THALES

On the use of formal tools to improve the

security of masked implementations
Symposium European Cyber Week

November 23, 2016

Sonia Belaid

Cryptanalysis
=» Black-box cryptanalysis
=» Side-channel analysis

%\
Alice B

e

Bob

Cryptanalysis
=» Black-box cryptanalysis: « — (mj,c;)

4

Alice

e

Bob

Cryptanalysis

=» Side-Channel Analysis: «/ — (m;,c;, %))

Cryptanalysis

=» Side-Channel Analysis: « — (m;,c;, %£})

Cryptanalysis

=» Side-Channel Analysis: « — (m;,c;, %£})

TS

Cryptanalysis

=» Side-Channel Analysis: « — (m;,c;, %£})

TS

Cryptanalysis

=» Side-Channel Analysis: « — (m;,c;, %£})

A power-analysis attack against AES-128

power consumption

time

A power-analysis attack against AES-128

power consumption

sl N F &
. ! 1 L L L
(0 w0 o o 2000 200

time

A power-analysis attack against AES-128

| 128-bit input m

-{: 8 bits
ko Hﬂf‘

S-box

l
ebitv])]

|

\
) f(v)+e

Algorithmic Countermeasures

{
n L, Problem: leakage % is key-dependent
N\
W\
Fresh Re-keying Masking
Idea: regularly change k Idea: make leakage % random
master key k
i sensmve value: v = f(m, k)
r — l \\\)
VOHV®(1S.;<{VI vi—$. vi—$

session key k*

=» each t-uple of v; is

m HD—' c independent from v

Algorithmic Countermeasures

(é— >~

—

Problem: leakage % is key-dependent

N

Masking

Idea: make leakage % random

sensmve value: v =f(m,k)

l\\,

vokvea(e} 7 vi<$. vi—$
1<ist

=» each t-uple of v; is
independent from v

Security of Masked Programs: Leakage Model

convenience for security proofs

t-probing model
Ishai, Sahai, Wagner

Crypto 03

no leak-free gates

leak-free gates

noisy
leakage model
Prouff, Rivain

Eurocrypt 13

realism

Security of Masked Programs: Leakage Model

convenience for security proofs

t-probing model
Ishai, Sahai, Wagner

Crypto 03

no leak-free gates

leak-free gates

\

noisy
leakage model
Prouff, Rivain

Eurocrypt 13

realism

Security in the t-probing model

t-probing model assumptions:

» only one variable is leaking at a time

» the attacker can get the exact value of at most t variables
Secure if all the t-uples are independent from the secret.

| Ll

power consumption

=

| |

m, |mtma#m,
time

Security in the t-probing model

» v: randomly generated variable
» ¢: known constant
> X: secret variable

function Ex-t3(
(* X1, %0, 03=$ %)
(" X=X+ + X0+ X3 %)
~$
~$
Yi—=xi+
Yo = (XX 400+ x5) +
=0+
to—(o+r)+
Y3 = (o1 +x3)+
Ya—C+
return(y1, Y2, Y3, Ya)

, X2, X3,X4,C):

Security in the t-probing model

» v: randomly generated variable
» ¢: known constant
> X: secret variable

function Ex-t3(x1, X2, X3, Xy, C):
(" x1,%0,%3=% %)
(*Xg=X+X1+Xo0+x3 %)

)

$
1. independent

from the secret?

return(y1, Y2, ¥3, Y4)

Security in the t-probing model

» v: randomly generated variable
» ¢: known constant
> X: secret variable

function Ex-t3(
(" x1,%0,%3=% %)

(" Xg=X+X{+X0+x3 7)

<9

, X2, X3,X4,C):

93
1. independent — Xy +
from the secret? @

(X+ X1+ X0+ X3) +

t1<— +
X b —(o+r)+
(Xo+r1+X3)+
Ya—C+

return(yy, y2, ¥3, Y4)

Security in the t-probing model

» v: randomly generated variable
» ¢: known constant
> X: secret variable

function Ex-t3(
(" x1,%0,%3=% %)

(" Xg=X+X{+X0+x3 7)

<9

1. independent :__
from the secret? @

<—x+ + X0+ X3) +

, X2, X3,X4,C):

ly —

(o+ri)+
Y3 = (o1 +x3)+
Ya—C+

return(yy, y2, ¥3, Y4)

Security in the t-probing model

» v: randomly generated variable
» ¢: known constant
> X: secret variable

function Ex-t3(
(" X1, X0, X3 =$ %)
(*Xg=X+X1+Xo0+x3 %)

93

93

Yi—=xi+

Yo — (X+X1+X0+X3)+
X many mistakes f =+

, X2, X3,X4,C):

1. independent
from the secret?

tg'-(+)+

Y3 = (o1 +x3)+

Ya—C+
return(yy, y2, ¥3, Y4)

Security in the t-probing model

» v: randomly generated variable
» ¢: known constant
> X: secret variable

function Ex-t3(x,
(* X1, %0, 03=$ %)
(* Xg=X+X1+ X0+)
<5
<5
Yi—=xi+
Yo = (XX 400+ x5) +
X many mistakes ty = o+
to—(o+r)+
Y3 —(
Ya—C+
return(y1, Y2, Y3, Ya)

, X3, X4, C):

1. independent
from the secret?

+r+X3)+

2. test 286 3-uples
X missing cases
X inefficient

Security in the t-probing model

Contributions:
1. new algorithm to decide whether a f-uple is independent from the
secret

> no false positive
> more efficient than existing works

2. new algorithm to enumerate all the t-uples
> more efficient than existing works

[§ Gilles Barthe, Sonia Belaid, Frangois Dupressoir, Pierre-Alain
Fouque, Benjamin Grégoire, and Pierre-Yves Strub.
Verified proofs of higher-order masking. EUROCRYPT 2015.

1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, b — true

. function Ex-t3(xq, X2, X3, X4, C):
(Rule 1) secret variables? ¢
yes = (Rule 2) -
-3
no =
i=xi+
(Rule 2) an expression v is invertible in the
Yo — (X+ X1 +X0+X3) +
only occurrence of a random r?
b —
yes & v—r;(Rule 1) ! *
bo —(Xo+1q)+
no = (Rule3)
, , Y3 = (o+r+x3)+
(Rule 3) is flag b = true? Yo —C+
es =» simplify; b false; (Rule 1
y Py () return(yy, Y2, 3, Ya)
no = X

=» distribution independent from the secret
X =» might be used for an attack

1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, b — true

. function Ex-t3(xq, X2, X3, X4, C):
(Rule 1) secret variables? ¢
yes = (Rule 2) Q
-3
no =
Ok
(Rule 2) an expression v is invertible in the o (X+Xq + X+ Xa) +
only occurrence of a random r? v
yes = v —r; (Rule 1) fr—sot
no = (Rule3) - (e+n)+
(yg)= oty +5) +
(Rule 3) is flag b =true? Va—C+
es =» simplify; b false; (Rule 1
y Py alse; () return(y1, Y2, 3, Y4)
no = X

=» distribution independent from the secret
X =» might be used for an attack

1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, b — true)
. function Ex-t3(xq, X2, X3, X4, C):
(Rule 1) secret variables?

yes =» (Rule 2)

no = $

(Rule 2) an expression v is invertible in the @ (X451 404 03) +
only occurrence of a random r?

yes = v —r; (Rule 1) fr—sot
th —
no = (Rule3) 2 (()+ |
. Y3 — (Mo +r{ +x3)+
(Rule 3) is flag b= true? Voot

yes =» simplify; b — false; (Rule 1)
no = X

return(yy, Y2, ¥3,Y4)

=» distribution independent from the secret
X =» might be used for an attack

1. Show that a t-uple is independent from the secret

Inputs: t intermediate variables, b — true

function Ex-t3(xq, X2, X3, X4, C):
(Rule 1) secret variables? ¢ 4
yes = (Rule 2) -

o g ’
+
(Rule 2) an expression v is invertible in the @

only occurrence of a random r?
fy — o+
yes = v —r;(Rule 1) 1

to —
no = (Rule3) 2= (etn)x

y3 = (o +ri+x3)+

(Rule 3) is flag b= true? Voot

yes =» simplify; b — false; (Rule 1)
no = X

return(yq, 2,3, Y4)

=» distribution independent from the secret
X =» might be used for an attack

2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables
> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:

2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:

1. select X =(t variables) and prove its
independence

2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:
1. select X =(t variables) and prove its
independence
2. extend X to X with more
X) X observations but still independence

2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:

1. select X =(t variables) and prove its
independence

2. extend X to X with more
X)X %(X) observations but still independence

3. recursively descend in set ¢ ()A()

2. Extension to All Possible Sets

Problem: n intermediate variables = (7) proofs

New ldea: proofs for sets of more than ¢ variables

> find larger sets which cover all the intermediate variables is a hard
problem
> two algorithms efficient in practice

Algorithm 1:

1. select X =(t variables) and prove its
independence

2. extend X to X with more
X)X %(X) observations but still independence

3. recursively descend in set ¢ ()A()

4. merge X and € ()A() once they are
processed separately.

Benchmarks

Reference Target # tuples Security # S;(S)mpl‘extlitxwe (s)
First-Order Masking
FSE13 full AES 17,206 3,342 128
MAC-SHA3 | full Keccak-f 13,466 5,421 405
Second-Order Masking
RSA06 Sbox 1,188,111 4,104 1.649
15torder
CHES10 Sbox 7,140 866 0.045
flaws (2)

CHES10 AES KS 23,041,866 771,263 340,745
FSE13 2 rnds AES 25,429,146 511,865 1,295
FSE13 4 rnds AES 109,571,806 2,317,593 40,169

Third-Order Masking
RSA06 Sbox 2,057,067,320 g%order | ;513070 | 695
EEED flaws (98,176) T
FSE13 Sbox(4) 4,499,950 33,075 3.894
FSE13 Sbox(5) 4,499,950 39,613 5.036
Fourth-Order Masking
FSE13 [Sbox(4) [2,277,036,685 || [3343587 | 879
Fifth-Order Masking
CHES10 | B 216,071,394 || | 856,147 | 45

*run on a headless VM with a dual core (only one core is used in the computation) 64-bit processor clocked at-2GHz

Current Issues in Composition

b

LSS

Current Issues in Composition

b

o

Current Issues in Composition

b

R &

S

new sharing (x;)i=0 of x such that (x;);»1 and (x;)i=1 are mutually

c A refresh algorithm takes as input a sharing (x;);j»o of x and returns a
independent.

Current Issues in Composition

b

R &

S
X

new sharing (x;)i=0 of x such that (x;);»1 and (x;)i=1 are mutually

c A refresh algorithm takes as input a sharing (x;);j»o of x and returns a
independent.

Current Issues in Composition

b

d
d

A
¢4

¢/

¢/

c A refresh algorithm takes as input a sharing (x;);j»o of x and returns a

new sharing (x;)i=0 of x such that (x;);»1 and (x;)i=1 are mutually
independent.

Composition in the t-probing model

Contributions:

1. new algorithm to verify the security of compositions
» formal security
> any order
2. compiler to build a higher-order secure from any C
implementation
» efficient
> any order

[§ Gilles Barthe, Sonia Belaid, Francgois Dupressoir, Pierre-Alain
Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rebecca
Zucchini.

Strong Non-Interference and Type-Directed Higher-Order
Masking. CCS 2016.

Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is
independent from the secret

Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is
independent from the secret

if t is not fixed: show that any set of ¢t intermediate variables can
be simulated with at most t shares of each input

Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is
independent from the secret

if t is not fixed: show that any set of ¢t intermediate variables can
be simulated with at most t shares of each input

@ Zataptart) function Linear-function-t(ag, ..., &;,...at):
/ fori=0tot

¢ —f(a)

|) > 3 return (¢, ..., Cjs..., Ct)
observations

Cp C1 Co C3

=» straightforward for linear functions

Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is
independent from the secret

if t is not fixed: show that any set of ¢t intermediate variables can
be simulated with at most t shares of each input

|) > 3 return (¢, ..., Cjs..., Ct)
observations

Cp C1 Co C3

=» straightforward for linear functions

Security properties in the t-probing model

if t is fixed: show that any set of t intermediate variables is
independent from the secret

if t is not fixed: show that any set of ¢t intermediate variables can
be simulated with at most t shares of each input

@ Zataptart) function Linear-function-t(ag, ...
/ fori=0tot

|) > 3 return (¢, ..., Cjs..., Ct)
observations

...at):

Cp C1 Co C3

=» straightforward for linear functions

=» formal proofs with EasyCrypt and pen-and paper proofs for small
non-linear functions

Current Issues

fy S Constraint:
observations o+t +hb+i3<t

t

t> observations

observations

observations

Current Issues

4

Constraint:
h+ti+h+l3st

fo
observations

b observations

observations

Current Issues

fy S Constraint:
observations o+t +hb+i3<t

t1 + t3
b+t observations

observations

Current Issues

fo % Constraint:
observations o+t +hb+i3<t

t1 + t3
b+t observations

observations

Current Issues

fy S Constraint:
observations o+t +hb+i3<t

h+h+bh+13
observations

Current Issues

fy S Constraint:
observations o+t +hb+i3<t

bh+b+2<t?
observations

Current Issues

fy S Constraint:
observations 0 o+t +h+ty<t

|
/ﬂb h+b+2t3<t?

observations
(%A

o

As

o~

2

Current Issues

% Constraint:

. A
observations 0 o+t +bh+ty+t <t

4

observations

(% tr
observations

o

As

b P

observations Z

} observat|ons

Current Issues

fy S Constraint:
observations o+t+b+i3+t <t

b
observations

Current Issues

fy S Constraint:
observations 0 o+t +bh+ty+t <t

t
observations

% L+ 13
(' observations

o

As

4

b+13 /S

observations Z

Current Issues

fy S Constraint:
observations 0 o+t +bh+ty+t <t

by !
b+t observations

observations

L+ 13
observations

Current Issues

fy S Constraint:
observations 0 o+t +bh+ty+t <t

—
Ai\ h+b+2G+L<t?

observations
C

o

As

o~

2

Stronger security property for Refresh

Strong Non-Interference in the t-probing model:

if tis not fixed: show that any set of t intermediate variables with

- 1 oninternal variables
- tr =t—1; on the outputs
can be simulated with at most t; shares of each input

R

% 2 internal

)))) observations

/ \ 1 output
0 2™ } observation

Secure Composition

% Constraint:

. A
observations 0 o+t +bh+t+t <t

4

observations

(% tr
observations

o

As

b P

observations Z

} observat|ons

Secure Composition

o A;@ Constraint:

observations o+t+b+i3+t <t

b
observations

Secure Composition

% Constraint:

to A
observations o+t+b+i3+t <t

t
observations

4

b+13 /S

observations Z

ty internal
% observations
+13 output

4 observations

As

Secure Composition

fy S Constraint:
observations 0 o+t +bh+t+t <t

~ t
Aq T
b+t obgervatijons
observations
t- intgrnal
observations
+13 output
observations

Secure Composition

% Constraint:

to A
observations o+t+b+i3+t <t

S h+b+hB+1
1 f
observations

% I3 output
observations

o

As

o~

2

Secure Composition

Constraint:
ho+ti+h+l3+t <t

fo
observations

/S h+b+B+1
1 observations

% I3 output
observations

o

As

7

Secure Composition

h+ti+b+i3+t S Constraint:
observations 0 o+t +bh+t+t <t

% I3 output
observations

Secure Composition

o+t +b+i+1 S Constraint:
observations Ao b+t +b+tz+t <t

% t3 output
observations

Secure Composition

Automatic tool for C-based algorithms

» unprotected algorithm =» higher-order masked algorithm
» example for AES S-box

X

/

Secure Composition

Automatic tool for C-based algorithms

» unprotected algorithm =» higher-order masked algorithm
» example for AES S-box

/ q

>

&
. o5

]

Secure Composition

Automatic tool for C-based algorithms

» unprotected algorithm =» higher-order masked algorithm
» example for AES S-box

/ q

>

&
® ®%

L
X

Secure Composition

Automatic tool for C-based algorithms

» unprotected algorithm =» higher-order masked algorithm
» example for AES S-box

/| ﬁq /N
2 — s ™ — > @1
oS s

- -
X

Some Results

Resource usage statistics for generating masked algorithms (at any
order) from some unmasked implementations’

Scheme | # Refresh Time Memory
AES (o) 2 0.09s 4Mo
AES (x o g(x)) 0 0.05s 4Mo
Keccak with Refresh 0 121.20 456Mo
Keccak 600 2728.00s 22870Mo
Simon 67 0.38s 15Mo
Speck 61 6.22s 38Mo

Ona Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running

Linux (Fedora)

Some Results

Resource usage statistics for generating masked algorithms (at any
order) from some unmasked implementations’

Scheme | # Refresh Time Memory
AES (o) 2 per S-box 0.09s 4Mo
AES (x o g(x)) 0 0.05s 4Mo
Keccak with Refresh 0 121.20s 456Mo
Keccak 600 2728.00s 22870Mo
Simon 67 0.38s 15Mo
Speck 61 6.22s 38Mo

Ona Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running
Linux (Fedora)

Conclusion

Summary

verification of higher-order masking schemes
efficient and proven composition
two automatic tools

Further Work

extend the verification to higher orders using composition
integrate transition/glitch-based model

build practical experiments for both attacks and new
countermeasures

Conclusion

Cryptanalysis: Power-Analysis Attacks

=» investigate the LPN algorithms in the context of power-analysis
attacks

=» analyze the operation modes

Cryptography: countermeasures against Power-Analysis Attacks

=» implement and evaluate our countermeasures on real devices
(software and hardware)

=> make verifications and compositions as practical as possible
=» use the characterization of a device as a leakage model

	Introduction
	Countermeasures
	Construction of secure masking schemes - Composition
	Conclusion

