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A power-analysis attack against AES-128
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Algorithmic Countermeasures

{
n L, Problem: leakage % is key-dependent
N\
W\
Fresh Re-keying Masking
Idea: regularly change k Idea: make leakage % random
master key k
i sensmve value: v = f(m, k)
r — l \\\)
VOHV®(1S.;<{VI vi—$ . vi—$

session key k*

=» each t-uple of v; is

m HD—' c independent from v



Algorithmic Countermeasures

(é— >~

—

Problem: leakage % is key-dependent

N

Masking

Idea: make leakage % random

sensmve value: v =f(m,k)

l\\,

vokvea(e} 7 vi<$ . vi—$
1<ist

=» each t-uple of v; is
independent from v



Security of Masked Programs: Leakage Model

convenience for security proofs

t-probing model
Ishai, Sahai, Wagner

Crypto 03

no leak-free gates

leak-free gates

noisy
leakage model
Prouff, Rivain

Eurocrypt 13

realism



Security of Masked Programs: Leakage Model

convenience for security proofs

t-probing model
Ishai, Sahai, Wagner

Crypto 03

no leak-free gates

leak-free gates

\

noisy
leakage model
Prouff, Rivain

Eurocrypt 13

realism



Security in the t-probing model

t-probing model assumptions:

» only one variable is leaking at a time

» the attacker can get the exact value of at most t variables
Secure if all the t-uples are independent from the secret.
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Security in the t-probing model

» v: randomly generated variable
» ¢: known constant
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Security in the t-probing model

» v: randomly generated variable
» ¢: known constant
> X: secret variable

function Ex-t3(x,
(* X1, %0, 03=$ %)
(* Xg=X+X1+ X0+ )
<5
<5
Yi—=xi+
Yo = (XX 400+ x5) +
X many mistakes ty = o+
to—(o+r)+
Y3 —(
Ya—C+
return(y1, Y2, Y3, Ya)

, X3, X4, C):

1. independent
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X missing cases
X inefficient



Security in the t-probing model

Contributions:
1. new algorithm to decide whether a f-uple is independent from the
secret

> no false positive
> more efficient than existing works

2. new algorithm to enumerate all the t-uples
> more efficient than existing works

[§ Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain
Fouque, Benjamin Grégoire, and Pierre-Yves Strub.
Verified proofs of higher-order masking. EUROCRYPT 2015.
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1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, b — true

function Ex-t3(xq, X2, X3, X4, C):
(Rule 1) secret variables? ¢ 4
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o g ’
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to —
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(Rule 3) is flag b= true? Voot

yes =» simplify; b — false; (Rule 1)
no = X

return(yq, 2,3, Y4)

=» distribution independent from the secret
X =» might be used for an attack



2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs



2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables
> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice



2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:



2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:

1. select X =(t variables) and prove its
independence



2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:
1. select X =(t variables) and prove its
independence
2. extend X to X with more
X) X observations but still independence



2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:

1. select X =(t variables) and prove its
independence

2. extend X to X with more
X)X %(X) observations but still independence

3. recursively descend in set ¢ ()A()



2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:

1. select X =(t variables) and prove its
independence

2. extend X to X with more
X)X %(X) observations but still independence

3. recursively descend in set ¢ ()A()

4. merge X and € ()A() once they are
processed separately.



Benchmarks

Reference Target # tuples Security # S;(S)mpl‘extlitxwe (s)
First-Order Masking
FSE13 full AES 17,206 3,342 128
MAC-SHA3 | full Keccak-f 13,466 5,421 405
Second-Order Masking
RSA06 Sbox 1,188,111 4,104 1.649
15torder
CHES10 Sbox 7,140 866 0.045
flaws (2)

CHES10 AES KS 23,041,866 771,263 340,745
FSE13 2 rnds AES 25,429,146 511,865 1,295
FSE13 4 rnds AES 109,571,806 2,317,593 40,169

Third-Order Masking
RSA06 Sbox 2,057,067,320 g%order | ;513070 | 695
EEED flaws (98,176) T
FSE13 Sbox(4) 4,499,950 33,075 3.894
FSE13 Sbox(5) 4,499,950 39,613 5.036
Fourth-Order Masking
FSE13 [ Sbox(4) [ 2,277,036,685 || [ 3343587 | 879
Fifth-Order Masking
CHES10 | B 216,071,394 || | 856,147 | 45

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at-2GHz
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c A refresh algorithm takes as input a sharing (x;);j»o of x and returns a

new sharing (x; )i=0 of x such that (x;);»1 and (x; )i=1 are mutually
independent.



Composition in the t-probing model

Contributions:

1. new algorithm to verify the security of compositions
» formal security
> any order
2. compiler to build a higher-order secure from any C
implementation
» efficient
> any order

[§ Gilles Barthe, Sonia Belaid, Francgois Dupressoir, Pierre-Alain
Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rebecca
Zucchini.

Strong Non-Interference and Type-Directed Higher-Order
Masking. CCS 2016.
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Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is
independent from the secret

if t is not fixed: show that any set of ¢t intermediate variables can
be simulated with at most t shares of each input

@ Zataptart ) function Linear-function-t(ag, ...
/ fori=0tot

| ) > 3 return (¢, ..., Cjs..., Ct)
observations

...at):

Cp C1 Co C3

=» straightforward for linear functions

=» formal proofs with EasyCrypt and pen-and paper proofs for small
non-linear functions
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Stronger security property for Refresh

Strong Non-Interference in the t-probing model:

if tis not fixed: show that any set of t intermediate variables with

- 1 oninternal variables
- tr =t—1; on the outputs
can be simulated with at most t; shares of each input

R

% 2 internal

) ) ) ) observations

/ \ 1 output
0 2™ } observation



Secure Composition
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Secure Composition

Automatic tool for C-based algorithms

» unprotected algorithm =» higher-order masked algorithm
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Some Results

Resource usage statistics for generating masked algorithms (at any
order) from some unmasked implementations’

Scheme | # Refresh Time Memory
AES (o) 2 0.09s 4Mo
AES (x o g(x)) 0 0.05s 4Mo
Keccak with Refresh 0 121.20 456Mo
Keccak 600 2728.00s 22870Mo
Simon 67 0.38s 15Mo
Speck 61 6.22s 38Mo

Ona Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running

Linux (Fedora)



Some Results

Resource usage statistics for generating masked algorithms (at any
order) from some unmasked implementations’

Scheme | # Refresh Time Memory
AES (o) 2 per S-box 0.09s 4Mo
AES (x o g(x)) 0 0.05s 4Mo
Keccak with Refresh 0 121.20s 456Mo
Keccak 600 2728.00s 22870Mo
Simon 67 0.38s 15Mo
Speck 61 6.22s 38Mo

Ona Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running
Linux (Fedora)



Conclusion

Summary

verification of higher-order masking schemes
efficient and proven composition
two automatic tools

Further Work

extend the verification to higher orders using composition
integrate transition/glitch-based model

build practical experiments for both attacks and new
countermeasures



Conclusion

Cryptanalysis: Power-Analysis Attacks

=» investigate the LPN algorithms in the context of power-analysis
attacks

=» analyze the operation modes

Cryptography: countermeasures against Power-Analysis Attacks

=» implement and evaluate our countermeasures on real devices
(software and hardware)

=> make verifications and compositions as practical as possible
=» use the characterization of a device as a leakage model
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