www.thalesgroup.com

Solving Sparse Systems with the Block Wiedemann Algorithm Efficient Implementation over GF(2)

Sonia Belaid Sylvain Lachartre

Séminaire SALSA 2011, 8 July

- Wiedemann's algorithm was introduced by Wiedemann in 1986 [?]
- It was extended by Coppersmith in 1994 [?] to perform parallel computations
- It was improved and used by Emmanuel Thomé [?] and an international team of researchers in 2009 to break a 768 bits RSA key [?]

Input : large sparse matrix B

Computation of the linearly recurrent sequence

 $x^T \cdot B^k \cdot z$

with x and z random vectors

- Computation of the minimal polynomial μ(X) = X · μ'(X) (because B is singular) using Berlekamp-Massey
- Exhibition of the kernel vector v such that

$$v = \mu'(B)$$

Principle

Block Wiedemann Algorithm :

- is used for the resolution of linear systems on finite fields
- takes a sparse matrix and exhibits a kernel vector
- is organized into three steps :
 - 1. BW1 : computes a matrices series $A = (a_k)_{1 \le k \le L}$
 - 2. BW2 : computes a linear generator F_g of A
 - 3. BW3 : exhibits a kernel vector w

is probabilistic (depending on the matrix characteristics)

Algorithm 1	Wiedemann						
Input: matrix $B \in GF(2)^{N \times N}$ Output: vector $w \in GF(2)^N$							
1. $(A, z) \leftarrow$	BW1(<i>B</i>)	// $z \in \mathrm{GF}(2)^{N imes n}$ (random)					
2. $F_g \leftarrow$	BW2(<i>A</i>)	// $F_{g} \in \mathrm{GF}(2)^{N}$ (linear generator)					
3. <i>w</i> ←	$BW3(F_g, B$, A, z)					
4 return w							

- Input : large sparse matrix B
- Output : kernel vector w
- N : input matrix dimension
- m, n : columns number of random blocks x and z

BW1 : Sequence A

The first step consists in computing the series

 $\mathbf{A}(\mathbf{X}) \leftarrow \Sigma_k a_k \cdot X^k \quad \text{with} \quad a_k \leftarrow x^T \cdot B^k \cdot z \in \mathrm{GF}(2)^{m \times n}$

• Only the first $L = \frac{N}{m} + \frac{N}{n} + 1$ coefficients are needed

Algorithm 2 BW1

Input: matrix B Output: polynomial $A \in GF(2)[[X]]^{m \times n}$, matrix $z \in GF(2)^{N \times n}$ 1. $(x, z) \leftarrow$ random matrices $\in GF(2)^{N \times m} \times GF(2)^{N \times n}$ 2. $v \leftarrow B \cdot z$ 3. for $k \leftarrow 0$ to L do 4. $A[k]^a \leftarrow x^T \cdot v$ 5. $v \leftarrow B \cdot v$ 6. endfor 7. return A

a. A[k] represents the degree k coefficient of A

Coppersmith's generalization of Berlekamp-Massey algorithm :

Initialization : m + n candidates F_i for the vectorial generator

$$A(X) \cdot F(X) = G(X) + X^t \cdot E(X)$$

with t the step number depending on A at the beginning.

 Iteration : error E(X) reduced by multiplying the previous equality by P s.t. :

$$E[0]\cdot P=0$$

• Termination : generator discovered when its error is zero

$$F_g(X)$$
 s.t. $A(X) \cdot F_g(X) = G_g(X)$ $(E_g(X) = 0)$

d constant
$$d \leftarrow \lceil \frac{N}{m} \rceil$$

s $F^{(t_0)}$ degree s.t. columns of $A[0], \ldots, A[s-1]$ form a basis of $GF(2)^m$

t step number starting with $t \leftarrow s$

- end stop condition end $\leftarrow 0$
- $\delta \qquad \qquad \mathsf{quantity s.t.} \ \delta(f,g) = max(\deg f, 1 + \deg g)$
- Δ degrees bounds

$$\forall j, \quad \delta(F_j, G_j) \leq \Delta_j$$

F generator candidates $(I_n \mid X^{s-i_1} \cdot r_1 \dots X^{s-i_m} \cdot r_m)$ computation of polynomial P of degree 1

 $E[0] \cdot \mathbf{P} = 0$

the condition becomes

$$A \cdot F^{(t)} \cdot P = G^{(t)} \cdot P + X^{t} \cdot E^{(t)} \cdot P$$
$$A \cdot F^{(t+1)} = G^{(t+1)} + X^{(t+1)} \cdot E^{(t+1)}$$

update of F and E

$$\begin{aligned} \mathsf{F}^{(\mathsf{t}+1)} &= F^{(t)} \cdot \mathsf{P} \\ \mathsf{E}^{(\mathsf{t}+1)} &= E^{(t)} \cdot \mathsf{P} \cdot \frac{1}{X} \end{aligned}$$

$\overline{\text{BW2}}$: Iteration (2/2)

Algorithm 3 PMatrix **Input:** matrix $E0 \in GF(2)^{m \times (m+n)}$, tab $\Delta \in \mathbb{N}^{m+n}$ **Output:** polynomial $P \in GF(2)[X]^{(m+n) \times (m+n)}$ /* Sort */ 1. $(P[0], \Delta) \leftarrow Sort(\Delta)$ 2. $E0 \leftarrow E0 \cdot P[0]$ /* Gaussian Elimination */ 3. $(E0, P[0]) \leftarrow GaussElimE0(E0, P[0])$ /* Elimination of non zero columns */ 4. for $i \leftarrow 1$ to m + n do 5. if $(E0_i^a \text{ is not null})$ then 6. $P \leftarrow MultByX(P, i)$ 7 $\Delta_i \leftarrow \Delta_i + 1$ 8 endif 9. endfor 10. return P

ullet mean value $\overline{\Delta}$ of Δ_j coefficients increases by $rac{m}{m+n}=rac{1}{2}$

$$t-\overline{\Delta}=(t-s)\cdot \frac{n}{m+n}$$

• for
$$t = s + \lceil rac{m}{m+n}d \rceil$$
, $t - \overline{\Delta} \ge d \;\; \Rightarrow \;\; \exists \; j, \;\; t - \Delta_j \ge d$

according to theorem 8.6 in [?]

$$\exists j, t-\Delta_j \geq d \Rightarrow E_j(X) = 0$$

Stop Condition

 F_{j} generator if $t - \Delta_{\mathsf{j}} \ge d$ (before $s + \lceil \frac{m}{m+n}d \rceil$ steps)

```
Algorithm 4 BW2
Input: polynomial A
Output: polynomial F \in GF(2)[X]^n
/* Initialization */
1. (d, s, t, end, \Delta, F) \leftarrow Init(A)
2. E \leftarrow Error(A, F, t)
 /* Iteration */
3. while (end = FALSE) do
4. (P, end, g) \leftarrow PMatrix(E[0], \Delta)
5. F \leftarrow F \cdot P
6. E \leftarrow E \cdot P \cdot \frac{1}{x}
7. t \leftarrow t+1
8. endwhile
  /* Termination */
9. return F_{\sigma}
```

Kernel vector exhibition :

• coefficient
$$j$$
 of $A(X) \cdot F_g(X)$

$$(A \cdot F_g)[j] = x^T \cdot B^{j - \deg F_g + 1} \cdot v \text{ with } v = \sum_{i=0}^{\deg F_g} B^{\deg F_g - i} \cdot z \cdot F_g[i]$$

by construction

$$(A \cdot F_g)[j] = 0$$
 for $j \ge \delta(F_g)$

• $B^{\delta(F)-\deg F_g+1} \cdot v$ orthogonal to all vectors $(B^T)^i \cdot x_k$

• if these vectors form a basis of K^N

$$B \cdot (\underbrace{B^{\delta(F_g) - \deg F_g} \cdot v}_{\text{Kernel Vector}}) = 0$$

Algorithm 5 BW3

Input: polynomial F_g , matrix B, polynomial A, matrix z**Output:** vector w

1. $w \leftarrow 0_N$ 2. for $i \leftarrow 0$ to deg F_g do $w \leftarrow B \cdot w + z \cdot F_g[i]$ endfor 3. if $(w \neq 0_N)$ then 4. for $k \leftarrow 0$ to $\delta(F_g)^a$ do 5. $u \leftarrow B \cdot w$ 6. if u = 0 then return w endif 7. $w \leftarrow u$ 8. endfor 9. endif 10. return FAILED

a.
$$\delta(F_g) = max(\deg F_g, \deg (A \cdot F_g) + 1)$$

2009

Researchers broke a 768 bits RSA key using NFS [?]

NFS (Number Field Sieve) : factorization of large numbers

- using Wiedemann's algorithm
- input binary matrix :
 - * 200 millions of rows
 - \ast 150 non zeros elements by rows
- 98 days of computations on a cluster of 576 cores

- Linear algebra library in C language focused on dense matrices over GF(2)
- Created by Gregory Bard
- Now maintained by Martin Albrecht
- We use it to compute operations on dense matrices
 - BW1 : to compute the products of $x \cdot (B^k \cdot z)$
 - BW2 : to perform all the operations involving blocks
 - BW3 : to compute the products $(B \cdot z) \cdot F$

Sparse Matrix

Structure for the input sparse matrix :

- dimensions m, n
- number of non zeros nb
- number of non zeros by rows sz
- positions of non zeros pos
- rows structures with the same characteristics 1

Matrix Example

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 m, n = 5, nb=6
sz = [1,0,2,2,1]
pos = [0,1,4,2,3,4]
l[0] : nb=1, pos=[0]
l[1] : nb=0, pos=[] ...

Algorithm 6 Sparse Dense Product **Input:** matrix *B*, matrix *v* **Output:** matrix $res \leftarrow B \cdot v$ 1. res $\leftarrow 0$ 2. $p \leftarrow B_{pos}$ 3. for $i \leftarrow 0$ to N do 4. for $i \leftarrow 0$ to B_{inb} do 5. $res_i \leftarrow res_i \oplus v_p$ 6. $p \leftarrow p+1$ 7. endfor 8 endfor 9. return res

Complexity : linear with the number of non zeros.

Counting Sort

array to sort

counting array

values	8	9	10	11	12
occurrences	4	3	1	0	2

sorted array

Complexity

Linear in O(m+n) with m+n the size of Δ

Practical Optimization : Operations Save

Practical Optimization : Reduction of the Number of Tests

Practical Optimization : Adaptation of M4RI¹ Functions

removing initial tests

- $A \cdot B$: number of A's columns = number of B's rows
- equality to zero

adapting to my matrices constant dimensions

- BW1 : products of matrices $(64 \times N) \times (N \times 64)$
- BW2 : products of matrices $(64 \times 128) \times (128 \times 128)$
- global : most matrices whose dimensions are multiples of the size a machine word

improving some functions

- mzd_is_zero : stopping at the first non zero word
- mzd_transpose : clearing before transposing

Practical Optimization : Parallelization

- ♦ BW1 : parallel
- BW2 : sequential \Rightarrow parallelization
- **BW3** : sequential \Rightarrow operations save

Practical Optimization : Parallelization BW1

- sparse dense product : $B \cdot (B^k \cdot z), \ k \in [1..L]$
 - each thread dedicated to a number of rows
 - depending on number of non zeros by rows

Figure: Representation of a 2688×2688 matrix

• computations of
$$a_k$$
 : $a_k \leftarrow x \cdot (B^k \cdot z), \ k \in [1..L]$

- each thread dedicated to a number of a_k
- same number of coefficients for each thread

Practical Optimization : Parallelization BW2

- polynomials products F · P and E · P
 - each thread dedicated to a number of coefficients of F or E
 - same number of coefficients for each thread
- product of P by X
 - each thread dedicated to a number of columns of P
 - same number of columns for each thread

Practical Optimization : Parallelization : CPU Use

Practical Optimization : Parallelization : Execution Time

Execution times according to the number threads

Dim	$\delta(\%)$	1th	2th	3th	4th	5th	6th	7th	8th
2688	1.3	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2
15360	1.5	11.6	7.7	6.2	5.2	4.6	4.1	3.9	3.6
15360	5.2	22.3	12.5	9.6	7.7	7.1	6.9	6.4	5.9
15360	8.2	32.0	18.5	14.2	11.1	10.4	9.5	9.2	8.7

Theoretical Optimizations : Termination Tests

Stop Condition

$$\exists j \in [1..m+n], \quad t \ge \Delta_j + d$$

New Stop Condition

$$\exists \ j \in [1..rac{m+n}{2}+1] \ \ s.t. \ \ \Delta_j^{(t)} = \Delta_j^{(t-1)}, \quad t \geq \Delta_j + d$$

Theoretical Optimizations : Error Degree Update (1/2)

for large matrices

- high error degree in BW2
- product *E* · *P* expensive
- but only E[0] used in each step
- knowing the number of reminding steps, we can :
 - determine the **useful degree** of *E*
 - decrease the number of coefficients to update

Theoretical Optimizations : Error Degree Update (2/2)

- Stop condition : $t_f = min(\Delta)^{(t_f)} + d$
- Worst case
 - $min(\Delta)$ increases by 0.5 at each step
 - from step t, we still have $\delta_e^{(t)}$ iterations :

$$t + \delta_e^{(t)} = \min(\Delta)^{(t)} + \frac{\delta_e^{(t)}}{2} + d$$

$$\Rightarrow \quad \delta_e^{(t)} = 2 \cdot (\min(\Delta)^{(t)} + d - t)$$

$$\bullet \Rightarrow \begin{cases} \delta_e^{(t+1)} = \delta_e^{(t)} & \text{if } \min(\Delta)^{(t+1)} = \min(\Delta)^{(t)} + 1 \\ \delta_e^{(t+1)} & = \delta_e^{(t)} - 2 & \text{otherwise} \end{cases}$$

(+)

Error Degree Bound

$$orall t, \quad \deg E^{(t)} \leq \delta_e^{(t)}$$

Theoretical Optimizations : Candidates Degree Update (1/2)

for large matrices

- candidates degree increases by 1 at each step (becoming high)
- product *F* · *P* becomes **expensive**
- \bullet but only F_g (linear generator) will be kept
- knowing the number of reminding steps, we can :
 - determine the **useful degree** of F (that is the one of F_g)
 - limit the number of coefficients to update

• F degree is limited to δ_f such that

$$\delta_f^{(t)} = \min(\Delta)^{(t)} + r^{(t)}$$

with $r^{(t)} = 2 \cdot (min(\Delta)^{(t)} + d - t)$ (maximum reminding steps)

$$\Rightarrow \quad \delta_f^{(t)} = \min(\Delta)^{(t)} + 2 \cdot (\min(\Delta)^{(t)} + d - t)$$

$$\Rightarrow \begin{cases} \delta_f^{(t+1)} = \delta_f^{(t)} + 1 & \text{if } \min(\Delta)^{(t+1)} = \min(\Delta)^{(t)} + 1 \\ \delta_f^{(t+1)} = \delta_f^{(t)} - 2 & \text{otherwise} \end{cases}$$

Candidates Degree Bound

$$orall t, \quad \deg {\mathcal F}^{(t)} \leq \delta_f^{(t)}$$

Execution Times

Dim	$\delta(\%)$	BW1	BW2	BW3	Global
738	7.00	10%	90%	0%	0″100
3422	7.57	20%	73%	7%	0″450
10000 ²	5.97	46%	43%	11%	1″960
27000 ¹	2.20	60%	28%	12%	14″060
73674	0.61	65%	30%	5%	1′12″760
93913	0.20	51%	41%	8.3%	1′38″710

Figure: Performances on different matrix sizes

Computer Details : PC Xeon (64 bits)

- 🔶 8 Go RAM
- 🔶 2.40 GHz

8 processors Intel(R) Xeon(R) CPU

Matrices		Our In	plementation	Speed up (1th)		
Dim	δ	8 th	1 th	Magma	Sage	
2688	1.27%	0″200	0″360	× 5.8	imes 150.0	
15360	1.54%	3″580	11″300	× 85.8	_ ³	
15360	5.20%	5″870	21″670	× 62.4	_ ²	
15360	8.21%	8″690	31″480	× 62.3	_ ²	

Figure: Temporal comparisons with Magma⁴ and Sage⁵

- 3. not enough memory (> 8 Go)
- 4. Magma version 2.17-1, released 2010-12-02
- 8/07/2011 5. Sage version 4.6.2, released 2011-02-25

- Efficient implementation of the Block Wiedemann algorithm over $\mathrm{GF}(2)$ in C language
- Practical and theoretical optimizations
- Encouraging results compared to existing methods
- Further Work
 - Algebraic Cryptanalysis of HFE Cryptosystems Using Gröbner Bases [?] using Block Wiedemann algorithm
 - Use of Gröbner bases algorithm [?]
 - Comparisons with LinBox
 - Work on applications
 - Open source?

Bibliography