
04-28-2015 1 / 17

Verified Proofs of Higher-Order Masking

Gilles Barthe1 Sonia Belaïd2 François Dupressoir1

Pierre-Alain Fouque3 Benjamin Grégoire4 Pierre-Yves Strub1

1IMDEA Software Institute,

2École normale supérieure and Thales Communications & Security,

3Université de Rennes 1 and Institut Universitaire de France,

4Inria

04-28-2015 2 / 17

Outline

1. Introduction and Current Issues

2. Our Contribution

3. Description of our Algorithms

4. Verification of Concrete Programs

5. Conclusion

04-28-2015 3 / 17

Side-Channel Attacks

I observation of device leaks (power consumption) during the
execution of a cryptographic algorithm

I analysis of this consumption to recover secrets

04-28-2015 4 / 17

Masking

I countermeasure which aims to render partial power consumption
traces independent from the secrets by randomizing them

I each sensitive value x is replaced in the computations by t + 1
random variables x0, ..., xt such that x = x0 ? ... ? xt

I generally, we consider that an adversary that observes at most t
program variables should not be able to recover x

I t is called masking order or security order

04-28-2015 5 / 17

Security of Masked Programs: Leakage Model

I [IshaiSahaiWagner,Crypto’03] t-threshold probing model
I convenient to make security proofs
8 not very relevant in practice

I [ProuffRivain,Eurocrypt’13] noisy leakage model
I relevant in practice
8 not convenient to make security proofs

I [DucDziembowskiFaust,Eurocrypt’14] reduction between
t-threshold probing model to noisy leakage model

I relevant in practice
I convenient to make security proofs

security in the
t-threshold

probing model

security in
the noisy

leakage model

04-28-2015 5 / 17

Security of Masked Programs: Leakage Model

I [IshaiSahaiWagner,Crypto’03] t-threshold probing model
I convenient to make security proofs
8 not very relevant in practice

I [ProuffRivain,Eurocrypt’13] noisy leakage model
I relevant in practice
8 not convenient to make security proofs

I [DucDziembowskiFaust,Eurocrypt’14] reduction between
t-threshold probing model to noisy leakage model

I relevant in practice
I convenient to make security proofs

security in the
t-threshold

probing model

security in
the noisy

leakage model

04-28-2015 5 / 17

Security of Masked Programs: Leakage Model

I [IshaiSahaiWagner,Crypto’03] t-threshold probing model
I convenient to make security proofs
8 not very relevant in practice

I [ProuffRivain,Eurocrypt’13] noisy leakage model
I relevant in practice
8 not convenient to make security proofs

I [DucDziembowskiFaust,Eurocrypt’14] reduction between
t-threshold probing model to noisy leakage model

I relevant in practice
I convenient to make security proofs

security in the
t-threshold

probing model

security in
the noisy

leakage model

04-28-2015 6 / 17

Security in the t-threshold probing model

Security proof: to prove the security of a program in the
t-threshold probing model, it is enough to show that any set of t
observations can be simulated independently from the secret.
(here, observation = intermediate variable)

Current Issues in the ‘cryptographic’ security proofs:
I absence of security proof,
I mistakes in security proofs,
I performances issues (too many refreshings, too many shares, ...)

Current Issues in the ‘formal’ security proofs:
Ü either the approach is not complete, i.e., insecure programs typed

as secure
Ü or they rely on counting the solutions which is exponential in the

program size

04-28-2015 6 / 17

Security in the t-threshold probing model

Security proof: to prove the security of a program in the
t-threshold probing model, it is enough to show that any set of t
observations can be simulated independently from the secret.
(here, observation = intermediate variable)

Current Issues in the ‘cryptographic’ security proofs:
I absence of security proof,
I mistakes in security proofs,
I performances issues (too many refreshings, too many shares, ...)

Current Issues in the ‘formal’ security proofs:
Ü either the approach is not complete, i.e., insecure programs typed

as secure
Ü or they rely on counting the solutions which is exponential in the

program size

04-28-2015 6 / 17

Security in the t-threshold probing model

Security proof: to prove the security of a program in the
t-threshold probing model, it is enough to show that any set of t
observations can be simulated independently from the secret.
(here, observation = intermediate variable)

Current Issues in the ‘cryptographic’ security proofs:
I absence of security proof,
I mistakes in security proofs,
I performances issues (too many refreshings, too many shares, ...)

Current Issues in the ‘formal’ security proofs:
Ü either the approach is not complete, i.e., insecure programs typed

as secure
Ü or they rely on counting the solutions which is exponential in the

program size

04-28-2015 7 / 17

Outline

1. Introduction and Current Issues

2. Our Contribution

3. Description of our Algorithms

4. Verification of Concrete Programs

5. Conclusion

04-28-2015 8 / 17

Our Contribution

New algorithms to automatically and efficiently verify security of
masked programs:

I Security in the t-threshold probing model with no false positive

I Parametric in the leakage model

I value-based
I transition-based
I ...

I Complexity
Ü non exponential techniques to prove the independence of one set

of observations from the secret
Ü faster methods to test all the possible sets
Ü verification of high orders programs (> 2)

04-28-2015 8 / 17

Our Contribution

New algorithms to automatically and efficiently verify security of
masked programs:

I Security in the t-threshold probing model with no false positive

I Parametric in the leakage model

I value-based
I transition-based
I ...

I Complexity
Ü non exponential techniques to prove the independence of one set

of observations from the secret
Ü faster methods to test all the possible sets
Ü verification of high orders programs (> 2)

04-28-2015 8 / 17

Our Contribution

New algorithms to automatically and efficiently verify security of
masked programs:

I Security in the t-threshold probing model with no false positive

I Parametric in the leakage model

I value-based
I transition-based
I ...

I Complexity
Ü non exponential techniques to prove the independence of one set

of observations from the secret
Ü faster methods to test all the possible sets
Ü verification of high orders programs (> 2)

04-28-2015 8 / 17

Our Contribution

New algorithms to automatically and efficiently verify security of
masked programs:

I Security in the t-threshold probing model with no false positive

I Parametric in the leakage model

I value-based
I transition-based
I ...

I Complexity
Ü non exponential techniques to prove the independence of one set

of observations from the secret
Ü faster methods to test all the possible sets
Ü verification of high orders programs (> 2)

04-28-2015 9 / 17

Outline

1. Introduction and Current Issues

2. Our Contribution

3. Description of our Algorithms

4. Verification of Concrete Programs

5. Conclusion

04-28-2015 10 / 17

Verification in two steps

Security proof: to prove the security of a program in the
t-threshold probing model, it is enough to show that any set of t
observations can be simulated independently from the secret.

Verification in two steps:

1. Prove that a set of intermediate variables is jointly independent
from the secret (non-interferent)

2. Prove that every set of t intermediate variables is independent
from the secret

04-28-2015 10 / 17

Verification in two steps

Security proof: to prove the security of a program in the
t-threshold probing model, it is enough to show that any set of t
observations can be simulated independently from the secret.

Verification in two steps:

1. Prove that a set of intermediate variables is jointly independent
from the secret (non-interferent)

2. Prove that every set of t intermediate variables is independent
from the secret

04-28-2015 10 / 17

Verification in two steps

Security proof: to prove the security of a program in the
t-threshold probing model, it is enough to show that any set of t
observations can be simulated independently from the secret.

Verification in two steps:

1. Prove that a set of intermediate variables is jointly independent
from the secret (non-interferent)

2. Prove that every set of t intermediate variables is independent
from the secret

04-28-2015 11 / 17

1. Verifying Sets’ Non-Interference

Proving probabilistic non-interference of a set of intermediate
variables I1:

(Rule 1) all the deterministic variables in I are public⇒ I ⊥ S
(Rule 2) I and I ′ are provably equivalent and I ′ ⊥ S ⇒ I ⊥ S
(Rule 3) ∃ (I ′, v , r ∈ R) such that

- v is invertible in r ,
}⇒ I ⊥ S- r appears only in v ,

- I ′ = I {where r replaces v} ⊥ S

Example: I = {a⊕ b, r ⊕ c, a⊕ c} ⇒ I ′ = {a⊕ b, r , a⊕ c}

Ü every set proven non-interferent is non-interferent
Ü no false negative in our experiments
Ü not exponential in the size of the expressions
Ü resulting proofs can be easily checked

1I ⊥ S ≡ the joint distribution of I is independent from the secrets S

04-28-2015 11 / 17

1. Verifying Sets’ Non-Interference

Proving probabilistic non-interference of a set of intermediate
variables I1:

(Rule 1) all the deterministic variables in I are public⇒ I ⊥ S
(Rule 2) I and I ′ are provably equivalent and I ′ ⊥ S ⇒ I ⊥ S
(Rule 3) ∃ (I ′, v , r ∈ R) such that

- v is invertible in r ,
}⇒ I ⊥ S- r appears only in v ,

- I ′ = I {where r replaces v} ⊥ S
Example: I = {a⊕ b, r ⊕ c, a⊕ c} ⇒ I ′ = {a⊕ b, r , a⊕ c}

Ü every set proven non-interferent is non-interferent
Ü no false negative in our experiments
Ü not exponential in the size of the expressions
Ü resulting proofs can be easily checked

1I ⊥ S ≡ the joint distribution of I is independent from the secrets S

04-28-2015 11 / 17

1. Verifying Sets’ Non-Interference

Proving probabilistic non-interference of a set of intermediate
variables I1:

(Rule 1) all the deterministic variables in I are public⇒ I ⊥ S
(Rule 2) I and I ′ are provably equivalent and I ′ ⊥ S ⇒ I ⊥ S
(Rule 3) ∃ (I ′, v , r ∈ R) such that

- v is invertible in r ,
}⇒ I ⊥ S- r appears only in v ,

- I ′ = I {where r replaces v} ⊥ S
Example: I = {a⊕ b, r ⊕ c, a⊕ c} ⇒ I ′ = {a⊕ b, r , a⊕ c}

Ü every set proven non-interferent is non-interferent
Ü no false negative in our experiments
Ü not exponential in the size of the expressions
Ü resulting proofs can be easily checked

1I ⊥ S ≡ the joint distribution of I is independent from the secrets S

04-28-2015 12 / 17

2. Extension to All Possible Sets

Complexity/Issue: for n intermediate variables⇒
(n

t

)
proofs of

independence (e.g., ≈ 227 for 4 rounds of a 2nd-order AES)

New Idea: proving independence for larger sets of more than t
elements (extending the set and checking again is very fast !)

Alg. 1 - Workpair-based splitting: split in 2 then merge

Alg. 2 - Worklist-based splitting: split in more than 2

X

X̂ C
(

X̂
)

1. select X with t observations and prove its
non-interference

2. extend X to X̂ with many more
observations but still non-interferent

3. recursively descend in set C
(

X̂
)

4. merge X̂ and C
(

X̂
)

once they are
processed separately.

04-28-2015 12 / 17

2. Extension to All Possible Sets

Complexity/Issue: for n intermediate variables⇒
(n

t

)
proofs of

independence (e.g., ≈ 227 for 4 rounds of a 2nd-order AES)

New Idea: proving independence for larger sets of more than t
elements (extending the set and checking again is very fast !)

Alg. 1 - Workpair-based splitting: split in 2 then merge

Alg. 2 - Worklist-based splitting: split in more than 2

X

X̂ C
(

X̂
)

1. select X with t observations and prove its
non-interference

2. extend X to X̂ with many more
observations but still non-interferent

3. recursively descend in set C
(

X̂
)

4. merge X̂ and C
(

X̂
)

once they are
processed separately.

04-28-2015 12 / 17

2. Extension to All Possible Sets

Complexity/Issue: for n intermediate variables⇒
(n

t

)
proofs of

independence (e.g., ≈ 227 for 4 rounds of a 2nd-order AES)

New Idea: proving independence for larger sets of more than t
elements (extending the set and checking again is very fast !)

Alg. 1 - Workpair-based splitting: split in 2 then merge

Alg. 2 - Worklist-based splitting: split in more than 2

X

X̂ C
(

X̂
)

1. select X with t observations and prove its
non-interference

2. extend X to X̂ with many more
observations but still non-interferent

3. recursively descend in set C
(

X̂
)

4. merge X̂ and C
(

X̂
)

once they are
processed separately.

04-28-2015 12 / 17

2. Extension to All Possible Sets

Complexity/Issue: for n intermediate variables⇒
(n

t

)
proofs of

independence (e.g., ≈ 227 for 4 rounds of a 2nd-order AES)

New Idea: proving independence for larger sets of more than t
elements (extending the set and checking again is very fast !)

Alg. 1 - Workpair-based splitting: split in 2 then merge

Alg. 2 - Worklist-based splitting: split in more than 2

X

X̂ C
(

X̂
)

1. select X with t observations and prove its
non-interference

2. extend X to X̂ with many more
observations but still non-interferent

3. recursively descend in set C
(

X̂
)

4. merge X̂ and C
(

X̂
)

once they are
processed separately.

04-28-2015 12 / 17

2. Extension to All Possible Sets

Complexity/Issue: for n intermediate variables⇒
(n

t

)
proofs of

independence (e.g., ≈ 227 for 4 rounds of a 2nd-order AES)

New Idea: proving independence for larger sets of more than t
elements (extending the set and checking again is very fast !)

Alg. 1 - Workpair-based splitting: split in 2 then merge

Alg. 2 - Worklist-based splitting: split in more than 2

X X̂ C
(

X̂
)

1. select X with t observations and prove its
non-interference

2. extend X to X̂ with many more
observations but still non-interferent

3. recursively descend in set C
(

X̂
)

4. merge X̂ and C
(

X̂
)

once they are
processed separately.

04-28-2015 12 / 17

2. Extension to All Possible Sets

Complexity/Issue: for n intermediate variables⇒
(n

t

)
proofs of

independence (e.g., ≈ 227 for 4 rounds of a 2nd-order AES)

New Idea: proving independence for larger sets of more than t
elements (extending the set and checking again is very fast !)

Alg. 1 - Workpair-based splitting: split in 2 then merge

Alg. 2 - Worklist-based splitting: split in more than 2

X X̂ C
(

X̂
)

1. select X with t observations and prove its
non-interference

2. extend X to X̂ with many more
observations but still non-interferent

3. recursively descend in set C
(

X̂
)

4. merge X̂ and C
(

X̂
)

once they are
processed separately.

04-28-2015 12 / 17

2. Extension to All Possible Sets

Complexity/Issue: for n intermediate variables⇒
(n

t

)
proofs of

independence (e.g., ≈ 227 for 4 rounds of a 2nd-order AES)

New Idea: proving independence for larger sets of more than t
elements (extending the set and checking again is very fast !)

Alg. 1 - Workpair-based splitting: split in 2 then merge

Alg. 2 - Worklist-based splitting: split in more than 2

X X̂ C
(

X̂
)

1. select X with t observations and prove its
non-interference

2. extend X to X̂ with many more
observations but still non-interferent

3. recursively descend in set C
(

X̂
)

4. merge X̂ and C
(

X̂
)

once they are
processed separately.

04-28-2015 12 / 17

2. Extension to All Possible Sets

Complexity/Issue: for n intermediate variables⇒
(n

t

)
proofs of

independence (e.g., ≈ 227 for 4 rounds of a 2nd-order AES)

New Idea: proving independence for larger sets of more than t
elements (extending the set and checking again is very fast !)

Alg. 1 - Workpair-based splitting: split in 2 then merge
Alg. 2 - Worklist-based splitting: split in more than 2

X X̂ C
(

X̂
)

1. select X with t observations and prove its
non-interference

2. extend X to X̂ with many more
observations but still non-interferent

3. recursively descend in set C
(

X̂
)

4. merge X̂ and C
(

X̂
)

once they are
processed separately.

04-28-2015 13 / 17

Application to the Sbox [CPRR13, Algorithm 4]

Method # tuples Security Complexity
sets time*

First-Order Masking
naive 63 X 63 0.001s

workpair 63 X 17 0.001s
worklist 63 X 17 0.001s

Second-Order Masking
naive 12,561 X 12,561 0.180s

workpair 12,561 X 851 0.046s
worklist 12,561 X 619 0.029s

Third-Order Masking
naive 4,499,950 X 4,499,950 140.642s

workpair 4,499,950 X 68,492 9.923s
worklist 4,499,950 X 33,075 3.894s

Fourth-Order Masking
naive 2,277,036,685 X - unpractical

workpair 2,277,036,685 X 8,852,144 2959.770s
worklist 2,277,036,685 X 3,343,587 879.235s

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at 2GHz

04-28-2015 14 / 17

Outline

1. Introduction and Current Issues

2. Our Contribution

3. Description of our Algorithms

4. Verification of Concrete Programs

5. Conclusion

04-28-2015 15 / 17

Benchmarks for the Value-Based Model

Reference Target # tuples Security Complexity
sets time (s)

First-Order Masking
CHES10 � 13 X 7 ε
FSE13 Sbox 63 X 17 ε
FSE13 full AES 17,206 X 3,342 128

MAC-SHA3 full Keccak-f 13,466 X 5,421 405
Second-Order Masking

RSA06 Sbox 1,188,111 X 4,104 1.649
CHES10 � 435 X 92 0.001

1st -orderCHES10 Sbox 7,140 flaws (2) 866 0.045

CHES10 AES KS 23,041,866 X 771,263 340,745
FSE13 2 rnds AES 25,429,146 X 511,865 1,295
FSE13 4 rnds AES 109,571,806 X 2,317,593 40,169

Third-Order Masking
3rd -orderRSA06 Sbox 2,057,067,320 flaws (98, 176) 2,013,070 695

CHES10 � 24,804 X 1,410 0.033
FSE13 Sbox(4) 4,499,950 X 33,075 3.894
FSE13 Sbox(5) 4,499,950 X 39,613 5.036

Fourth-Order Masking
CHES10 � 2,024,785 X 33,322 1.138
FSE13 Sbox (4) 2, 277, 036, 685 X 3,343,587 879

Fifth-Order Masking
CHES10 � 216,071,394 X 856,147 45

04-28-2015 16 / 17

Outline

1. Introduction and Current Issues

2. Our Contribution

3. Description of our Algorithms

4. Verification of Concrete Programs

5. Conclusion

04-28-2015 17 / 17

Conclusion

I Summary
I new algorithms to automatically verify security of masked programs
I no false positive, i.e., a program typed as secure is secure
I verification programs at high orders (> 2)

I Further Work
Ü verify larger masked programs at higher orders
Ü exhibit and prove efficient methods to compose
Ü adapt to more practical languages

Thank you for your attention.

04-28-2015 17 / 17

Conclusion

I Summary
I new algorithms to automatically verify security of masked programs
I no false positive, i.e., a program typed as secure is secure
I verification programs at high orders (> 2)

I Further Work
Ü verify larger masked programs at higher orders
Ü exhibit and prove efficient methods to compose
Ü adapt to more practical languages

Thank you for your attention.

	Introduction and Current Issues
	Our Contribution
	Description of our Algorithms
	Verification of Concrete Programs
	Conclusion

