THALES

New Challenges to Counteract Higher-Order Side-Channel Attacks

Sonia Belaïd

Journées Nationales 2017 Pré-GDR Sécurité Informatique

31-05-2017

Power-Analysis Attacks and Countermeasures

The Case of Small Orders Attacks

New Challenges to Counteract Higher-Order Attacks

Perspectives

2

OPEN

Power-Analysis Attacks and Countermeasures

The Case of Small Orders Attacks

New Challenges to Counteract Higher-Order Attacks

Perspectives

Symmetric Cryptography

4

Cryptanalysis

Black-box cryptanalysis: $A \leftarrow (m, c)$

Side-channel analysis: $A \leftarrow (m, c, L)$

Cryptanalysis

6

Black-box cryptanalysis: $A \leftarrow (m, c)$

Side-channel analysis: $A \leftarrow (m, c, L)$

Cryptanalysis

7

Black-box cryptanalysis: $A \leftarrow (m, c)$

Side-channel analysis: $A \leftarrow (m, c, L)$

Classical Power-Analysis Attack against AES-128

Attack on 8 bits

- > Prediction of the outputs for the 256 possible 8-bit secret
- Correlation between predictions and leakage
- Selection of the best correlation to find the correct 8-bit secret

Attack on 128 bits

Repetition of the attack on each 8-bit block

Countermeasures against Power-Analysis Attacks

Problem: the leakage is key-dependent

Fresh Re-keying

Idea: regularly change k

Masking

Idea: make the leakage random

Countermeasures against Power-Analysis Attacks

10

Problem: the leakage is key-dependent

Masking

Idea: make the leakage random

Leakage Models: State of the Art

11

Power-Analysis Attacks and Countermeasures

The Case of Small Orders Attacks

New Challenges to Counteract Higher-Order Attacks

Perspectives

t-probing model assumptions:

13

- > Only one variable is leaking at a time
- > The attacker gets the exact values of at most *t* variables

Security is achieved if all the *t*-uples are independent from the secret

14

```
x: sensitive variable / secret
v: random variables
c: constant
```

```
function Ex-t3(x_1, x_2, x_3, x_4, c):

(* x_1, x_2, x_3 \leftarrow \$*)

(* x_4 \leftarrow x \oplus x_1 \oplus x_2 \oplus x_3*)

r_1 \leftarrow \$

r_2 \leftarrow \$

y_1 \leftarrow x_1 \oplus r_1

y_2 \leftarrow (x \oplus x_1 \oplus x_2 \oplus x_3) \oplus r_2

t_1 \leftarrow x_2 \oplus r_1

t_2 \leftarrow (x_2 \oplus r_1) \oplus x_3

y_3 \leftarrow (x_2 \oplus r_1 \oplus x_3) \oplus r_2

y_4 = c \oplus r_2

return(y_1, y_2, y_3, y_4)
```


16

x: sensitive variable / secret
v: random variables
c: constant

Independent from the secret?

→ many mistakes

function Ex-t3(
$$x_1, x_2, x_3, x_4, c$$
):
(* $x_1, x_2, x_3 \leftarrow$ *)
(* $x_4 \leftarrow x \oplus x_1 \oplus x_2 \oplus x_3 *$)
 $r_1 \leftarrow$
 $r_2 \leftarrow$
 $y_1 \leftarrow x_1 \oplus r_1$
 $y_2 \leftarrow (x \oplus x_1 \oplus x_2 \oplus x_3) \oplus r_2$
 $t_1 \leftarrow x_2 \oplus r_1$
 $t_2 \leftarrow (x_2 \oplus r_1) \oplus x_3$
 $y_3 \leftarrow (x_2 \oplus r_1 \oplus x_3) \oplus r_2$
 $y_4 = c \oplus r_2$
return(y_1, y_2, y_3, y_4)

286 3-uples to test

- → missing cases
- → inefficient

Contribution for Small Orders: maskverif

Combination of two algorithms to address both steps

- > Algo 1: determines if a *t*-uple is independent from the secret
- > Algo 2: efficiently goes through to all possible sets
- Underlying Formal Tool: EasyCrypt

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. EUROCRYPT 2015.

Power-Analysis Attacks and Countermeasures

The Case of Small Orders Attacks

New Challenges to Counteract Higher-Order Attacks

Perspectives

OPEN

New Challenges

New Challenges

State-of-the-art for Composing Masking

Is secure?

24

State-of-the-art for Composing Masking

Is secure?

State-of-the-art for Composing Masking

THALES

Random values

1

2

- If *t* is fixed: show that any set of *t* intermediate variables is independent from the secret
- if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input (NI)

- If *t* is fixed: show that any set of *t* intermediate variables is independent from the secret
- if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input (NI)

function Linear-t($a_0, \dots, a_i, \dots a_t$): for i = 0 to t $c_i \leftarrow f(a_i)$ return ($c_0, \dots, c_i, \dots, c_t$)

 \rightarrow straightforward for linear functions

- If *t* is fixed: show that any set of *t* intermediate variables is independent from the secret
- if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input (NI)

function Linear-t($a_0, \dots, a_i, \dots, a_t$): for i = 0 to t $c_i \leftarrow f(a_i)$ return $(c_0, \dots, c_i, \dots, c_t)$

 \rightarrow straightforward for linear functions

- If *t* is fixed: show that any set of *t* intermediate variables is independent from the secret
- if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input (NI)

function Linear-t($a_0, \dots, a_i, \dots, a_t$): for i = 0 to t $c_i \leftarrow f(a_i)$ return ($c_0, \dots, c_i, \dots, c_t$)

 \rightarrow straightforward for linear functions

 \rightarrow formal proofs with EasyCrypt and pen-and paper proofs for small non-linear functions

36

40

41

Strong non-interference in the *t*-probing model

If t is not fixed: show that any set of t intermediate variables with

- t_1 on internal variables
- $t_2 = t t_1$ on the outputs

can be simulated with at most t_1 shares of each input

46

MaskComp

New properties

- > New properties on individual blocks
- > Theorems based on these new properties to combine blocks

Underlying Formal Tool: EasyCrypt

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rebecca Zucchini. Strong Non-Interference and Type-Directed Higher-Order Masking. CCS 2016.

New Notion: *f*-NI

f non-interference in the *t*-probing model

> If t is not fixed: show that any set of t intermediate variables with

- t1 on internal variables
- $t_2 = t t_1$ on the outputs

can be simulated with at most $f(t_1, t_2)$ shares of each input

 $f(t_1, t_2) = t_1 \leftrightarrow SNI$ $f(t_1, t_2) = t_1 + t_2 \leftrightarrow NI$

Two main applications so far

- > More accurate composition with granularity
- > Composition of glitch-free functions for which $f(t_1, t_2)$ may be greater than $t_1 + t_2$

New Challenges

Efficiency for Higher-Order Probing Secure Multiplications

Current deployed t^{th} -order multiplication: ISW

- > Security: SNI
- Efficiency:

53

- random elements: $\frac{t(t+1)}{2}$
- bilinear multiplications: t^2

$$c = a \cdot b$$

$$\downarrow$$

$$\forall i < j, \quad r_{i,j} \leftarrow \$$$

$$\forall 0 \le i \le t, \qquad c_i = a_i \cdot b_i + \sum_{j=0}^{i-1} (r_{j,i} + a_i \cdot b_j + a_j \cdot b_i) + \sum_{j=i+1}^t r_{i,j}$$

Reducing the Randomness Complexity

Bounds on the randomness complexity

- > Linear lower bound: t + 1 when $t \ge 3$
- > Quasi-linear upper bound $O(t \log t)$

New t-NI multiplication gadget

- $\left[\frac{t^2}{4}\right] + t$ random bits instead of $\frac{t(t+1)}{2}$
- > Main idea: repetition of the same random elements in different output shares

New NI multiplication gadgets for orders 2, 3 and 4

Inear bound of randomness complexity

Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud. **Randomness Complexity of Private Circuits for Multiplication.** Eurocrypt 2016.

Reducing the Randomness Complexity or the number of Multiplications

New *t*-SNI multiplication gadget with less bilinear multiplications

- > 2t + 1 instead of $O(t^2)$
- In large enough finite fields
- > Main idea ($\delta_{i,j} = 1 \gamma_{i,j}$):

$$a \cdot b = (a_0 + \sum_{i=1}^t (r_i + a_i))(b_0 + \sum_{i=1}^t (s_i + b_i)) - \sum_{i=1}^t r_i(b_0 + \sum_{j=1}^t (\delta_{i,j}s_j + b_j)) - \sum_{i=1}^t s_i(a_0 + \sum_{j=1}^t (\gamma_{i,j}r_j + a_j))$$

New t-NI multiplication gadget with less random elements

- > t instead of $O(t \log t)$
- > In large enough finite fields
- > Output shares: $c_i = a_0 b_i + \sum_{j=1}^t (\gamma_{i,j} r_j + a_j b_i)$

Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff, Adrian Thillard, and Damien Vergnaud. **Private Multiplication over Finite Fields**. To appear in the proceedings of CRYPTO 2017.

Efficiency for Higher-Order Probing Secure Multiplications

Fig. 1: Complexity in number of random elements in \mathbb{F}_q (left) and on number of nonlinear multiplications (right) in new and existing constructions

Power-Analysis Attacks and Countermeasures

The Case of Small Orders Attacks

New Challenges to Counteract Higher-Order Attacks

Perspectives

Perspectives

Leakage models

- > New leakage models which
 - Fit the reality of embedded devices
 - Are convenient for security proofs
- Improve the reduction bounds between existing ones

Security

Properly define *f*-NI notion to obtain more efficient and secure gadgets

Efficiency

58

> Still less randomness and number of multiplications in higher-order secure gadgets

Perspectives

Leakage models

- > New leakage models which
 - Fit the reality of embedded devices
 - Are convenient for security proofs
- Improve the reduction bounds between existing ones

Security

Properly define *f*-NI notion to obtain more efficient and secure gadgets

Efficiency

> Still less randomness and number of multiplications in higher-order secure gadgets

Thank you.