On the Use of Masking to Defeat Power-Analysis Attacks

ENS Paris Crypto Day

February 16, 2016

Presented by Sonia Belaïd
Outline

Power-Analysis Attacks

Masking Countermeasure

 Leakage Models

 Security in the probing model

Construction of Secure Masking Schemes - Composition
→ Black-box cryptanalysis
→ Side-channel analysis
Black-box cryptanalysis: \(\mathcal{A} \leftarrow (m_i, c_i) \)

Side-Channel Analysis
→ Black-box cryptanalysis

→ Side-Channel Analysis: $\mathcal{A} \leftarrow (m_i, c_i, \mathcal{L}_i)$
→ Black-box cryptanalysis

→ Side-Channel Analysis: $\mathcal{A} \leftarrow (m_i, c_i, \mathcal{L}_i)$
Black-box cryptanalysis

Side-Channel Analysis: $\mathcal{A} \leftarrow (m_i, c_i, L_i)$
Black-box cryptanalysis

Side-Channel Analysis: $\mathcal{A} \leftarrow (m_i, c_i, \mathcal{L}_i)$
Black-box cryptanalysis

Side-Channel Analysis: $\mathcal{A} \leftarrow (m_i, c_i, \mathcal{L}_i)$
A Power-Analysis Attack against AES-128

Figure: Consumption trace of a full AES-128 from the DPA Contest v2
A Power-Analysis Attack against AES-128

Figure: Consumption trace of a full AES-128 from the DPA Contest v2
A Power-Analysis Attack against AES-128

128-bit input m

\[k_0 \xrightarrow{\oplus} S-box \xrightarrow{\oplus} 8\text{-bit } v \xrightarrow{\oplus} f(v) + \epsilon \]

Attack on 8 bits
- Prediction of the outputs for the 256 possible 8-bit secret
- Correlation between predictions and leakage
- Selection of the best correlation to find the correct 8-bit secret

Attack on 128 bits
- Repetition of the attack on 8 bits on each S-box
A Power-Analysis Attack against AES-128

128-bit input m

8 bits

$K_0 \oplus$

S-box

8-bit v

$f(v) + \epsilon$

Prediction of the outputs for the 256 possible 8-bit secret

Correlation between predictions and leakage

Selection of the best correlation to find the correct 8-bit secret

Attack on 128 bits

Repetition of the attack on 8 bits on each S-box
A Power-Analysis Attack against AES-128

128-bit input m

8 bits

\oplus

S-box

8-bit v

$f(v) + \epsilon$

Attack on 8 bits

- prediction of the outputs for the 256 possible 8-bit secret
- correlation between predictions and leakage
- selection of the best correlation to find the correct 8-bit secret

Attack on 128 bits

- repetition of the attack on 8 bits on each S-box
Algorithmic Countermeasures

Problem: leakage \mathcal{L} is key-dependent

Two main algorithmic solutions:

- **Fresh Re-keying**: regularly change k
- **Masking**: make leakage \mathcal{L} random
Fresh Re-keying

Idea: regularly change k

master key k

r

R

session key k^*

m

c
Idea: make leakage L random

sensitive value: $v = f(m, k)$

$v_0 \leftarrow v \oplus \bigoplus_{1 \leq i \leq t} v_i$

$v_1 \leftarrow \$

\ldots

$v_t \leftarrow \$

\implies each t-uple of $(v_i)_i$ is independent from v
Outline

Power-Analysis Attacks

Masking Countermeasure
 Leakage Models
 Security in the probing model
 Construction of Secure Masking Schemes - Composition
Current Research on Masking

Masking

- [EC:DDF14] Unifying Leakage Models: From Probing Attacks to Noisy Leakage
- [C:ISW03] Private Circuits: Securing Hardware against Probing Attacks
- [CHES:RP10] Provably Secure Higher-Order Masking of AES
- [EC:BBDFGS15] formal proofs of masking schemes
- [ePrint:BBDFG15] generation of formally proven masking schemes at any order
- [EC:BBPPTV16] improvement of the randomness complexity for some multiplications
Current Research on Masking

Masking

Security

Efficiency

[C:ISW03] Private Circuits: Securing Hardware against Probing Attacks
[CHES:RP10] Provably Secure Higher-Order Masking of AES
[EC:DDF14] Unifying Leakage Models: From Probing Attacks to Noisy Leakage
[EC:BPPTV16] Improvement of the Randomness Complexity for Some Multiplications
Current Research on Masking

- **Masking**
 - Security
 - Realism: leakage models
 - Proofs: formal proofs of security
 - Efficiency
Current Research on Masking

[EC:DDF14] Unifying Leakage Models: From Probing Attacks to Noisy Leakage

...
Current Research on Masking

Masking

Security

Efficiency

Realism
leakage models

- [EC:DDF14] Unifying Leakage Models: From Probing Attacks to Noisy Leakage

Proofs
formal proofs of security

- [C:ISW03] Private Circuits: Securing Hardware against Probing Attacks
- [CHES:RP10] Provably Secure Higher-Order Masking of AES
- [EC:BPPTV16] Improvement of the randomness complexity for some multiplications
Current Research on Masking

Masking

Security

Realism
leakage models

[EC:DDF14] Unifying Leakage Models: From Probing Attacks to Noisy Leakage

...
Current Research on Masking

Masking

Security

Realism
leakage models

[EC:DDF14] Unifying Leakage Models: From Probing Attacks to Noisy Leakage
...

Proofs
formal proofs of security

[C:ISW03] Private Circuits: Securing Hardware against Probing Attacks
[CHES:RP10] Provably Secure Higher-Order Masking of AES
[EC:BBDFGS15] formal proofs of masking schemes
[ePrint:BBDFG15] generation of formally proven masking schemes at any order

Efficiency
Current Research on Masking

Masking

Security

Realism
- leakage models
 - [EC:PR13]: Masking against Side-Channel Attacks: A Formal Security Proof
 - [EC:DDF14]: Unifying Leakage Models: From Probing Attacks to Noisy Leakage
 - [EC:DFS15]: Making Masking Security Proofs Concrete - Or How to Evaluate the Security of Any Leaking Device

Proofs
- formal proofs of security
 - [C:ISW03]: Private Circuits: Securing Hardware against Probing Attacks
 - [CHES:RP10]: Provably Secure Higher-Order Masking of AES
 - [FSE:CPRR13]: Higher-Order Side Channel Security and Mask Refreshing
 - [EC:BBPPTV16]: Improvement of the randomness complexity for some multiplications

Efficiency

...
Outline

Power-Analysis Attacks

Masking Countermeasure

Leakage Models

Security in the probing model

Construction of Secure Masking Schemes - Composition
Power-Analysis Attacks on Masking Schemes

First-order masking

\[\mathcal{G}(\mathcal{L}(v + m), \mathcal{L}(m)) \] to the predictions on \(v \)
Power-Analysis Attacks on Masking Schemes

3^{rd}-order masking

$\mathcal{C}(\mathcal{L}(v + m_1), \mathcal{L}(m_2), \mathcal{L}(m_3), \mathcal{L}(m_1 + m_2 + m_3))$ to the predictions on v
Security of Masked Programs: Leakage Model

- t-probing model
 - Ishai, Sahai, Wagner
 - Crypto 03

- no leak-free gates
- leak-free gates

- noisy leakage model
 - Prouff, Rivain
 - Eurocrypt 13
Security of Masked Programs: Leakage Model

- **t-probing model**
 - Ishai, Sahai, Wagner
 - Crypto 03

- **reduction**
 - Duc, Dziembowski, Faust
 - Eurocrypt 14

- **noisy leakage model**
 - Prouff, Rivain
 - Eurocrypt 13

- ```no leak-free gates```

- ```leak-free gates```
Outline

Power-Analysis Attacks

Masking Countermeasure

- Leakage Models
- Security in the probing model
- Construction of Secure Masking Schemes - Composition
Security in the \(t \)-probing model

\(t \)-probing model assumptions:

- only one variable is leaking at a time
- the attacker can get the exact value of at most \(t \) variables

\(\rightarrow \) show that all the \(t \)-uples are independent from the secret
Security in the t-probing model

v: randomly generated variable
c: known constant
x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c):

(* $x_1, x_2, x_3 =$ *)
(* $x_4 = x + x_1 + x_2 + x_3$ *)

$r_1 \leftarrow$
$r_2 \leftarrow$
$y_1 \leftarrow x_1 + r_1$
$y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$
$t_1 \leftarrow x_2 + r_1$
$t_2 \leftarrow (x_2 + r_1) + x_3$
$y_3 \leftarrow (x_2 + r_1 + x_3) + r_2$
$y_4 \leftarrow c + r_2$

return(y_1, y_2, y_3, y_4)
Security in the \(t \)-probing model

\(v \): randomly generated variable

\(c \): known constant

\(x \): secret variable

function \(\text{Ex-t3}(x_1, x_2, x_3, x_4, c) \):

\[
\begin{align*}
(* & \; x_1, x_2, x_3 = \$ \; *) \\
(* & \; x_4 = x + x_1 + x_2 + x_3 \; *) \\
\end{align*}
\]

\[
\begin{align*}
\text{r}_1 & \leftarrow \$ \\
\text{r}_2 & \leftarrow \$ \\
y_1 & \leftarrow x_1 + \text{r}_1 \\
y_2 & \leftarrow (x + x_1 + x_2 + x_3) + \text{r}_2 \\
t_1 & \leftarrow x_2 + \text{r}_1 \\
t_2 & \leftarrow (x_2 + \text{r}_1) + x_3 \\
y_3 & \leftarrow (x_2 + \text{r}_1 + x_3) + \text{r}_2 \\
y_4 & \leftarrow c + \text{r}_2 \\
\end{align*}
\]

1. independent from the secret?
Security in the t-probing model

v: randomly generated variable
c: known constant
x: secret variable

function $\text{Ex-t3}(x_1, x_2, x_3, x_4, c)$:

(* $x_1, x_2, x_3 = $ *)
(* $x_4 = x + x_1 + x_2 + x_3 $ *)

$r_1 \leftarrow$
$r_2 \leftarrow$

$y_1 \leftarrow x_1 + r_1$
$y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$
$t_1 \leftarrow x_2 + r_1$
$t_2 \leftarrow (x_2 + r_1) + x_3$

$y_3 \leftarrow (x_2 + r_1 + x_3) + r_2$
$y_4 \leftarrow c + r_2$

return (y_1, y_2, y_3, y_4)
Security in the t-probing model

- v: randomly generated variable
- c: known constant
- x: secret variable

Function $Ex-t3(x_1, x_2, x_3, x_4, c)$:

(* $x_1, x_2, x_3 = ___$ *)
(* $x_4 = x + x_1 + x_2 + x_3$ *)

$r_1 \leftarrow ___$
$r_2 \leftarrow ___$

1. independent from the secret?

- $y_1 \leftarrow x_1 + r_1$
- $y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$
- $t_1 \leftarrow x_2 + r_1$
- $t_2 \leftarrow (x_2 + r_1) + x_3$
- $y_3 \leftarrow (x_2 + r_1 + x_3) + r_2$
- $y_4 \leftarrow c + r_2$

Return (y_1, y_2, y_3, y_4)
Security in the t-probing model

v: randomly generated variable
c: known constant
x: secret variable

function $\text{Ex-t3}(x_1, x_2, x_3, x_4, c)$:

(*) $x_1, x_2, x_3 = \$ \ast$
(*) $x_4 = x + x_1 + x_2 + x_3 \ast$

$r_1 \leftarrow \$
$r_2 \leftarrow \$

1. independent from the secret?

$y_1 \leftarrow x_1 + r_1$
$y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$

x many mistakes

t_1 \leftarrow x_2 + r_1$
t_2 \leftarrow (x_2 + r_1) + x_3$
y_3 \leftarrow (x_2 + r_1 + x_3) + r_2$
y_4 \leftarrow c + r_2

return(y_1, y_2, y_3, y_4)
Security in the t-probing model

v: randomly generated variable
c: known constant
x: secret variable

function $Ex-t3(x_1, x_2, x_3, x_4, c)$:

(* $x_1, x_2, x_3 =$ *)
(* $x_4 = x + x_1 + x_2 + x_3$ *)

$r_1 \leftarrow$
$r_2 \leftarrow$
$y_1 \leftarrow x_1 + r_1$
$y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$
$t_1 \leftarrow x_2 + r_1$
$t_2 \leftarrow (x_2 + r_1) + x_3$
$y_3 \leftarrow (x_2 + r_1 + x_3) + r_2$
$y_4 \leftarrow c + r_2$

return(y_1, y_2, y_3, y_4)

1. independent from the secret?
 > many mistakes

2. test 286 3-uples
 > missing cases
 > inefficient
Security in the t-probing model

Contributions:

1. new algorithm to decide whether a t-uple is independent from the secret
 - no false positive
 - more efficient than existing works
2. new algorithm to enumerate all the t-uples
 - more efficient than existing works

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub.

Verified proofs of higher-order masking. EUROCRYPT 2015.
1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, $b \leftarrow$ true

(Rule 1) secret variables?
yes \rightarrow (Rule 2)
no \rightarrow ✓

(Rule 2) an expression v is invertible in the only occurrence of a random r?
yes \rightarrow $v \leftarrow r$; (Rule 1)
no \rightarrow (Rule 3)

(Rule 3) is flag $b = true$?
yes \rightarrow simplify; $b \leftarrow$ false; (Rule 1)
no \rightarrow ✗

✓ \rightarrow distribution independent from the secret
✗ \rightarrow might be used for an attack

function Ex-t3(x_1, x_2, x_3, x_4, c):

$r_1 \leftarrow$
$r_2 \leftarrow$
$y_1 \leftarrow x_1 + r_1$
$y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$
$t_1 \leftarrow x_2 + r_1$
$t_2 \leftarrow (x_2 + r_1) + x_3$
$y_3 \leftarrow (x_2 + r_1 + x_3) + r_2$
$y_4 \leftarrow c + r_2$

return(y_1, y_2, y_3, y_4)
1. Show that a t-uple is independent from the secret inputs

Inputs: t intermediate variables, $b \leftarrow \text{true}$

(Rule 1) secret variables?
- yes \rightarrow (Rule 2)
- no \rightarrow ✓

(Rule 2) an expression v is invertible in the only occurrence of a random r?
- yes \rightarrow $v \leftarrow r$; (Rule 1)
- no \rightarrow (Rule 3)

(Rule 3) is flag $b = \text{true}$?
- yes \rightarrow simplify; $b \leftarrow \text{false}$; (Rule 1)
- no \rightarrow ✗

✓ \rightarrow distribution independent from the secret
✗ \rightarrow might be used for an attack
1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, $b \leftarrow \text{true}$

(Rule 1) secret variables?
- yes \rightarrow (Rule 2)
- no \rightarrow ✓

(Rule 2) an expression v is invertible in the only occurrence of a random r?
- yes \rightarrow $v \leftarrow r$; (Rule 1)
- no \rightarrow (Rule 3)

(Rule 3) is flag $b = \text{true}$?
- yes \rightarrow simplify; $b \leftarrow \text{false}$; (Rule 1)
- no \rightarrow x

✓ \rightarrow distribution independent from the secret
x \rightarrow might be used for an attack
1. Show that a \(t \)-uple is independent from the secret inputs.

Inputs: \(t \) intermediate variables, \(b \leftarrow \text{true} \)

(Rule 1) secret variables?
yes \(\rightarrow \) (Rule 2)
no \(\rightarrow \) ✓

(Rule 2) an expression \(v \) is invertible in the only occurrence of a random \(r \)?
yes \(\rightarrow \) \(v \leftarrow r \); (Rule 1)
no \(\rightarrow \) (Rule 3)

(Rule 3) is flag \(b = \text{true} \)?
yes \(\rightarrow \) simplify; \(b \leftarrow \text{false} \); (Rule 1)
no \(\rightarrow \) ✗

✓ \(\rightarrow \) distribution independent from the secret
✗ \(\rightarrow \) might be used for an attack

function \(\text{Ex-t3}(x_1, x_2, x_3, x_4, c) \):
\[
\begin{align*}
r_1 & \leftarrow x_1 + r_1 \\
r_2 & \leftarrow x_3 \\
y_1 & \leftarrow x_1 + r_1 \\
y_2 & \leftarrow x_3 \\
t_1 & \leftarrow x_2 + r_1 \\
t_2 & \leftarrow (x_2 + r_1 + x_3) \\
y_3 & \leftarrow (x_2 + r_1 + x_3) + r_2 \\
y_4 & \leftarrow c + r_2 \\
\end{align*}
\]
return \((y_1, y_2, y_3, y_4)\)
2. Extension to All Possible Sets

Problem: \(n \) intermediate variables \(\rightarrow \binom{n}{t} \) proofs
2. Extension to All Possible Sets

Problem: n intermediate variables $\Rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice
2. Extension to All Possible Sets

Problem: n intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:

Algorithm 1:
2. Extension to All Possible Sets

Problem: n intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables
- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:
1. select $X = (t$ variables$)$ and prove its independence
2. Extension to All Possible Sets

Problem: \(n \) intermediate variables \(\rightarrow \binom{n}{t} \) proofs

New Idea: proofs for sets of more than \(t \) variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:

1. select \(X = (t \text{ variables}) \) and prove its independence
2. extend \(X \) to \(\hat{X} \) with more observations but still independence
2. Extension to All Possible Sets

Problem: n intermediate variables $\Rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:
1. select $X = (t \text{ variables})$ and prove its independence
2. extend X to \hat{X} with more observations but still independence
3. recursively descend in set $C(\hat{X})$
2. Extension to All Possible Sets

Problem: n intermediate variables $\Rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables
- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice

Algorithm 1:
1. select $X = (t$ variables$)$ and prove its independence
2. extend X to \hat{X} with more observations but still independence
3. recursively descend in set $\mathcal{C} (\hat{X})$
4. merge \hat{X} and $\mathcal{C} (\hat{X})$ once they are processed separately.
2. Extension to All Possible Sets: Example

function $\text{Ex-t3}(x_1, x_2, x_3, x_4, c)$:

$r_1 \leftarrow$ \\
$r_2 \leftarrow$ \\
y_1 \leftarrow x_1 + r_1 \\
y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2 \\
t_1 \leftarrow x_2 + r_1 \\
t_2 \leftarrow (x_2 + r_1) + x_3 \\
y_3 \leftarrow (x_2 + r_1 + x_3) + r_2 \\
y_4 \leftarrow c + r_2 \\
return(y_1, y_2, y_3, y_4)$
2. Extension to All Possible Sets: Example

function Ex-t3(\(x_1, x_2, x_3, x_4, c\)):

\[
\begin{align*}
 r_1 &\leftarrow \$ \\
 r_2 &\leftarrow \$
\end{align*}
\]

\[
\begin{align*}
 y_1 &\leftarrow x_1 + r_1 \\
 y_2 &\leftarrow (x + x_1 + x_2 + x_3) + r_2 \\
 t_1 &\leftarrow x_2 + r_1 \\
 t_2 &\leftarrow (x_2 + r_1) + x_3 \\
 y_3 &\leftarrow (x_2 + r_1 + x_3) + r_2 \\
 y_4 &\leftarrow c + r_2
\end{align*}
\]

return \((y_1, y_2, y_3, y_4)\)
2. Extension to All Possible Sets: Example

function \text{Ex-t3}(x_1, x_2, x_3, x_4, c)

\[\begin{align*}
 r_1 & \leftarrow \$ \\
r_2 & \leftarrow \$
\end{align*}\]

\[\begin{align*}
y_1 & \leftarrow x_1 + r_1 \\
y_2 & \leftarrow (x + x_1 + x_2 + x_3) + r_2 \\
t_1 & \leftarrow x_2 + r_1 \\
t_2 & \leftarrow (x_2 + r_1) + x_3 \\
y_3 & \leftarrow (x_2 + r_1 + x_3) + r_2 \\
y_4 & \leftarrow c + r_2
\end{align*}\]

return\((y_1, y_2, y_3, y_4)\)
2. Extension to All Possible Sets: Example

function Ex-t3(\(x_1, x_2, x_3, x_4, c\)):

\[r_1 \leftarrow $ \]
\[r_2 \leftarrow $ \]
\[y_1 \leftarrow x_1 + r_1 \]
\[y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2 \]
\[t_1 \leftarrow x_2 + r_1 \]
\[t_2 \leftarrow (x_2 + r_1) + x_3 \]
\[y_3 \leftarrow (x_2 + r_1 + x_3) + r_2 \]
\[y_4 \leftarrow c + r_2 \]

return \((y_1, y_2, y_3, y_4)\)
2. Extension to All Possible Sets: Example

function Ex-t3(\(x_1, x_2, x_3, x_4(c)\))

\[
\begin{align*}
 r_1 & \leftarrow \$ \\
 r_2 & \leftarrow \$
\end{align*}
\]

\(\hat{X}: \checkmark\)

\[
\begin{align*}
 y_1 & \leftarrow x_1 + r_1 \\
 y_2 & \leftarrow (x + x_1 + x_2 + x_3) + r_2 \\
 t_1 & \leftarrow x_2 + r_1 \\
 t_2 & \leftarrow (x_2 + r_1) + x_3 \\
 y_3 & \leftarrow (x_2 + r_1 + x_3) + r_2 \\
 y_4 & \leftarrow c + r_2
\end{align*}
\]

\(C(\hat{X}): \checkmark\)

merge \(\hat{X}\) and \(C(\hat{X})\): \xmark

return \((y_1, y_2, y_3, y_4)\)
2. Extension to All Possible Sets: Example

function $\text{Ex-t3}(x_1, x_2, x_3, x_4(c))$

$\begin{array}{l}
r_1 \leftarrow$
$r_2 \leftarrow$
$y_1 \leftarrow x_1 + r_1$
$y_2 \leftarrow (x + x_1 + x_2 + x_3) + r_2$
$t_1 \leftarrow x_2 + r_1$
$t_2 \leftarrow (x_2 + r_1) + x_3$
$y_3 \leftarrow (x_2 + r_1 + x_3) + r_2$
$y_4 \leftarrow c + r_2$
\end{array}$

return (y_1, y_2, y_3, y_4)

\Rightarrow 207 proofs instead of 286
Application to the Sbox [CPRR13, Algorithm 4]

<table>
<thead>
<tr>
<th>Method</th>
<th># tuples</th>
<th>Security</th>
<th>Complexity</th>
<th>time*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td># sets</td>
<td>time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naive</td>
<td>63</td>
<td>✔</td>
<td>63</td>
<td>0.001s</td>
</tr>
<tr>
<td>Alg. 1</td>
<td>17</td>
<td></td>
<td>17</td>
<td>0.001s</td>
</tr>
<tr>
<td>Alg. 2</td>
<td>17</td>
<td></td>
<td>17</td>
<td>0.001s</td>
</tr>
<tr>
<td>Second-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naive</td>
<td>12,561</td>
<td>✔</td>
<td>12,561</td>
<td>0.180s</td>
</tr>
<tr>
<td>Alg. 1</td>
<td>851</td>
<td></td>
<td>851</td>
<td>0.046s</td>
</tr>
<tr>
<td>Alg. 2</td>
<td>619</td>
<td></td>
<td>619</td>
<td>0.029s</td>
</tr>
<tr>
<td>Third-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naive</td>
<td>4,499,950</td>
<td>✔</td>
<td>4,499,950</td>
<td>140.642s</td>
</tr>
<tr>
<td>Alg. 1</td>
<td>68,492</td>
<td></td>
<td>68,492</td>
<td>9.923s</td>
</tr>
<tr>
<td>Alg. 2</td>
<td>33,075</td>
<td></td>
<td>33,075</td>
<td>3.894s</td>
</tr>
<tr>
<td>Fourth-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>naive</td>
<td>2,277,036,685</td>
<td>✔</td>
<td>-</td>
<td>unpractical</td>
</tr>
<tr>
<td>Alg. 1</td>
<td>8,852,144</td>
<td></td>
<td>8,852,144</td>
<td>2959.770s</td>
</tr>
<tr>
<td>Alg. 2</td>
<td>3,343,587</td>
<td></td>
<td>3,343,587</td>
<td>879.235s</td>
</tr>
</tbody>
</table>

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at 2GHz
Benchmarks

<table>
<thead>
<tr>
<th>Reference</th>
<th>Target</th>
<th># tuples</th>
<th>Security</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td># sets</td>
</tr>
<tr>
<td>First-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSE13</td>
<td>full AES</td>
<td>17,206</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>MAC-SHA3</td>
<td>full Keccak-f</td>
<td>13,466</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Second-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA06</td>
<td>Sbox</td>
<td>1,188,111</td>
<td>✓</td>
<td>1st-order flaws (2)</td>
</tr>
<tr>
<td>CHES10</td>
<td>Sbox</td>
<td>7,140</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CHES10</td>
<td>AES KS</td>
<td>23,041,866</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>FSE13</td>
<td>2 rnds AES</td>
<td>25,429,146</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>FSE13</td>
<td>4 rnds AES</td>
<td>109,571,806</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Third-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSA06</td>
<td>Sbox</td>
<td>2,057,067,320</td>
<td>✓</td>
<td>3rd-order flaws (98,176)</td>
</tr>
<tr>
<td>FSE13</td>
<td>Sbox(4)</td>
<td>4,499,950</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>FSE13</td>
<td>Sbox(5)</td>
<td>4,499,950</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fourth-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSE13</td>
<td>Sbox (4)</td>
<td>2,277,036,685</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fifth-Order Masking</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHES10</td>
<td>⊙</td>
<td>216,071,394</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Outline

Power-Analysis Attacks

Masking Countermeasure

Leakage Models

Security in the probing model

Construction of Secure Masking Schemes - Composition
A refresh algorithm takes as input a sharing \((x_i)_{i \geq 0}\) of \(x\) and returns a new sharing \((x'_i)_{i \geq 0}\) of \(x\) such that \((x_i)_{i \geq 0}\) and \((x'_i)_{i \geq 0}\) are mutually independent.
Current Issues in Composition

A refresh algorithm takes as input a sharing $x_i \geq 0$ and returns a new sharing $x'_i \geq 0$ of x such that $x_i \geq 1$ and $x'_i \geq 1$ are mutually independent.
A refresh algorithm takes as input a sharing \((x_i)_{i \geq 0}\) of \(x\) and returns a new sharing \((x'_i)_{i \geq 0}\) of \(x\) such that \((x_i)_{i \geq 1}\) and \((x'_i)_{i \geq 1}\) are mutually independent.
A refresh algorithm takes as input a sharing \((x_i)_{i \geq 0}\) of \(x\) and returns a new sharing \((x'_i)_{i \geq 0}\) of \(x\) such that \((x_i)_{i \geq 1}\) and \((x'_i)_{i \geq 1}\) are mutually independent.
A refresh algorithm takes as input a sharing \((x_i)_{i \geq 0}\) of \(x\) and returns a new sharing \((x'_i)_{i \geq 0}\) of \(x\) such that \((x_i)_{i \geq 1}\) and \((x'_i)_{i \geq 1}\) are mutually independent.
Composition in the t-probing model

Contributions:

1. new algorithm to verify the security of compositions
 - formal security
 - any order
2. compiler to build a higher-order secure scheme from any C implementation
 - efficient
 - any order

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, and Benjamin Grégoire.
Compositional Verification of Higher-Order Masking Application to a Verifying Masking Compiler. ePrint 2015.
Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is independent from the secret
Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is independent from the secret

if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input

\[
\begin{align*}
\text{a}_0 & \quad \text{a}_1 \\
\text{a}_2 & \quad \text{a}_3 \\
\end{align*}
\]

\[
\begin{align*}
(= \text{a} + \text{a}_0 + \text{a}_1 + \text{a}_2)
\end{align*}
\]

\[
\begin{align*}
\text{c}_0 & \quad \text{c}_1 \\
\text{c}_2 & \quad \text{c}_3 \\
\end{align*}
\]

3 observations
Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is independent from the secret

if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input

function Linear-function-$t(a_0,...,a_i,...a_t)$:

for $i = 0$ to t
 $c_i \leftarrow f(a_i)$
return $(c_0,...,c_i,...,c_t)$

\rightarrow straightforward for linear functions
Security properties in the \(t \)-probing model

if \(t \) is fixed: show that any set of \(t \) intermediate variables is independent from the secret

if \(t \) is not fixed: show that any set of \(t \) intermediate variables can be simulated with at most \(t \) shares of each input

\[
\begin{align*}
\text{function } \text{Linear-function-}t(a_0,...,a_i,...,a_t): \\
\text{for } i &= 0 \text{ to } t \\
\quad c_i &= f(a_i) \\
\text{return } (c_0,...,c_i,...,c_t)
\end{align*}
\]

→ straightforward for linear functions
Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is independent from the secret

if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input

```plaintext
a_0 a_1 a_2 a_3
\Rightarrow (a + a_0 + a_1 + a_2)

\Rightarrow \text{observations}

\Rightarrow \text{straightforward for linear functions}

\Rightarrow \text{formal proofs with EasyCrypt and pen-and-paper proofs for small non-linear functions}
```

function Linear-function-t($a_0,...,a_i,...,a_t$):
for $i = 0$ to t
\[c_i = f(a_i) \]
return $(c_0,...,c_i,...,c_t)$
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 \leq t \]
Current Issues

\[
\begin{align*}
&\text{Constraint: } t_0 + t_1 + t_2 + t_3 \leq t \\
&t_0 \text{ observations} \\
&t_1 \text{ observations} \\
&t_2 \text{ observations} \\
&t_3 \text{ observations}
\end{align*}
\]
Current Issues

Constraint:

\[t_0 + t_1 + t_2 + t_3 \leq t \]
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 \leq t \]
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 \leq t \]

\[t_0 \text{ observations} \]

\[t_1 + t_3 + t_2 + t_3 \text{ observations} \]
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 \leq t \]

\[t_1 + t_2 + 2t_3 \leq t \]
Current Issues

t_0 observations

\[
\begin{align*}
A_0 \\
A_1 \\
A_2 \\
A_3
\end{align*}
\]

Constraint:
\[t_0 + t_1 + t_2 + t_3 \leq t\]

\[t_1 + t_2 + 2t_3 \leq t?\] observations
Current Issues

Constraint:

\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

- \(t_0 \) observations
- \(t_2 \) observations
- \(t_1 \) observations
- \(t_3 \) observations
- \(t_r \) observations
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

\[
\begin{align*}
A_0 & \quad t_0 \text{ observations} \\
A_1 & \quad t_1 \text{ observations} \\
A_2 & \quad t_2 + t_3 \text{ observations} \\
A_3 & \quad t_r + t_3 \text{ observations}
\end{align*}
\]
Current Issues

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

- \(t_0 \) observations
- \(t_2 + t_3 \) observations
- \(t_1 \) observations
- \(t_r + t_3 \) observations
Current Issues

Constraint: $t_0 + t_1 + t_2 + t_3 + t_r \leq t$

t_0 observations

A_0

A_1

$t_1 + t_2 + 2t_3 + t_r \leq t$?

observations

t_1 observations

A_2

t_2 observations

A_3
Strong Non-Interference in the t-probing model:

if t is not fixed: show that any set of t intermediate variables with
- t_1 on internal variables
- $t_2 = t - t_1$ on the outputs

can be simulated with at most t_1 shares of each input

\[
\begin{align*}
&\quad a_0 \quad a_1 \quad a_2 \quad a_3 \\
&\quad c_0 \quad c_1 \quad c_2 \quad c_3
\end{align*}
\]

2 internal observations

+ 1 output observation
Secure Composition

t_0 observations

t_2 observations

t_1 observations

t_r observations

t_3 output observations

Constraint:
$t_0 + t_1 + t_2 + t_3 + t_r \leq t$
Secure Composition

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]
Secure Composition

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

- \(t_0 \) observations
- \(A_0 \)
- \(t_2 + t_3 \) observations
- \(A_2 \)
- \(t_1 \) observations
- \(A_1 \)
- \(t_r \) internal observations
- \(t_3 \) output observations
- \(A_3 \)
Secure Composition

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]
Secure Composition

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

- \(t_0 \) observations
- \(A_0 \)
- \(t_1 + t_2 + t_3 + t_r \) observations
- \(A_1 \)
- \(t_3 \) output observations
- \(A_2 \)
- \(A_3 \)
Secure Composition

t_0 observations

Constraint:
$t_0 + t_1 + t_2 + t_3 + t_r \leq t$

$t_1 + t_2 + t_3 + t_r$ observations

t_3 output observations
Secure Composition

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

Observations:
- \(A_0 \) with \(t_0 + t_1 + t_2 + t_3 + t_r \) observations
- \(A_1 \)
- \(A_2 \)
- \(A_3 \)

Output Observations:
- \(t_3 \) output observations
Secure Composition

\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]

Constraint:
\[t_0 + t_1 + t_2 + t_3 + t_r \leq t \]
Secure Composition

Automatic tool for C-based algorithms

- unprotected algorithm ➔ higher-order masked algorithm
- example for AES S-box
Secure Composition

Automatic tool for C-based algorithms

- unprotected algorithm ➔ higher-order masked algorithm
- example for AES S-box

\[x \cdot 2 \oplus x \cdot 2 \]
Secure Composition

Automatic tool for C-based algorithms

- unprotected algorithm ➔ higher-order masked algorithm
- example for AES S-box
Secure Composition

Automatic tool for C-based algorithms

- unprotected algorithm ➔ higher-order masked algorithm
- example for AES S-box
Some Results

Resource usage statistics for generating masked algorithms (at any order) from some unmasked implementations\(^1\)

<table>
<thead>
<tr>
<th>Scheme</th>
<th># Refresh</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES (⊙)</td>
<td>2/Sbox</td>
<td>0.09s</td>
<td>4Mo</td>
</tr>
<tr>
<td>AES (x⊙g(x))</td>
<td>0</td>
<td>0.05s</td>
<td>4Mo</td>
</tr>
<tr>
<td>Keccak with Refresh</td>
<td>0</td>
<td>121.20</td>
<td>456Mo</td>
</tr>
<tr>
<td>Keccak</td>
<td>600</td>
<td>2728.00s</td>
<td>22870Mo</td>
</tr>
<tr>
<td>Simon</td>
<td>67</td>
<td>0.38s</td>
<td>15Mo</td>
</tr>
<tr>
<td>Speck</td>
<td>61</td>
<td>6.22s</td>
<td>38Mo</td>
</tr>
</tbody>
</table>

\(^1\)On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running Linux (Fedora)
Some Results

Resource usage statistics for generating masked algorithms (at any order) from some unmasked implementations\(^1\)

<table>
<thead>
<tr>
<th>Scheme</th>
<th># Refresh</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES ((\odot))</td>
<td>2/Sbox</td>
<td>0.09s</td>
<td>4Mo</td>
</tr>
<tr>
<td>AES ((x \odot g(x)))</td>
<td>0</td>
<td>0.05s</td>
<td>4Mo</td>
</tr>
<tr>
<td>Keccak with Refresh</td>
<td>0</td>
<td>121.20s</td>
<td>456Mo</td>
</tr>
<tr>
<td>Keccak</td>
<td>600</td>
<td>2728.00s</td>
<td>22870Mo</td>
</tr>
<tr>
<td>Simon</td>
<td>67</td>
<td>0.38s</td>
<td>15Mo</td>
</tr>
<tr>
<td>Speck</td>
<td>61</td>
<td>6.22s</td>
<td>38Mo</td>
</tr>
</tbody>
</table>

\(^1\) On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running Linux (Fedora)
Conclusion

Masking

Security

Realism
models close enough to the reality

Proofs
formal proofs of security

[EC15] formal proofs of masking schemes

[ePrint15] generation of formally proven masking schemes at any order

Efficiency

[EC16] improvement of the randomness complexity for some multiplications

§ extend the verification to higher orders using composition

§ integrate transition/glitch-based model

§ build practical experiments for both attacks and new countermeasures

§ still reduce the randomness in multiplications
Conclusion

Masking

Security

Realism
models close enough to the reality

Proofs
formal proofs of security

[EC15] formal proofs of masking schemes

[ePrint15] generation of formally proven masking schemes at any order

→ extend the verification to higher orders using composition

Efficiency

[EC16] improvement of the randomness complexity for some multiplications

§ extend the verification to higher orders using composition

§ integrate transition/glitch-based model

§ build practical experiments for both attacks and new countermeasures

§ still reduce the randomness in multiplications
Conclusion

Masking

- Security
 - Realism: models close enough to the reality
 - Proofs: formal proofs of security
 - [EC15]: formal proofs of masking schemes
 - [ePrint15]: generation of formally proven masking schemes at any order
 - extend the verification to higher orders using composition
 - integrate transition/glitch-based model

- Efficiency
 - [EC16]: improvement of the randomness complexity for some multiplications
Conclusion

Masking

Security

- Realism
 - models close enough to the reality

- Proofs
 - formal proofs of security
 - [EC15] formal proofs of masking schemes
 - [ePrint15] generation of formally proven masking schemes at any order
 - extend the verification to higher orders using composition
 - integrate transition/glitch-based model
 - build practical experiments for both attacks and new countermeasures

Efficiency

- [EC16] improvement of the randomness complexity for some multiplications
Conclusion

Masking

Security

Realism
models close enough
to the reality

Proofs
formal proofs of security

[EC15] formal proofs of masking schemes

[ePrint15] generation of formally proven masking schemes at any order

→ extend the verification to higher orders using composition

→ integrate transition/glitch-based model

→ build practical experiments for both attacks and new countermeasures

Efficiency

[EC16] improvement of the randomness complexity for some multiplications

→ still reduce the randomness in multiplications