THALES

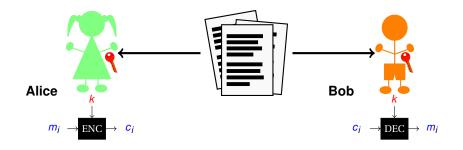
On the use of formal tools to improve the security of masked implementations Symposium European Cyber Week

November 23, 2016

Sonia Belaïd

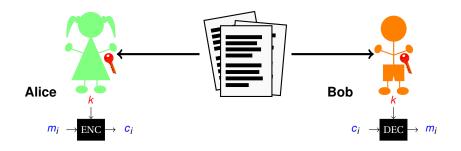
<□> < □> < □> < □> < □> < □> < □> = - つへ(? 1/22)

- → Black-box cryptanalysis
- → Side-channel analysis

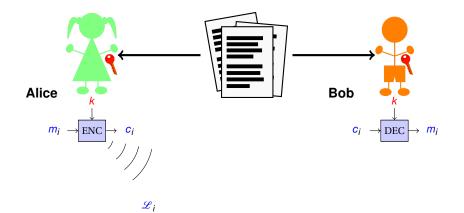


→ Black-box cryptanalysis: $\mathscr{A} \leftarrow (m_i, c_i)$

➔ Side-Channel Analysis

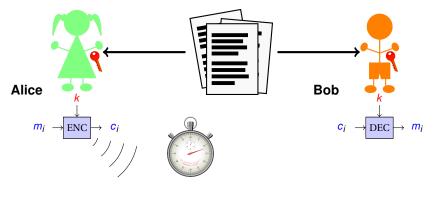


- → Black-box cryptanalysis
- → Side-Channel Analysis: $\mathscr{A} \leftarrow (m_i, c_i, \mathscr{L}_i)$



< □ > < □ > < □ > < Ξ > Ξ の Q @ 2/22

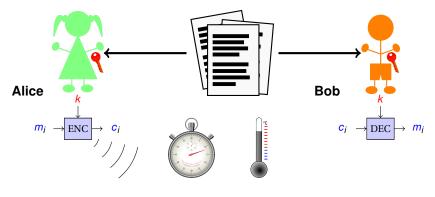
- → Black-box cryptanalysis
- → Side-Channel Analysis: $\mathscr{A} \leftarrow (m_i, c_i, \mathscr{L}_i)$



< □ > < □ > < □ > < Ξ > Ξ の Q @ 2/22

 \mathcal{L}_i

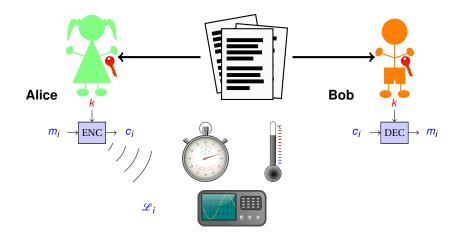
- → Black-box cryptanalysis
- → Side-Channel Analysis: $\mathscr{A} \leftarrow (m_i, c_i, \mathscr{L}_i)$



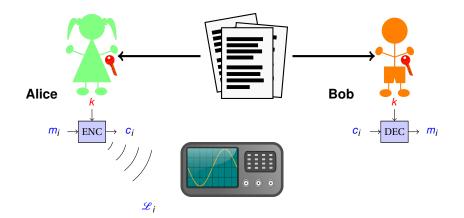
< □ > < □ > < □ > < Ξ > Ξ の Q @ 2/22

£_i

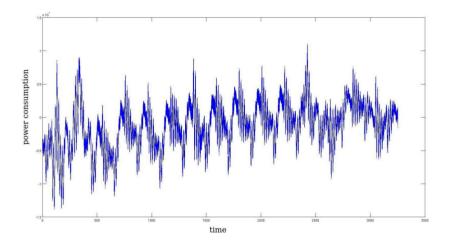
- → Black-box cryptanalysis
- → Side-Channel Analysis: $\mathscr{A} \leftarrow (m_i, c_i, \mathscr{L}_i)$



- → Black-box cryptanalysis
- → Side-Channel Analysis: $\mathscr{A} \leftarrow (m_i, c_i, \mathscr{L}_i)$

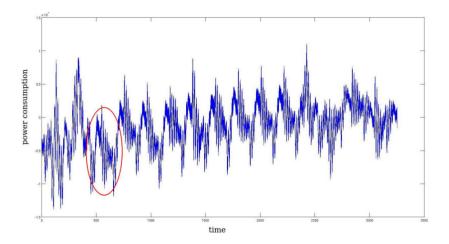


A power-analysis attack against AES-128

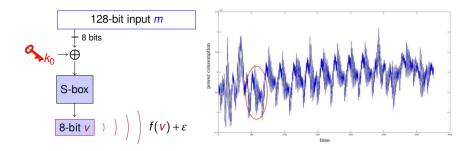


◆□▶<□▶<□▶<</p>
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
<

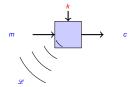
A power-analysis attack against AES-128



A power-analysis attack against AES-128



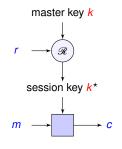
Algorithmic Countermeasures



Problem: leakage \mathscr{L} is key-dependent

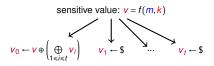
Fresh Re-keying

Idea: regularly change k



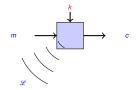
Masking

Idea: make leakage ℒ random



→ each t-uple of v_i is independent from v

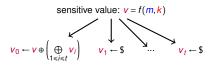
Algorithmic Countermeasures



Problem: leakage *ℒ* is key-dependent

Masking

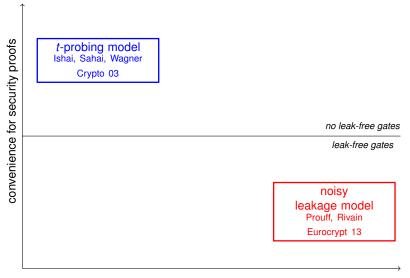
Idea: make leakage \mathcal{L} random



◆□▶◆□▶◆≧▶ ≧ ∽へぐ 5/22

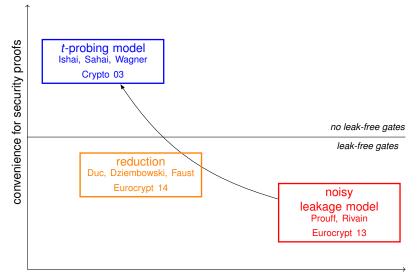
→ each *t*-uple of *v_i* is independent from *v*

Security of Masked Programs: Leakage Model



realism

Security of Masked Programs: Leakage Model

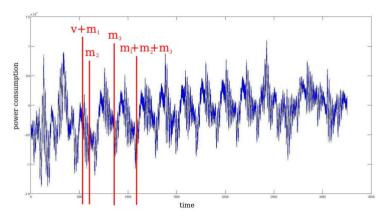


realism

t-probing model assumptions:

- only one variable is leaking at a time
- the attacker can get the exact value of at most t variables

Secure if all the t-uples are independent from the secret.



- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* X_1, X_2, X_3 =$ *) $(* X_{A} = X + X_{1} + X_{2} + X_{3} *)$ **/**1 ← \$ $r_2 \leftarrow \$$ $V_1 \leftarrow X_1 + I_1$ $V_2 \leftarrow (X + X_1 + X_2 + X_3) + I_2$ $t_1 \leftarrow X_2 + I_1$ $t_2 \leftarrow (\chi_2 + r_1) + \chi_3$ $V_3 \leftarrow (X_2 + I_1 + X_3) + I_2$ $V_4 \leftarrow C + \frac{r_2}{2}$ return (y_1, y_2, y_3, y_4)

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* x_1, x_2, x_3 = *)$ $(* X_{A} = X + X_{1} + X_{2} + X_{3} *)$ 1. independent $\overline{y}_1 \leftarrow x_1 + r_1$ from the secret? $V_2 \leftarrow (X + X_1 + X_2 + X_3) + I_2$ $t_1 \leftarrow X_2 + r_1$ $t_2 \rightarrow (x_2 + r_1) + x_3$ $\widetilde{y_3} \leftarrow (x_2 + r_1 + x_3) + r_2$ *y*₄)← ^C + ^r₂ return (V_1, V_2, V_3, V_4)

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* X_1, X_2, X_3 =$ *) $(* X_{A} = X + X_{1} + X_{2} + X_{3} *)$ *r*₁ ← \$ $r_2 \leftarrow \$$ independent from the secret? $(X + X_1 + X_2 + X_3) + r_2$ $\widetilde{t_1} \leftarrow X_2 + r_1$ $t_2 \leftarrow (x_2 + r_1) + x_3$ X $y_3 \rightarrow (x_2 + r_1 + x_3) + r_2$ $V_4 \leftarrow C + V_2$ return (y_1, y_2, y_3, y_4)

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* X_1, X_2, X_3 =$ *) $(* X_{A} = X + X_{1} + X_{2} + X_{3} *)$ *r*₁ ← \$ $r_2 \leftarrow \$$ independent $(y_1) \leftarrow x_1 + r_1$ from the secret? $(X + X_1 + X_2 + X_3) + r_2$ $\widetilde{t_1} \leftarrow \underline{x_2} + \underline{r_1}$ $t_2 \rightarrow (x_2 + r_1) + x_3$? $\overbrace{V_3} \leftarrow (X_2 + r_1 + X_3) + r_2$ $V_4 \leftarrow C + V_2$ return (y_1, y_2, y_3, y_4)

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* X_1, X_2, X_3 =$ *) $(* X_{A} = X + X_{1} + X_{2} + X_{3} *)$ $r_1 \leftarrow \$$ $r_2 \leftarrow \$$ $V_1 \leftarrow X_1 + I_1$ $V_2 \leftarrow (X + X_1 + X_2 + X_3) + I_2$ $t_1 \leftarrow X_2 + r_1$ $t_2 \leftarrow (\chi_2 + r_1) + \chi_3$ $V_3 \leftarrow (X_2 + I_1 + X_2) + I_2$ $V_4 \leftarrow C + \frac{r_2}{r_2}$ return (y_1, y_2, y_3, y_4)

1. independent from the secret?

× many mistakes

- v: randomly generated variable
- c: known constant
- x: secret variable

function Ex-t3(x_1, x_2, x_3, x_4, c): $(* X_1, X_2, X_3 =$ *) $(X_{A} = X + X_{1} + X_{2} + X_{3})$ $r_1 \leftarrow \$$ $r_2 \leftarrow \$$ 2. test 286 3-uples 1. independent $V_1 \leftarrow X_1 + I_1$ × missing cases from the secret? X inefficient $V_2 \leftarrow (X + X_1 + X_2 + X_3) + I_2$ × many mistakes $t_1 \leftarrow X_2 + r_1$ $t_2 \leftarrow (\chi_2 + r_1) + \chi_3$ $V_3 \leftarrow (X_2 + I_1 + X_2) + I_2$ $V_4 \leftarrow C + \frac{r_2}{r_2}$ return (y_1, y_2, y_3, y_4)

Contributions:

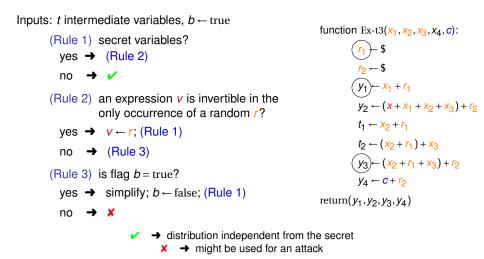
- 1. new algorithm to decide whether a *t*-uple is independent from the secret
 - no false positive
 - more efficient than existing works
- 2. new algorithm to enumerate all the t-uples
 - more efficient than existing works
- Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub. Verified proofs of higher-order masking. EUROCRYPT 2015.

◆□▶◆□▶◆豆▶ 豆 のへで 9/22

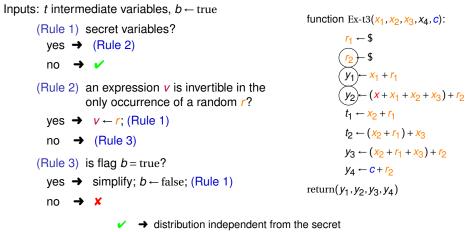
Inputs: t intermediate variables, $b \leftarrow true$ function Ex-t3(x_1, x_2, x_3, x_4, c): (Rule 1) secret variables? **/**1 ← \$ yes \rightarrow (Rule 2) <u>r</u>₂ ← \$ no 🔿 🖌 $V_1 \leftarrow X_1 + I_1$ (Rule 2) an expression v is invertible in the $V_2 \leftarrow (X + X_1 + X_2 + X_3) + I_2$ only occurrence of a random r? $t_1 \leftarrow x_2 + r_1$ ves $\rightarrow v \leftarrow r$; (Rule 1) $t_2 \leftarrow (x_2 + r_1) + x_3$ no \rightarrow (Rule 3) $V_3 \leftarrow (X_2 + I_1 + X_3) + I_2$ (Rule 3) is flag b = true? $V_A \leftarrow C + I_O$ ves \rightarrow simplify; $b \leftarrow$ false; (Rule 1) return (y_1, y_2, y_3, y_4) no 🔿 🗙 ✓ → distribution independent from the secret

✗ → might be used for an attack

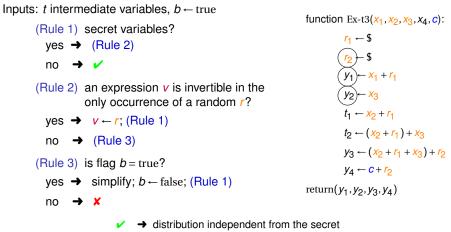
<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □



◆□▶ ◆□▶ ◆ \exists \exists



✗ → might be used for an attack



✗ → might be used for an attack

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

 find larger sets which cover all the intermediate variables is a hard problem

two algorithms efficient in practice

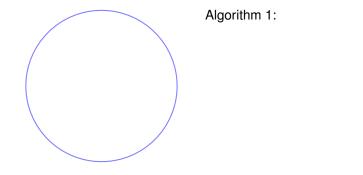
Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

 find larger sets which cover all the intermediate variables is a hard problem

◆□▶ ◆□▶ ◆ 臣▶ 臣 - 釣�� 11/22

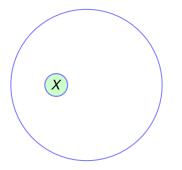
two algorithms efficient in practice



Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice



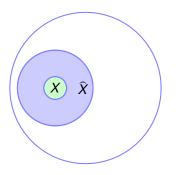
Algorithm 1:

1. select X = (t variables) and prove its independence

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice



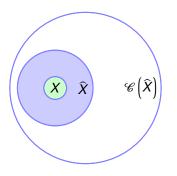
Algorithm 1:

- 1. select X = (t variables) and prove its independence
- 2. extend X to \hat{X} with more observations but still independence

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice



Algorithm 1:

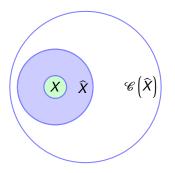
- 1. select X = (t variables) and prove its independence
- 2. extend X to \hat{X} with more observations but still independence

3. recursively descend in set $\mathscr{C}(\widehat{X})$

Problem: *n* intermediate variables $\rightarrow \binom{n}{t}$ proofs

New Idea: proofs for sets of more than t variables

- find larger sets which cover all the intermediate variables is a hard problem
- two algorithms efficient in practice



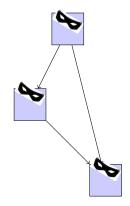
Algorithm 1:

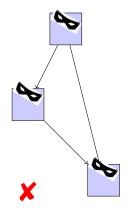
- 1. select X = (t variables) and prove its independence
- 2. extend X to \hat{X} with more observations but still independence
- 3. recursively descend in set $\mathscr{C}(\widehat{X})$
- 4. merge \hat{X} and $\mathscr{C}(\hat{X})$ once they are processed separately.

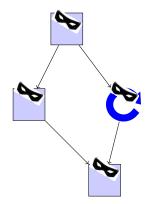
Benchmarks

Reference	Target	# tuples	Security	Complexity	
				# sets	time (s)
First-Order Masking					
FSE13	full AES	17,206	 ✓ 	3,342	128
MAC-SHA3	full Keccak-f	13,466	 ✓ 	5,421	405
Second-Order Masking					
RSA06	Sbox	1,188,111	~	4,104	1.649
CHES10	Sbox	7,140	1 st -order flaws (2)	866	0.045
CHES10	AES KS	23,041,866	×	771,263	340,745
FSE13	2 rnds AES	25,429,146	 ✓ 	511,865	1,295
FSE13	4 rnds AES	109,571,806	 ✓ 	2,317,593	40,169
Third-Order Masking					
RSA06	Sbox	2,057,067,320	3 rd -order flaws (98,176)	2,013,070	695
FSE13	Sbox(4)	4,499,950	 ✓ 	33,075	3.894
FSE13	Sbox(5)	4,499,950	 ✓ 	39,613	5.036
Fourth-Order Masking					
FSE13	Sbox (4)	2,277,036,685	 ✓ 	3,343,587	879
Fifth-Order Masking					
CHES10	0	216,071,394	 ✓ 	856,147	45

Current Issues in Composition

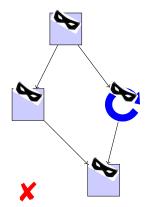






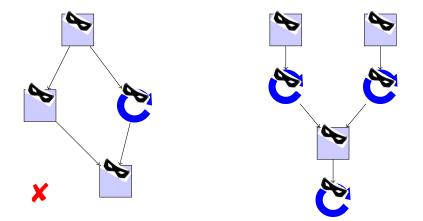
C

A refresh algorithm takes as input a sharing $(x_i)_{i\geq 0}$ of x and returns a new sharing $(x'_i)_{i\geq 0}$ of x such that $(x_i)_{i\geq 1}$ and $(x^r_i)_{i\geq 1}$ are mutually independent.



C

A refresh algorithm takes as input a sharing $(x_i)_{i\geq 0}$ of x and returns a new sharing $(x'_i)_{i\geq 0}$ of x such that $(x_i)_{i\geq 1}$ and $(x^r_i)_{i\geq 1}$ are mutually independent.



C

A refresh algorithm takes as input a sharing $(x_i)_{i\geq 0}$ of x and returns a new sharing $(x'_i)_{i\geq 0}$ of x such that $(x_i)_{i\geq 1}$ and $(x'_i)_{i\geq 1}$ are mutually independent.

Composition in the *t*-probing model

Contributions:

- 1. new algorithm to verify the security of compositions
 - formal security
 - any order
- 2. compiler to build a higher-order secure from any C implementation
 - efficient
 - any order

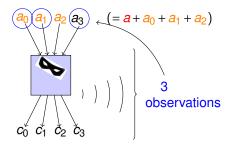
Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rebecca Zucchini.

Strong Non-Interference and Type-Directed Higher-Order Masking. CCS 2016.

if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

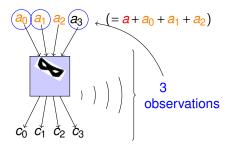
if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input



if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

if *t* is not fixed: show that any set of *t* intermediate variables can be simulated with at most *t* shares of each input



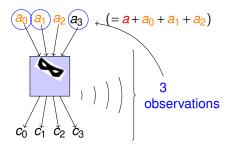
function Linear-function-t($a_0, ..., a_j, ..., a_t$):

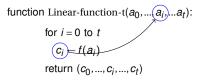
for i = 0 to t $c_i \leftarrow f(a_i)$ return $(c_0, ..., c_i, ..., c_t)$

→ straightforward for linear functions

if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input

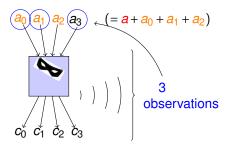


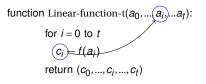


→ straightforward for linear functions

if *t* is fixed: show that any set of *t* intermediate variables is independent from the secret

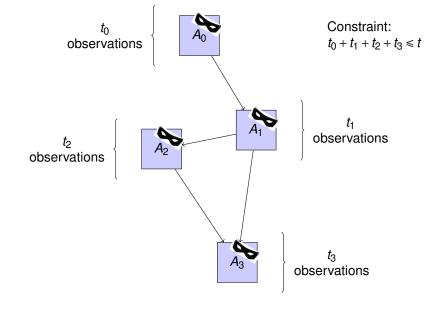
if t is not fixed: show that any set of t intermediate variables can be simulated with at most t shares of each input

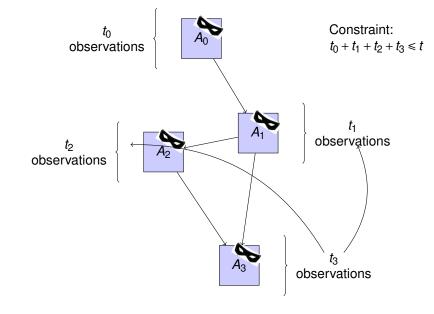


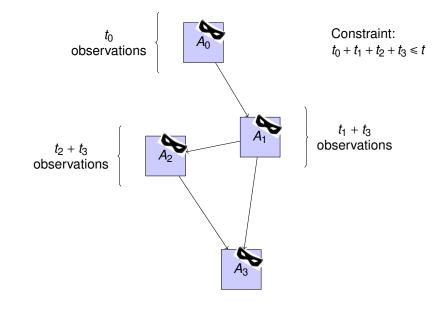


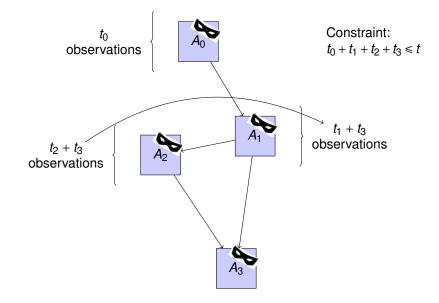
▲□▶▲□▶▲臣▶ 臣 の久(※ 15/22

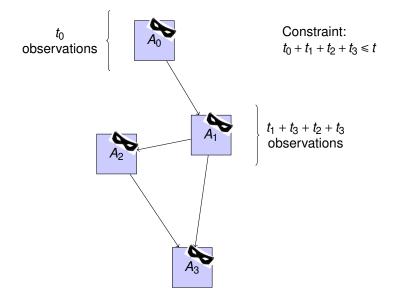
- → straightforward for linear functions
- ➔ formal proofs with EasyCrypt and pen-and paper proofs for small non-linear functions

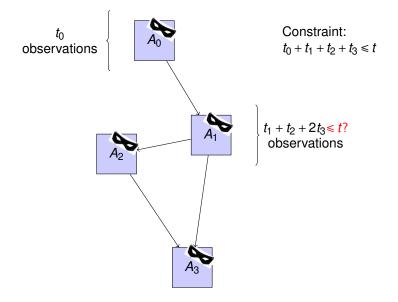




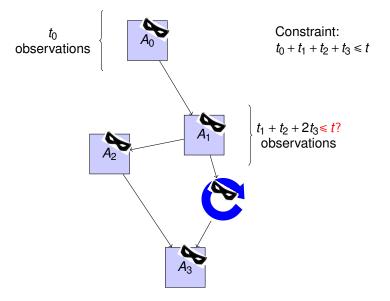


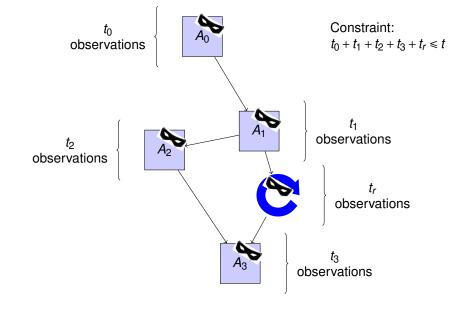


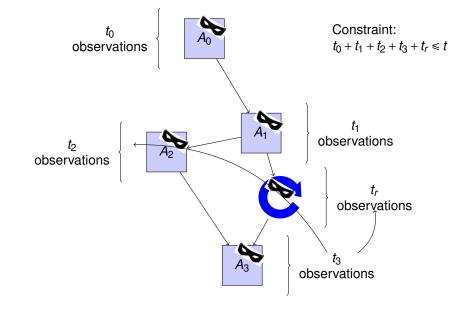




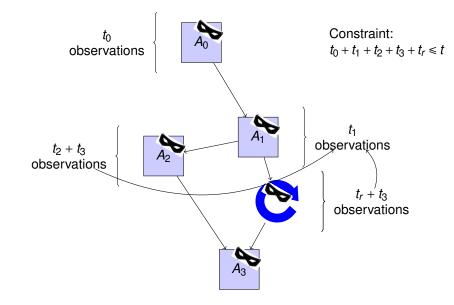
◆□ ▶ < 酉 ▶ < Ξ ▶ Ξ ⑦ < ♡ 16/22</p>

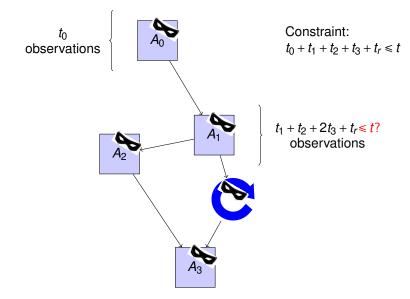












▲□▶▲圖▶▲≣▶ ≣ のへで 16/22

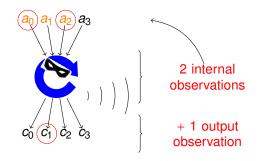
Stronger security property for Refresh

Strong Non-Interference in the *t*-probing model:

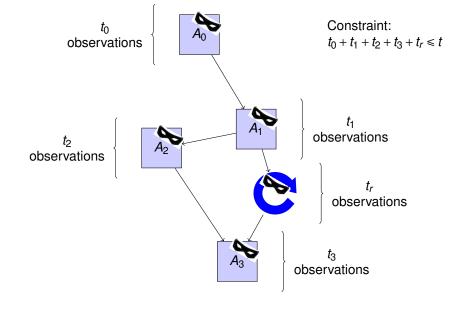
if t is not fixed: show that any set of t intermediate variables with

- t1 on internal variables
- $t_2 = t t_1$ on the outputs

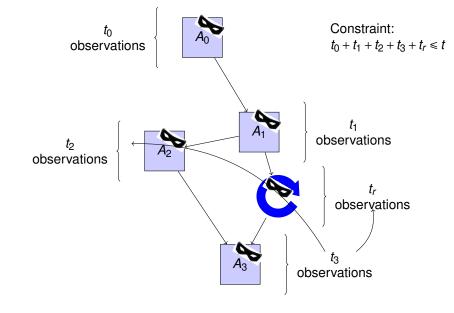
can be simulated with at most t_1 shares of each input



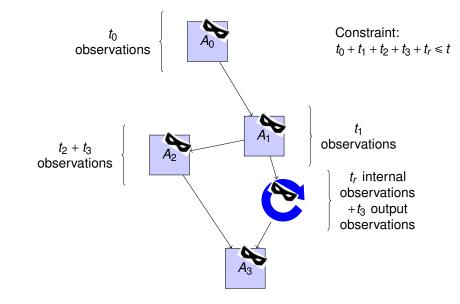
◆□ → ◆□ → ◆ 三 → 三 → ○ へ ○ 17/22



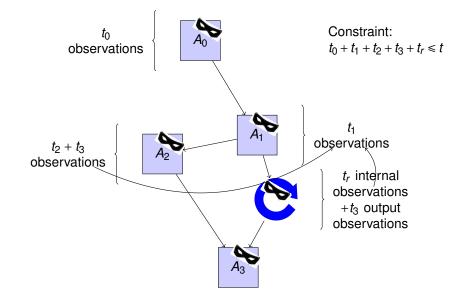
■ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

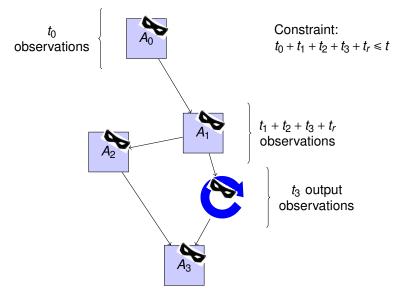


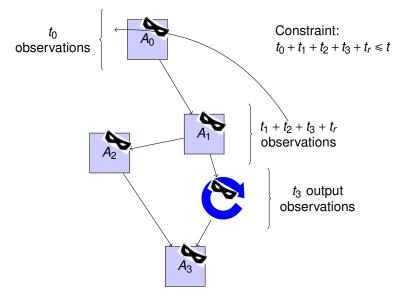
■ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶



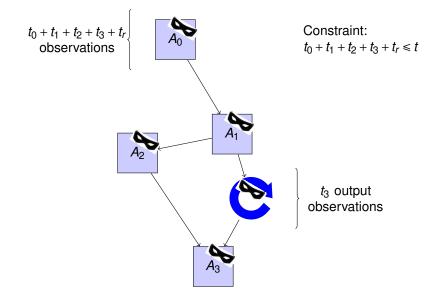
▲□▶▲@▶▲≣▶ ≣ 키९@ 18/22



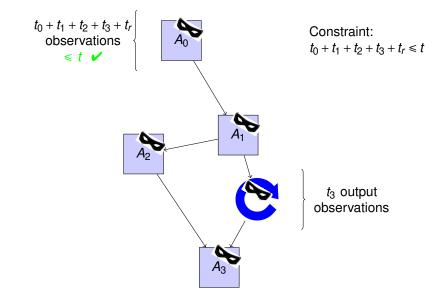




◆□▶
●▶
●●▶
●●>
●●>
●●>
●●>
●●>
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●<



◆□ ▶ < 酉 ▶ < Ξ ▶ Ξ の Q ℃ 18/22</p>



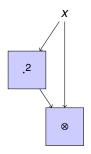
▲□▶▲@▶▲≣▶ ≣ 키९@ 18/22

Automatic tool for C-based algorithms

► unprotected algorithm → higher-order masked algorithm

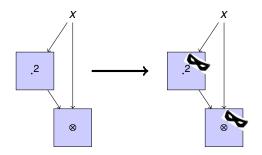
◆□▶ ◆□▶ ◆ □▶ ● □ · · ○ へ ○ 19/22

example for AES S-box



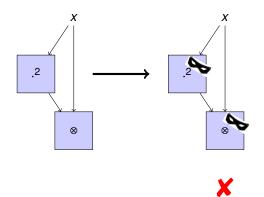
Automatic tool for C-based algorithms

- ► unprotected algorithm → higher-order masked algorithm
- example for AES S-box



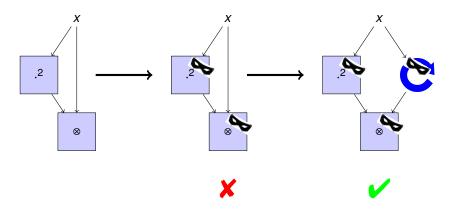
Automatic tool for C-based algorithms

- ► unprotected algorithm → higher-order masked algorithm
- example for AES S-box



Automatic tool for C-based algorithms

- ► unprotected algorithm → higher-order masked algorithm
- example for AES S-box



Some Results

Resource usage statistics for generating masked algorithms (at any order) from some unmasked implementations¹

Scheme	# Refresh	Time	Memory
AES (⊙)	2	0.09s	4Mo
AES $(x \odot g(x))$	0	0.05s	4Mo
Keccak with Refresh	0	121.20	456Mo
Keccak	600	2728.00s	22870Mo
Simon	67	0.38s	15Mo
Speck	61	6.22s	38Mo

¹On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running Linux (Fedora)

Some Results

Resource usage statistics for generating masked algorithms (at any order) from some unmasked implementations¹

Scheme	# Refresh	Time	Memory
AES (⊙)	2 per S-box	0.09s	4Mo
AES $(x \odot g(x))$	0	0.05s	4Mo
Keccak with Refresh	0	121.20s	456Mo
Keccak	600	2728.00s	22870Mo
Simon	67	0.38s	15Mo
Speck	61	6.22s	38Mo

¹On a Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz with 64Go of memory running Linux (Fedora)

Conclusion

Summary

- verification of higher-order masking schemes
- efficient and proven composition
- two automatic tools

Further Work

- → extend the verification to higher orders using composition
- → integrate transition/glitch-based model
- build practical experiments for both attacks and new countermeasures

Conclusion

- investigate the LPN algorithms in the context of power-analysis attacks
- → analyze the operation modes

Cryptography: countermeasures against Power-Analysis Attacks

- implement and evaluate our countermeasures on real devices (software and hardware)
- ➔ make verifications and compositions as practical as possible
- → use the characterization of a device as a leakage model