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A Power-Analysis Attack against AES-128

] 128-bit input m
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Attack on 8 bits

» prediction of the outputs for the 256 possible 8-bit secret
» correlation between predictions and leakage
» selection of the best correlation to find the correct 8-bit secret

Attack on 128 bits

» repetition of the attack on 8 bits on each S-box




Algorithmic Countermeasures

Problem: leakage % is key-dependent
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Two main algorithmic solutions:

» Fresh Re-keying: regularly change k
» Masking: make leakage ¥ random



Fresh Re-keying

Idea: regularly change k
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Masking

Idea: make leakage % random

sensmve value v =1f(m,k)
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=» each t-uple of (v;); is independent from v
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Security in the t-probing model

t-probing model assumptions:

» only one variable is leaking at a time
» the attacker can get the exact value of at most t variables

=» show that all the f-uples are independent from the secret

er consumption
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Security in the t-probing model

: randomly generated variable
¢: known constant
X: secret variable

function Ex-t3(x,
(" x1,%0,03=%7)
(* Xg=X+X1+X0+ %)
-3
-3
Yi=xi+
Yo = (X4 +x0+X3) +
X many mistakes = o+
tp— (xo+r1)+
Y3 = (Xo+ 1 +x3)+
Ya—C+
return(y1, Y2, Y3, Ya)

, X3, X4, C):

1. independent
from the secret?

2. test 286 3-uples
X missing cases
X inefficient



Security in the t-probing model

Contributions:

1. new algorithm to decide whether a t-uple is independent from the
secret

> no false positive
> more efficient than existing works

2. new algorithm to enumerate all the t-uples
> more efficient than existing works

@ Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub.
Verified proofs of higher-order masking. EUROCRYPT 2015.
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2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:

1. select X =(t variables) and prove its
independence

2. extend X to X with more
X)X %(X) observations but still independence

3. recursively descend in set ¢ ()A()

4. merge X and € ()A() once they are
processed separately.
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2. Extension to All Possible Sets: Example

X:

€(X):

~

merge X and €(X): X

return(yy, Y2, Y3, ¥4)

=» 207 proofs instead of 286



Application to the Sbox [CPRR13, Algorithm 4]

. Complexity
Method # tuples Security # sets ‘ time*
First-Order Masking
naive 63 0.001s
Alg. 1 63 17 0.001s
Alg. 2 17 0.001s
Second-Order Masking
naive 12,561 0.180s
Alg. 1 12,561 851 0.046s
Alg. 2 619 0.029s
Third-Order Masking
naive 4,499,950 | 140.642s
Alg. 1 4,499,950 68,492 9.923s
Alg. 2 33,075 3.894s
Fourth-Order Masking
naive - unpractical
Alg. 1 | 2,277,036,685 8,852,144 | 2959.770s
Alg. 2 3,343,587 | 879.235s

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at 2GHz



Benchmarks

Reference Target # tuples Security # S;gmpl‘extlitr);e (s)
First-Order Masking
FSE13 full AES 17,206 3,342 128
MAC-SHAS3 | full Keccak-f 13,466 5,421 405
Second-Order Masking
RSA06 Sbox 1,188,111 4,104 1.649
CHES10 Sbox 7,140 12!-order 866 0.045
’ flaws (2) '
CHES10 AES KS 23,041,866 771,263 340,745
FSE13 2 rnds AES 25,429,146 511,865 1,295
FSE13 4 rnds AES 109,571,806 2,317,593 40,169
Third-Order Masking
RSA06 Sbox 2,057,067,320 g%order [ ;513070 | 695
’ ’ ’ flaws (98,176) ’ ’

FSE13 Sbox(4) 4,499,950 33,075 3.894
FSE13 Sbox(5) 4,499,950 39,613 5.036
Fourth-Order Masking
FSE13_ | Sbox (4) | 2,277,036,685 | [ 3343587 | 879
Fifth-Order Masking

CHEST0 | B [ 216,071,394 || [ 856,147 | 45
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Current Issues in Composition
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c A refresh algorithm takes as input a sharing (x;);j»o of x and returns a

new sharing (x; )i=0 of x such that (x;);»1 and (x; )i=1 are mutually
independent.



Composition in the t-probing model

Contributions:

1. new algorithm to verify the security of compositions
» formal security
> any order
2. compiler to build a higher-order secure scheme from any C
implementation
> efficient
> any order

@ Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain Fouque, and
Benjamin Grégoire.
Compositional Verification of Higher-Order Masking Application to a Verifying
Masking Compiler. ePrint 2015.
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Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is
independent from the secret

if t is not fixed: show that any set of t intermediate variables can
be simulated with at most t shares of each input

@ =a+ + + ) function Linear-function-t(ag, ...
/ fori=0to t

| ) > 3 return (cg, ..., Cj .., Ct)

Cyp C1 C» C3

...dp):

~—

observations

=» straightforward for linear functions

=» formal proofs with EasyCrypt and pen-and paper proofs for small
non-linear functions
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Stronger security property for Refresh

Strong Non-Interference in the t-probing model:
if t is not fixed: show that any set of t intermediate variables with

- t; on internal variables
- tr =t—1; on the outputs
can be simulated with at most t; shares of each input

Ry

% 2 internal
) ) ) ) observations

c/él\c + 1 output
0 2 } observation
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Some Results

Resource usage statistics for generating masked algorithms (at any
order) from some unmasked implementations’

Scheme | # Refresh Time Memory
AES (o) 2/Sbox 0.09s 4Mo
AES (x o g(x)) 0 0.05s 4Mo
Keccak with Refresh 0 121.20 456Mo
Keccak 600 2728.00s 22870Mo
Simon 67 0.38s 15Mo
Speck 61 6.22s 38Mo

Ona Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running

Linux (Fedora)
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