh gadgets
- maskComp
- sharewise additions
- 32 ISW-multiplication gadgets
- 32 ISW-refresh gadgets
- New method
- sharewise additions
- 32 ISW-multiplication gadgets
- 0 ISW-refresh gadget

Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit $C=C_{2} \circ C_{1}$ composed of two sequential circuits:

- a t-probing secure circuit C_{1} whose outputs are all outputs of t-SNI gadgets,
- a t-probing secure circuit C_{2} whose inputs are C_{1} 's outputs. is t-probing secure.

Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit $C=C_{2} \circ C_{1}$ composed of two sequential circuits:

- a t-linear injective circuit C_{1}, exclusively composed of sharewise additions,
- a t-probing secure circuit C_{2} whose inputs are C_{1} 's outputs. is t-probing secure.

Third Step: Extension to Larger Circuits

Proposition. A tight shared circuit $C=C_{1} \| C_{2}$ composed of two parallel t-probing secure circuits which operate on independent input sharings is t-probing secure.

Third Step: SPN Block Ciphers

Proposition. Let C be SPNblock cipher defined as a tight shared circuit. If both conditions

1. S 's and KS's outputs are t-SNI gadgets' outputs
2. S and KS are t-probing secure
are fulfilled, then C is t probing secure.

1- Introduction
2. Composition of Masked Circuits
3. Improved Composition of Masked Circuits

4 - Conclusion

Conclusion

In a nutshell...

- Method to exactly determine whether or not a tight shared circuit is probing secure for any t
- Significant gain in practice

To continue...

- Extend these results to more general circuits
- Apply this method to reduce randomness on existing applications

