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A Power-Analysis Attack against AES-128

Figure : Consumption trace of a full AES-128 from the DPA Contest v2
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A Power-Analysis Attack against AES-128

128-bit input m

⊕
k0

S-box

8-bit v f (v)+ε

– 8 bits

Attack on 8 bits

Ï prediction of the outputs for the 256 possible 8-bit secret
Ï correlation between predictions and leakage
Ï selection of the best correlation to find the correct 8-bit secret

Attack on 128 bits

Ï repetition of the attack on 8 bits on each S-box
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Algorithmic Countermeasures

Problem: leakage L is key-dependent

m

k

c

L

Two main algorithmic solutions:

Ï Fresh Re-keying: regularly change k
Ï Masking: make leakage L random
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Fresh Re-keying

Idea: regularly change k

session key k?

R

master key k

cm

r
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Masking

Idea: make leakage L random

sensitive value: v = f (m,k)

v0 ← v ⊕
( ⊕
1ÉiÉt

v i

)
v1 ← $ ... v t ← $

Ü each t-uple of (v i)i is independent from v
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Current Research on Masking

Masking

Security Efficiency

Realism
leakage models

Proofs
formal proofs of security

[EC:PR13] Masking against Side-Channel

Attacks: A Formal Security Proof

[EC:DDF14] Unifying Leakage Models:

From Probing Attacks to Noisy Leakage

[EC:DFS15] Making Masking Security

Proofs Concrete - Or How to Evaluate

the Security of Any Leaking Device

...

[C:ISW03] Private Circuits: Securing

Hardware against Probing Attacks

[CHES:RP10] Provably Secure Higher-

Order Masking of AES

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBDFGS15] formal proofs of mask-

ing schemes

[ePrint:BBDFG15] generation of formally

proven masking schemes at any order

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBPPTV16] improvement of the

randomness complexity for some multipli-

cations



10/32

Current Research on Masking

Masking

Security Efficiency

Realism
leakage models

Proofs
formal proofs of security

[EC:PR13] Masking against Side-Channel

Attacks: A Formal Security Proof

[EC:DDF14] Unifying Leakage Models:

From Probing Attacks to Noisy Leakage

[EC:DFS15] Making Masking Security

Proofs Concrete - Or How to Evaluate

the Security of Any Leaking Device

...

[C:ISW03] Private Circuits: Securing

Hardware against Probing Attacks

[CHES:RP10] Provably Secure Higher-

Order Masking of AES

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBDFGS15] formal proofs of mask-

ing schemes

[ePrint:BBDFG15] generation of formally

proven masking schemes at any order

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBPPTV16] improvement of the

randomness complexity for some multipli-

cations



10/32

Current Research on Masking

Masking

Security Efficiency

Realism
leakage models

Proofs
formal proofs of security

[EC:PR13] Masking against Side-Channel

Attacks: A Formal Security Proof

[EC:DDF14] Unifying Leakage Models:

From Probing Attacks to Noisy Leakage

[EC:DFS15] Making Masking Security

Proofs Concrete - Or How to Evaluate

the Security of Any Leaking Device

...

[C:ISW03] Private Circuits: Securing

Hardware against Probing Attacks

[CHES:RP10] Provably Secure Higher-

Order Masking of AES

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBDFGS15] formal proofs of mask-

ing schemes

[ePrint:BBDFG15] generation of formally

proven masking schemes at any order

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBPPTV16] improvement of the

randomness complexity for some multipli-

cations



10/32

Current Research on Masking

Masking

Security Efficiency

Realism
leakage models

Proofs
formal proofs of security

[EC:PR13] Masking against Side-Channel

Attacks: A Formal Security Proof

[EC:DDF14] Unifying Leakage Models:

From Probing Attacks to Noisy Leakage

[EC:DFS15] Making Masking Security

Proofs Concrete - Or How to Evaluate

the Security of Any Leaking Device

...

[C:ISW03] Private Circuits: Securing

Hardware against Probing Attacks

[CHES:RP10] Provably Secure Higher-

Order Masking of AES

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBDFGS15] formal proofs of mask-

ing schemes

[ePrint:BBDFG15] generation of formally

proven masking schemes at any order

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBPPTV16] improvement of the

randomness complexity for some multipli-

cations



10/32

Current Research on Masking

Masking

Security Efficiency

Realism
leakage models

Proofs
formal proofs of security

[EC:PR13] Masking against Side-Channel

Attacks: A Formal Security Proof

[EC:DDF14] Unifying Leakage Models:

From Probing Attacks to Noisy Leakage

[EC:DFS15] Making Masking Security

Proofs Concrete - Or How to Evaluate

the Security of Any Leaking Device

...

[C:ISW03] Private Circuits: Securing

Hardware against Probing Attacks

[CHES:RP10] Provably Secure Higher-

Order Masking of AES

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBDFGS15] formal proofs of mask-

ing schemes

[ePrint:BBDFG15] generation of formally

proven masking schemes at any order

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBPPTV16] improvement of the

randomness complexity for some multipli-

cations



10/32

Current Research on Masking

Masking

Security Efficiency

Realism
leakage models

Proofs
formal proofs of security

[EC:PR13] Masking against Side-Channel

Attacks: A Formal Security Proof

[EC:DDF14] Unifying Leakage Models:

From Probing Attacks to Noisy Leakage

[EC:DFS15] Making Masking Security

Proofs Concrete - Or How to Evaluate

the Security of Any Leaking Device

...

[C:ISW03] Private Circuits: Securing

Hardware against Probing Attacks

[CHES:RP10] Provably Secure Higher-

Order Masking of AES

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBDFGS15] formal proofs of mask-

ing schemes

[ePrint:BBDFG15] generation of formally

proven masking schemes at any order

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBPPTV16] improvement of the

randomness complexity for some multipli-

cations



10/32

Current Research on Masking

Masking

Security Efficiency

Realism
leakage models

Proofs
formal proofs of security

[EC:PR13] Masking against Side-Channel

Attacks: A Formal Security Proof

[EC:DDF14] Unifying Leakage Models:

From Probing Attacks to Noisy Leakage

[EC:DFS15] Making Masking Security

Proofs Concrete - Or How to Evaluate

the Security of Any Leaking Device

...

[C:ISW03] Private Circuits: Securing

Hardware against Probing Attacks

[CHES:RP10] Provably Secure Higher-

Order Masking of AES

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBDFGS15] formal proofs of mask-

ing schemes

[ePrint:BBDFG15] generation of formally

proven masking schemes at any order

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBPPTV16] improvement of the

randomness complexity for some multipli-

cations



10/32

Current Research on Masking

Masking

Security Efficiency

Realism
leakage models

Proofs
formal proofs of security

[EC:PR13] Masking against Side-Channel

Attacks: A Formal Security Proof

[EC:DDF14] Unifying Leakage Models:

From Probing Attacks to Noisy Leakage

[EC:DFS15] Making Masking Security

Proofs Concrete - Or How to Evaluate

the Security of Any Leaking Device

...

[C:ISW03] Private Circuits: Securing

Hardware against Probing Attacks

[CHES:RP10] Provably Secure Higher-

Order Masking of AES

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBDFGS15] formal proofs of mask-

ing schemes

[ePrint:BBDFG15] generation of formally

proven masking schemes at any order

[FSE:CPRR13] Higher-Order Side Chan-

nel Security and Mask Refreshing

[EC:BBPPTV16] improvement of the

randomness complexity for some multipli-

cations



11/32

Outline

Power-Analysis Attacks

Masking Countermeasure

Leakage Models

Security in the probing model

Construction of Secure Masking Schemes - Composition



12/32

Power-Analysis Attacks on Masking Schemes

First-order masking

Ü compare C (L (v +m),L (m)) to the predictions on v
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Power-Analysis Attacks on Masking Schemes

3rd -order masking

Ü compare C (L (v +m1),L (m2),L (m3),L (m1 +m2 +m3)) to the
predictions on v
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Security of Masked Programs: Leakage Model
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no leak-free gates

leak-free gates

reduction
Duc, Dziembowski, Faust

Eurocrypt 14
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Security in the t-probing model
t-probing model assumptions:

Ï only one variable is leaking at a time
Ï the attacker can get the exact value of at most t variables

Ü show that all the t-uples are independent from the secret
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Security in the t-probing model
v: randomly generated variable
c: known constant
x: secret variable

function Ex-t3(x1,x2,x3,x4,c):
(* x1,x2,x3 = $ *)
(* x4 = x +x1 +x2 +x3 *)

r1 ← $

r2 ← $

y1 ← x1 + r1
y2 ← (x +x1 +x2 +x3)+ r2
t1 ← x2 + r1
t2 ← (x2 + r1)+x3

y3 ← (x2 + r1 +x3)+ r2
y4 ← c+ r2

return(y1,y2,y3,y4)

1. independent
from the secret?

8 many mistakes

48?

2. test 286 3-uples
8 missing cases
8 inefficient
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Security in the t-probing model

Contributions:

1. new algorithm to decide whether a t-uple is independent from the
secret

Ï no false positive
Ï more efficient than existing works

2. new algorithm to enumerate all the t-uples
Ï more efficient than existing works

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin
Grégoire, and Pierre-Yves Strub.
Verified proofs of higher-order masking. EUROCRYPT 2015.
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1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, b ← true

(Rule 1) secret variables?
yes Ü (Rule 2)

no Ü 4

(Rule 2) an expression v is invertible in the
only occurrence of a random r?

yes Ü v ← r ; (Rule 1)

no Ü (Rule 3)

(Rule 3) is flag b = true?

yes Ü simplify; b ← false; (Rule 1)

no Ü 8

function Ex-t3(x1,x2,x3,x4,c):

r1 ← $

r2 ← $

y1 ← x1 + r1

y2 ← (x +x1 +x2 +x3)+ r2
t1 ← x2 + r1

t2 ← (x2 + r1)+x3

y3 ← (x2 + r1 +x3)+ r2
y4 ← c+ r2

return(y1,y2,y3,y4)

4 Ü distribution independent from the secret
8 Ü might be used for an attack
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2. Extension to All Possible Sets

Problem: n intermediate variables Ü
(n

t
)

proofs

New Idea: proofs for sets of more than t variables
Ï find larger sets which cover all the intermediate variables is a hard

problem
Ï two algorithms efficient in practice

X X̂ C
(
X̂

)

Algorithm 1:

1. select X = (t variables) and prove its
independence

2. extend X to X̂ with more
observations but still independence

3. recursively descend in set C
(
X̂

)
4. merge X̂ and C

(
X̂

)
once they are

processed separately.
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2. Extension to All Possible Sets: Example

function Ex-t3(x1,x2,x3,x4,c):
r1 ← $

r2 ← $

y1 ← x1 + r1
y2 ← (x +x1 +x2 +x3)+ r2
t1 ← x2 + r1
t2 ← (x2 + r1)+x3

y3 ← (x2 + r1 +x3)+ r2
y4 ← c+ r2

return(y1,y2,y3,y4)

X : 4X̂ : 4

C (X̂ ): 4

merge X̂ and C (X̂ ): 8

Ü 207 proofs instead of 286
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Application to the Sbox [CPRR13, Algorithm 4]

Method # tuples Security Complexity
# sets time*

First-Order Masking
naive

63 4

63 0.001s
Alg. 1 17 0.001s
Alg. 2 17 0.001s

Second-Order Masking
naive

12,561 4

12,561 0.180s
Alg. 1 851 0.046s
Alg. 2 619 0.029s

Third-Order Masking
naive

4,499,950 4

4,499,950 140.642s
Alg. 1 68,492 9.923s
Alg. 2 33,075 3.894s

Fourth-Order Masking
naive

2,277,036,685 4

- unpractical
Alg. 1 8,852,144 2959.770s
Alg. 2 3,343,587 879.235s

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at 2GHz
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Benchmarks

Reference Target # tuples Security Complexity
# sets time (s)

First-Order Masking
FSE13 full AES 17,206 4 3,342 128

MAC-SHA3 full Keccak-f 13,466 4 5,421 405
Second-Order Masking

RSA06 Sbox 1,188,111 4 4,104 1.649
1st -orderCHES10 Sbox 7,140 flaws (2) 866 0.045

CHES10 AES KS 23,041,866 4 771,263 340,745
FSE13 2 rnds AES 25,429,146 4 511,865 1,295
FSE13 4 rnds AES 109,571,806 4 2,317,593 40,169

Third-Order Masking
3rd -orderRSA06 Sbox 2,057,067,320 flaws (98,176) 2,013,070 695

FSE13 Sbox(4) 4,499,950 4 33,075 3.894
FSE13 Sbox(5) 4,499,950 4 39,613 5.036

Fourth-Order Masking
FSE13 Sbox (4) 2,277,036,685 4 3,343,587 879

Fifth-Order Masking
CHES10 ¯ 216,071,394 4 856,147 45
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Outline

Power-Analysis Attacks

Masking Countermeasure

Leakage Models

Security in the probing model

Construction of Secure Masking Schemes - Composition
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Current Issues in Composition

8

A refresh algorithm takes as input a sharing (xi )i≥0 of x and returns a
new sharing (x ′

i )i≥0 of x such that (xi )i≥1 and (x ′
i )i≥1 are mutually

independent.
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Composition in the t-probing model

Contributions:

1. new algorithm to verify the security of compositions
Ï formal security
Ï any order

2. compiler to build a higher-order secure scheme from any C
implementation

Ï efficient
Ï any order

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, and
Benjamin Grégoire.
Compositional Verification of Higher-Order Masking Application to a Verifying
Masking Compiler. ePrint 2015.
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Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is
independent from the secret

if t is not fixed: show that any set of t intermediate variables can
be simulated with at most t shares of each input

3
observations

a0 a1 a2 a3 (= a+a0 +a1 +a2)

c0 c1 c2 c3

function Linear-function-t(a0, ...,ai , ...at ):

for i = 0 to t

ci ← f (ai )

return (c0, ...,ci , ...,ct )

Ü straightforward for linear functions
Ü formal proofs with EasyCrypt and pen-and paper proofs for small

non-linear functions
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Current Issues

Constraint:
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Stronger security property for Refresh

Strong Non-Interference in the t-probing model:
if t is not fixed: show that any set of t intermediate variables with

- t1 on internal variables
- t2 = t − t1 on the outputs

can be simulated with at most t1 shares of each input

2 internal
observations

+ 1 output
observation

a0 a1 a2 a3

c0 c1 c2 c3
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Secure Composition
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Secure Composition

Automatic tool for C-based algorithms

Ï unprotected algorithm Ü higher-order masked algorithm
Ï example for AES S-box
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Some Results

Resource usage statistics for generating masked algorithms (at any
order) from some unmasked implementations1

Scheme # Refresh Time Memory
AES (¯) 2/Sbox 0.09s 4Mo
AES (x ¯g(x)) 0 0.05s 4Mo
Keccak with Refresh 0 121.20 456Mo
Keccak 600 2728.00s 22870Mo
Simon 67 0.38s 15Mo
Speck 61 6.22s 38Mo

1On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running
Linux (Fedora)
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Masking

Security

Realism
models close enough
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Proofs
formal proofs of security

Efficiency

[EC15] formal proofs of masking

schemes

[ePrint15] generation of formally proven

masking schemes at any order

[EC16] improvement of the ran-

domness complexity for some

multiplications

Ü extend the verification to higher orders

using composition

Ü integrate transition/glitch-based model

Ü build practical experiments for both

attacks and new countermeasures

Ü still reduce the randomness in

multiplications
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