THALES

On the Use of Masking to Defeat Power-Analysis Attacks

ENS Paris Crypto Day

February 16, 2016

Presented by Sonia Belaïd

◆□▶ ◆□▶ ◆ 臣▶ 臣 - のへで 1/32

Outline

Power-Analysis Attacks

Masking Countermeasure

- Leakage Models
- Security in the probing model
- Construction of Secure Masking Schemes Composition

- → Black-box cryptanalysis
- → Side-channel analysis

→ Black-box cryptanalysis: $\mathscr{A} \leftarrow (m_i, c_i)$

➔ Side-Channel Analysis

 \mathcal{L}_{i}

 \mathcal{L}_{i}

Figure : Consumption trace of a full AES-128 from the DPA Contest v2

Image: A matrix

Figure : Consumption trace of a full AES-128 from the DPA Contest v2

Image: A matrix

Attack on 8 bits

- prediction of the outputs for the 256 possible 8-bit secret
- correlation between predictions and leakage
- selection of the best correlation to find the correct 8-bit secret

∃ <\0<</p>

Attack on 128 bits

repetition of the attack on 8 bits on each S-box

Algorithmic Countermeasures

Problem: leakage *ℒ* is key-dependent

(ロ)

Two main algorithmic solutions:

- Fresh Re-keying: regularly change k
- ► Masking: make leakage *£* random

Fresh Re-keying

Idea: regularly change k

< □ ▶ < 圕 ▶ < ≧ ▶ ≧ りへで 7/32

Masking

Idea: make leakage \mathcal{L} random

< □ > < □ > < □ > < Ξ > Ξ - のへで 8/32

→ each *t*-uple of $(v_i)_i$ is independent from v

Outline

Power-Analysis Attacks

Masking Countermeasure

Leakage Models

Security in the probing model

Construction of Secure Masking Schemes - Composition

Masking

<□ ▶ < @ ▶ < E ▶ E の Q ↔ 10/32

◆□▶<□▶<三▶<三</p>

<□ ▶ < @ ▶ < E ▶ E りへで 10/32

Outline

Power-Analysis Attacks

Masking Countermeasure

Leakage Models

Security in the probing model

Construction of Secure Masking Schemes - Composition

◆□▶ ◆□▶ ◆ ≧▶ ≧ · ⑦ � (° 11/32)

Power-Analysis Attacks on Masking Schemes

First-order masking

→ compare $\mathscr{C}(\mathscr{L}(v+m), \mathscr{L}(m))$ to the predictions on v

Power-Analysis Attacks on Masking Schemes

3rd-order masking

→ compare $\mathscr{C}(\mathscr{L}(v+m_1),\mathscr{L}(m_2),\mathscr{L}(m_3),\mathscr{L}(m_1+m_2+m_3))$ to the predictions on v

◆□▶◆圖▶◆臣▶ 臣 めんで

Security of Masked Programs: Leakage Model

realism

Security of Masked Programs: Leakage Model

realism

Outline

Power-Analysis Attacks

Masking Countermeasure

Leakage Models

Security in the probing model

Construction of Secure Masking Schemes - Composition

<□ ▶ < @ ▶ < E ▶ E りへで 14/32

t-probing model assumptions:

- only one variable is leaking at a time
- the attacker can get the exact value of at most t variables
- \rightarrow show that all the *t*-uples are independent from the secret

3

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* x_1, x_2, x_3 = *)$ $(* X_{4} = X + X_{1} + X_{2} + X_{3} *)$ $r_1 \leftarrow \$$ *r*₂ ← \$ $V_1 \leftarrow X_1 + I_1$ $V_2 \leftarrow (\mathbf{X} + \mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3) + \mathbf{I}_2$ $t_1 \leftarrow X_2 + I_1$ $t_2 \leftarrow (X_2 + r_1) + X_3$ $V_3 \leftarrow (X_2 + I_1 + X_3) + I_2$ $y_4 \leftarrow C + r_2$ return (y_1, y_2, y_3, y_4)

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* x_1, x_2, x_3 = *)$ $(X_A = X + X_1 + X_2 + X_3)$ (<mark>r₂</mark>)−\$ 1. independent $V_1 \leftarrow X_1 + I_1$ from the secret? $V_2 \leftarrow (\mathbf{X} + \mathbf{X}_1 + \mathbf{X}_2 + \mathbf{X}_3) + \mathbf{I}_2$ $t_1 \leftarrow x_2 + r_1$ $t_2 \rightarrow (x_2 + r_1) + x_3$ $\widetilde{y_3} \leftarrow (x_2 + r_1 + x_3) + r_2$ *y*₄)← **c** + *r*₂ return (V_1, V_2, V_3, V_4)

◆□▶ ◆□▶ ◆ 王 ▶ 王 • つへで 16/32

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* x_1, x_2, x_3 = *)$ $(X_A = X + X_1 + X_2 + X_3)$ *r*₁ ← \$ <u>r</u>₂ ← \$ 1. independent $(y_1) \leftarrow x_1 + r_1$ from the secret? $(\tilde{y}_2) \leftarrow (x + x_1 + x_2 + x_3) + r_2$ $t_1 \leftarrow X_2 + r_1$ $t_2 \leftarrow (x_2 + r_1) + x_3$ X $y_3 \rightarrow (x_2 + r_1 + x_3) + r_2$ $V_{4} \leftarrow C + \frac{r_{2}}{2}$ return (y_1, y_2, y_3, y_4)
- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* x_1, x_2, x_3 = *)$ $(X_A = X + X_1 + X_2 + X_3)$ *r*₁ ← \$ $r_{2} \leftarrow \$$ 1. independent $(y_1) \leftarrow x_1 + r_1$ from the secret? $(\underline{y}_2) \leftarrow (\underline{x} + \underline{x}_1 + \underline{x}_2 + \underline{x}_3) + \underline{r}_2$ $\overline{t}_1 \leftarrow \underline{x}_2 + \underline{r}_1$ $t_2 \rightarrow (x_2 + r_1) + x_3$? $\widetilde{V}_3 \leftarrow (X_2 + r_1 + X_3) + r_2$ $V_{4} \leftarrow C + V_{2}$ return (y_1, y_2, y_3, y_4)

◆□▶ ◆□▶ ◆ 王 ▶ 王 • りへで 16/32

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* x_1, x_2, x_3 = *)$ $(X_{A} = X + X_{1} + X_{2} + X_{3})$ *r*₁ ← \$ *r*₂ ← \$ 1. independent $V_1 \leftarrow X_1 + I_1$ from the secret? $V_2 \leftarrow (X + X_1 + X_2 + X_3) + I_2$ × many mistakes $t_1 \leftarrow X_2 + I_1$ $t_2 \leftarrow (X_2 + I_1) + X_3$ $V_3 \leftarrow (X_2 + I_1 + X_3) + I_2$ $V_4 \leftarrow C + \frac{r_2}{r_2}$ return (y_1, y_2, y_3, y_4)

< □ ▶ < @ ▶ < E ▶ E の Q ℃ 16/32

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* x_1, x_2, x_3 = *)$ $(X_{A} = X + X_{1} + X_{2} + X_{3})$ *r*₁ ← \$ *r*₂ ← \$ test 286 3-uples $V_1 \leftarrow X_1 + I_1$ × missing cases X inefficient $V_2 \leftarrow (X + X_1 + X_2 + X_3) + I_2$ $t_1 \leftarrow X_2 + I_1$ $t_2 \leftarrow (X_2 + I_1) + X_3$ $V_3 \leftarrow (X_2 + I_1 + X_3) + I_2$ $V_{4} \leftarrow C + V_{2}$ return (y_1, y_2, y_3, y_4)

< □ ▶ < @ ▶ < E ▶ E の Q ℃ 16/32

1. independent from the secret?

× many mistakes

Contributions:

- 1. new algorithm to decide whether a *t*-uple is independent from the secret
 - no false positive
 - more efficient than existing works
- 2. new algorithm to enumerate all the t-uples
 - more efficient than existing works

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub.

▲□▶▲圖▶▲≣▶ ≣ 釣�♡ 17/32

Verified proofs of higher-order masking. EUROCRYPT 2015.

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

 find larger sets which cover all the intermediate variables is a hard problem

< □ ▶ < @ ▶ < E ▶ E の Q ℃ 19/32

two algorithms efficient in practice

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

 find larger sets which cover all the intermediate variables is a hard problem

<□ ▶ < □ ▶ < 亘 ▶ 三 のへで 19/32

two algorithms efficient in practice

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:

1. select X = (t variables) and prove its independence

<□ ▶ < □ ▶ < 亘 ▶ 三 のへで 19/32

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:

- 1. select X = (t variables) and prove its independence
- 2. extend X to \hat{X} with more observations but still independence

< □ ▶ < @ ▶ < E ▶ E の Q ℃ 19/32

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:

- 1. select X = (t variables) and prove its independence
- 2. extend X to \hat{X} with more observations but still independence

< □ ▶ < @ ▶ < E ▶ E の Q ℃ 19/32

3. recursively descend in set $\mathscr{C}(\widehat{X})$

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:

- 1. select X = (t variables) and prove its independence
- 2. extend X to \hat{X} with more observations but still independence
- 3. recursively descend in set $\mathscr{C}(\widehat{X})$
- 4. merge \hat{X} and $\mathscr{C}(\hat{X})$ once they are processed separately.

function Ex-t3(x_1, x_2, x_3, x_4, c): $r_1 \leftarrow \$$ *r*₂ ← \$ $V_1 \leftarrow X_1 + I_1$ $y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$ $t_1 \leftarrow X_2 + I_1$ $t_2 \leftarrow (X_2 + I_1) + X_3$ $V_3 \leftarrow (X_2 + I_1 + X_3) + I_2$ $y_4 \leftarrow C + r_2$ return $(\gamma_1, \gamma_2, \gamma_3, \gamma_4)$

▲□▶▲@▶▲≧▶ ≧ のへで 20/32

function Ex-t3(
$$x_1, x_2, x_3, x_4, c$$
):
(r₁) $\leftarrow \$$
(r₂) $\leftarrow \$$
(y₁) $\leftarrow x_1 + r_1$
(y₂) $\leftarrow (x + x_1 + x_2 + x_3) + r_2$
(t₁) $\leftarrow x_2 + r_1$
(t₂) $\leftarrow (x_2 + r_1) + x_3$
(y₃) $\leftarrow (x_2 + r_1 + x_3) + r_2$
(y₄) $\leftarrow c + r_2$
return(y₁, y₂, y₃, y₄)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ 臣 • ⑦ � (° 20/32)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ 臣 • ⑦ � ○ 20/32

▲□▶▲圖▶▲圖▶ 圖 釣へで 20/32

▲□▶▲圖▶▲圖▶ 圖 釣へで 20/32

→ 207 proofs instead of 286

Application to the Sbox [CPRR13, Algorithm 4]

Method	# tuples	Security	Complexity					
			# sets	time*				
First-Order Masking								
naive		~	63	0.001s				
Alg. 1	63		17	0.001s				
Alg. 2			17	0.001s				
Second-Order Masking								
naive			12,561	0.180s				
Alg. 1	12,561	~	851	0.046s				
Alg. 2			619	0.029s				
Third-Order Masking								
naive			4,499,950	140.642s				
Alg. 1	4,499,950	~	68,492	9.923s				
Alg. 2			33,075	3.894s				
Fourth-Order Masking								
naive			-	unpractical				
Alg. 1	2,277,036,685	l 🖌	8,852,144	2959.770s				
Alg. 2			3,343,587	879.235s				

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at 2GHz

Benchmarks

Poforonco	Target	# tuploc	Socurity	Complexity				
nelerence	laigei	# tupies	Security	# sets	time (s)			
First-Order Masking								
FSE13	full AES	17,206	 ✓ 	3,342	128			
MAC-SHA3	full Keccak-f	13,466	 ✓ 	5,421	405			
Second-Order Masking								
RSA06	Sbox	1,188,111	 ✓ 	4,104	1.649			
CHES10	Sbox	7,140	1 st -order flaws (2)	866	0.045			
CHES10	AES KS	23,041,866	 ✓ 	771,263	340,745			
FSE13	2 rnds AES	25,429,146	/ /	511,865	1,295			
FSE13	4 rnds AES	109,571,806	V V	2,317,593	40,169			
Third-Order Masking								
RSA06	Sbox	2,057,067,320	3 rd -order flaws (98,176)	2,013,070	695			
FSE13	Sbox(4)	4,499,950	 ✓ 	33,075	3.894			
FSE13	Sbox(5)	4,499,950	V V	39,613	5.036			
Fourth-Order Masking								
FSE13	Sbox (4)	2,277,036,685	✓	3,343,587	879			
Fifth-Order Masking								
CHES10	•	216,071,394		856,147	45			

Outline

Power-Analysis Attacks

Masking Countermeasure

Leakage Models

Security in the probing model

Construction of Secure Masking Schemes - Composition

<□ ▶ < 回 ▶ < 臣 ▶ 臣 りへで 23/32

C

A refresh algorithm takes as input a sharing $(x_i)_{i\geq 0}$ of x and returns a new sharing $(x'_i)_{i\geq 0}$ of x such that $(x_i)_{i\geq 1}$ and $(x^r_i)_{i\geq 1}$ are mutually independent.

C

A refresh algorithm takes as input a sharing $(x_i)_{i\geq 0}$ of x and returns a new sharing $(x'_i)_{i\geq 0}$ of x such that $(x_i)_{i\geq 1}$ and $(x^r_i)_{i\geq 1}$ are mutually independent.

C

A refresh algorithm takes as input a sharing $(x_i)_{i\geq 0}$ of x and returns a new sharing $(x'_i)_{i\geq 0}$ of x such that $(x_i)_{i\geq 1}$ and $(x_i)_{i\geq 1}$ are mutually independent.

Composition in the *t*-probing model

Contributions:

- 1. new algorithm to verify the security of compositions
 - formal security
 - any order
- 2. compiler to build a higher-order secure scheme from any C implementation
 - efficient
 - any order

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, and Benjamin Grégoire.

Compositional Verification of Higher-Order Masking Application to a Verifying Masking Compiler. ePrint 2015.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

if *t* is not fixed: show that any set of *t* intermediate variables can be simulated with at most *t* shares of each input

◆□▶ ◆□▶ ◆ E ▶ E • つへで 26/32

if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

if *t* is not fixed: show that any set of *t* intermediate variables can be simulated with at most *t* shares of each input

function Linear-function-t($a_0, ..., a_i, ..., a_t$):

▲□▶▲圖▶▲圖▶ 圖 釣へで 26/32

for i = 0 to t $c_i \leftarrow f(a_i)$ return $(c_0, ..., c_i, ..., c_t)$

→ straightforward for linear functions

if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

if *t* is not fixed: show that any set of *t* intermediate variables can be simulated with at most *t* shares of each input

▲□▶▲圖▶▲圖▶ 圖 釣へで 26/32

straightforward for linear functions

if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

if *t* is not fixed: show that any set of *t* intermediate variables can be simulated with at most *t* shares of each input

◆□▶ ◆□▶ ◆ E ▶ E の Q @ 26/32

- → straightforward for linear functions
- → formal proofs with EasyCrypt and pen-and paper proofs for small non-linear functions

Current Issues

<□ ▶ < @ ▶ < 差 ▶ 差 の Q @ 27/32

< □ ▶ < **□** ▶ < Ξ ▶ Ξ の Q @ 27/32

▲□▶▲圖▶▲≣▶ ≣ 釣�? _{27/32}

Stronger security property for Refresh

Strong Non-Interference in the *t*-probing model:

if t is not fixed: show that any set of t intermediate variables with

- t1 on internal variables
- $t_2 = t t_1$ on the outputs

can be simulated with at most t_1 shares of each input

▲□▶▲圖▶▲圖▶ 圖 釣へで 28/32

<**□ ▶ < □ ▶ < 三 ▶** ミ - シスペ _{29/32}

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ 三 ⑦ Q @ 29/32

Automatic tool for C-based algorithms

► unprotected algorithm → higher-order masked algorithm

<□ ▶ < @ ▶ < E ▶ E りへで 30/32

example for AES S-box

Automatic tool for C-based algorithms

► unprotected algorithm → higher-order masked algorithm

<□ ▶ < @ ▶ < E ▶ E りへで 30/32

example for AES S-box

Automatic tool for C-based algorithms

- ► unprotected algorithm → higher-order masked algorithm
- example for AES S-box

Automatic tool for C-based algorithms

- ► unprotected algorithm → higher-order masked algorithm
- example for AES S-box

◆□ → ◆□ → ◆ 注 → 注 → ○ へ ○ 30/32

Some Results

Resource usage statistics for generating masked algorithms (at any order) from some unmasked implementations¹

Scheme	# Refresh	Time	Memory
AES (⊙)	2/Sbox	0.09s	4Mo
AES $(x \odot g(x))$	0	0.05s	4Mo
Keccak with Refresh	0	121.20	456Mo
Keccak	600	2728.00s	22870Mo
Simon	67	0.38s	15Mo
Speck	61	6.22s	38Mo

¹On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running Linux (Fedora)

Some Results

Resource usage statistics for generating masked algorithms (at any order) from some unmasked implementations¹

Scheme	# Refresh	Time	Memory
AES (⊙)	2/Sbox	0.09s	4Mo
AES $(x \odot g(x))$	0	0.05s	4Mo
Keccak with Refresh	0	121.20s	456Mo
Keccak	600	2728.00s	22870Mo
Simon	67	0.38s	15Mo
Speck	61	6.22s	38Mo

¹On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running Linux (Fedora)

