### Side-Channel Analysis of Multiplications in GF(2<sup>128</sup>) Application to AES-GCM

#### Sonia Belaïd<sup>1</sup> Pierre-Alain Fouque<sup>2</sup> Benoît Gérard<sup>3</sup>

<sup>1</sup>École normale supérieure and Thales Communications & Security,

<sup>2</sup>Université de Rennes 1 and Institut Universitaire de France

<sup>3</sup>DGA–MI and IRISA





### Side-Channel Attacks

#### physical leakage

- timing
- power consumption
- temperature
- ...
- statistical treatment
- key recovery



#### **AES Block Cipher**



#### Attack on 8 bits

- prediction of the outputs for the 256 possible 8-bit secret
- correlation between predictions and leakage
- selection of the best correlation to find the correct 8-bit secret

#### Attack on 128 bits

 repetition of the attack on 8 bits on each S-box

Multiplication in  $GF(2^{128})$  (e.g., in the AES-GCM's authentication)

#### Multiplication in $GF(2^{128})$ (e.g., in the AES-GCM's authentication)



#### Multiplication in $GF(2^{128})$ (e.g., in the AES-GCM's authentication)



### Contributions

# Side-Channel Analysis of Multiplications in GF(2<sup>128</sup>) : Application to AES-GCM

Sonia Belaïd, Pierre-Alain Fouque, Benoît Gérard

Asiacrypt 2014



Context AES-GCM Attacker Model

#### Attack

Main Idea Known Inputs Chosen Inputs

Countermeasure

Another Application: Re-keying

#### Context AES-GCM Attacker Model

#### Attack

Main Idea Known Inputs Chosen Inputs

Countermeasure

Another Application: Re-keying

Context AES-GCM Attacker Model

Attack

Main Idea Known Inputs Chosen Inputs

Countermeasure

Another Application: Re-keying

### **AES-GCM**



AES in counter mode

secret: hashed key  $H = AES_{K}(0^{128})$  with K the encryption key

- inputs: 

   128-bit blocks of data to authenticate A<sub>i</sub>
  - 128-bit encrypted blocks C<sub>i</sub> notation: M for either A<sub>i</sub> or C<sub>i</sub>

#### Galois Field Multiplication $\otimes_P$

 $GF(2^{128}) = GF(2)[Y]/P(Y), P(Y) = Y^{128} + Y^7 + Y^2 + Y + 1$ 

 $M_P \cdot H =$ 



#### Context AES-GCM Attacker Model

#### Attack

Main Idea Known Inputs Chosen Inputs

#### Countermeasure

Another Application: Re-keying

### Leakage Models



AES in counter mode

Hamming Weight

$$\mathcal{L}^{(\mathsf{HW})}_i = \mathsf{HW}(oldsymbol{X}_i) + arepsilon_\sigma, \ \ arepsilon_\sigma \sim \mathcal{N}(\mathbf{0},\sigma)$$

Hamming Distance

$$L_{i}^{(\mathsf{HD})} = \mathsf{HD}(X_{i}, X_{i-1}) + \varepsilon_{\sigma} = \mathsf{HW}(X_{i} \oplus X_{i-1}) + \varepsilon_{\sigma}$$

### **Attacker Capabilities**



#### Known/Chosen Inputs:

- ciphertexts
- authenticated data

#### Limited/Unlimited Queries:

error-counter for the tag verifications

Context AES-GCM Attacker Model

#### Attack

Main Idea Known Inputs Chosen Inputs

Countermeasure

Another Application: Re-keying

Context AES-GCM Attacker Model

Attack Main Idea Known Inputs Chosen Inputs

Countermeasure

Another Application: Re-keying

# Main Idea of The Attack

#### Current Issue:

each bit of the 128-bit multiplication's result depends on all the key bits

➔ no divide-and-conquer strategy



# Main Idea of The Attack

#### Current Issue:

each bit of the 128-bit multiplication's result depends on all the key bits

➔ no divide-and-conquer strategy

#### What we have:

the leakage of the first multiplication's output

 $HW(M \otimes H) + \varepsilon_{\sigma}$ 



# Main Idea of The Attack

#### Current Issue:

each bit of the 128-bit multiplication's result depends on all the key bits

➔ no divide-and-conquer strategy

#### What we have:

the leakage of the first multiplication's output

 $HW(M \otimes H) + \varepsilon_{\sigma}$ 

#### Main observation:

the LSB of the Hamming Weight (same for HD) of a variable is a linear function of its bits:

$$\mathsf{Isb}_0(\mathsf{HW}(V)) = \bigoplus_{0 \leqslant i \leqslant 127} v_i$$



LSB of the first multiplication output's Hamming weight:

$$b_{0} \stackrel{\text{def}}{=} \mathsf{lsb}_{0} (\mathsf{HW}(M \otimes_{P} H)) = \bigoplus_{0 \leq i \leq 127} (M \otimes_{P} H)_{i}$$

$$= \bigoplus_{0 \leq i \leq 127} \left( \bigoplus_{0 \leq j \leq 127-i} m_{j} \right) h_{i}$$

$$=$$

$$\bigoplus_{0 \leq i \leq 127} \begin{pmatrix} m_{0} h_{0} \oplus m_{127} h_{1} \oplus \cdots & (m_{1} \oplus m_{127} \oplus m_{126}) h_{127} \\ m_{1} h_{0} \oplus (m_{0} \oplus m_{127}) h_{1} \oplus \cdots & (m_{2} \oplus m_{123} \oplus m_{1} \oplus m_{127} \oplus m_{122}) h_{127} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ m_{127} h_{0} \oplus m_{126} h_{1} \oplus \cdots & (m_{0} \oplus m_{127} \oplus m_{126} \oplus m_{121}) h_{127} \end{pmatrix}$$

Linear system to solve:

$$S = \begin{cases} \bigoplus_{0 \le i \le 127} \left( \bigoplus_{0 \le j \le 127 - i} m_j^{(0)} \right) & h_i = b_0^{(0)} \\ \bigoplus_{0 \le i \le 127} \left( \bigoplus_{0 \le j \le 127 - i} m_j^{(1)} \right) & h_i = b_0^{(1)} \\ & \dots \\ \bigoplus_{0 \le i \le 127} \left( \bigoplus_{0 \le j \le 127 - i} m_j^{(t-1)} \right) & h_i = b_0^{(t-1)} \end{cases}$$

Solution: hashed key H

#### New Issue

New Issue: leakage comes with noise

$$\widetilde{b_0} \stackrel{\text{def}}{=} \operatorname{Isb}_0\left(\left[\operatorname{HW}(M \otimes_P H) + \varepsilon_{\sigma}\right]\right) \\ = \operatorname{Isb}_0\left(\operatorname{HW}(M \otimes_P H)\right) \oplus b_{\mathcal{N}}$$

Probability of error on  $b_{\mathcal{N}}$ :  $p_{\sigma} = 1 - \sum_{i=-\infty}^{\infty} \int_{2i-0.5}^{2i+0.5} \phi_{\sigma}(t) dt$ 

$$\begin{array}{lll} \sigma = 0.5 & \rightarrow & p_{\sigma} = 0.31 \\ \sigma = 1 & \rightarrow & p_{\sigma} = 1/2 - 4.6 \ 10^{-3} \\ \sigma = 2 & \rightarrow & p_{\sigma} = 1/2 - 1.7 \ 10^{-9} \\ \sigma \geqslant 3 & \rightarrow & p_{\sigma} = 1/2 - \varepsilon \end{array}$$

#### Application on the other bits ?

$$b_i = \bigoplus_{0 \leqslant j_1 < \cdots < j_{2^i} \leqslant 127} \left( \prod_{1 \leqslant \ell \leqslant 2^i} \bigoplus_{0 \leqslant k \leqslant 127} (M \otimes_P \alpha^k)_{j_\ell} \ \frac{h_k}{h_k} \right), \ \forall \ 0 \leqslant i \leqslant 7$$

| ~   | Bernoulli parameter p                |                                      |                                      |                      |                      |                      |                      |    |  |  |  |
|-----|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----|--|--|--|
| 0   | <i>b</i> 0                           | <i>b</i> 1                           | b2                                   | b <sub>3</sub>       | <i>b</i> 4           | b5                   | <i>b</i> 6           | b7 |  |  |  |
| 0.5 | 3.1 10-1                             | 1.6 10 <sup>-1</sup>                 | 8.0 10 <sup>-2</sup>                 | 4.0 10-2             | 2.3 10 <sup>-2</sup> | 2.2 10 <sup>-2</sup> | 2.2 10-2             | ε  |  |  |  |
| 1   | $\frac{1}{2}$ - 4.6 10 <sup>-3</sup> | 3.7 10-1                             | 1.910-1                              | 9.5 10 <sup>-2</sup> | 5.5 10 <sup>-2</sup> | 5.3 10 <sup>-2</sup> | 5.3 10 <sup>-2</sup> | ε  |  |  |  |
| 2   | $\frac{1}{2} - 1.5  10^{-4}$         | $\frac{1}{2}$ - 3.2 10 <sup>-3</sup> | 3.8 10 <sup>-1</sup>                 | 2.0 10-1             | $1.1  10^{-1}$       | 1.1 10 <sup>-1</sup> | 1.1 10 <sup>-1</sup> | ε  |  |  |  |
| 3   | $\frac{1}{2} - \epsilon$             | $\frac{1}{2}$ - 6.8 10 <sup>-8</sup> | 4.7 10 <sup>-1</sup>                 | 3.0 10 <sup>-1</sup> | $1.6  10^{-1}$       | 1.5 10 <sup>-1</sup> | 1.5 10 <sup>-1</sup> | ε  |  |  |  |
| 4   | $\frac{1}{2} - \varepsilon$          | $\frac{1}{2}$ - 1.2 10 <sup>-9</sup> | $\frac{1}{2}$ - 3.0 10 <sup>-3</sup> | 3.8 10 <sup>-1</sup> | 2.1 10 <sup>-1</sup> | 1.9 10 <sup>-1</sup> | 1.9 10 <sup>-1</sup> | ε  |  |  |  |
| 5   | $\frac{1}{2} - \varepsilon$          | $\frac{1}{2} - \varepsilon$          | $\frac{1}{2}$ - 1.9 10 <sup>-4</sup> | 4.4 10 <sup>-1</sup> | 2.6 10 <sup>-1</sup> | 2.3 10 <sup>-1</sup> | 2.3 10 <sup>-1</sup> | ε  |  |  |  |

Context AES-GCM Attacker Model

Attack Main Idea Known Inputs Chosen Inputs

Countermeasure

Another Application: Re-keying

#### Naive Attack

$$\widetilde{\mathcal{S}} = \begin{cases} \bigoplus_{0 \leq i \leq 127} \left( \bigoplus_{0 \leq j \leq 127-i} m_j^{(0)} \right) \quad \mathbf{h}_i = \widetilde{b_0}^{(0)} \\ \bigoplus_{0 \leq i \leq 127} \left( \bigoplus_{0 \leq j \leq 127-i} m_j^{(1)} \right) \quad \mathbf{h}_i = \widetilde{b_0}^{(1)} \\ \dots \\ \bigoplus_{0 \leq i \leq 127} \left( \bigoplus_{0 \leq j \leq 127-i} m_j^{(t-1)} \right) \quad \mathbf{h}_i = \widetilde{b_0}^{(t-1)} \end{cases}$$

Naive attack

- i) extract 128 equations linearly independent
- ii) remove the errors on bits  $\widetilde{b_0}^{(\ell)}$  by enumeration

### **Improved Attack**

Complexities to improve

- number of queries/samples C<sub>s</sub>
- solving time  $C_t$

Methods

- 1. Reducing the Noise Impact  $\longrightarrow$  to decrease (mainly)  $C_t$
- 2. Saving Executions  $\longrightarrow$  to decrease  $C_s$
- 3. Solving the System with Dedicated Algorithms  $\longrightarrow$  to decrease  $C_s$  and  $C_t$

# 1. Reducing the Noise Impact

*First Idea:* use the LLR (Log Likelihood Ratio) to approximate better the bit value  $b_0$ 

$$\widehat{b_0} \stackrel{\text{def}}{=} \left\{ egin{array}{cc} 0 & \text{if } \text{LLR}(\ell) \geqslant 0, \\ 1 & \text{otherwise.} \end{array} 
ight.$$

with

$$\mathsf{LLR}(\ell) = \mathsf{log}(\; \mathbb{P}[b_0 = 0 \mid \ell] \;) - \mathsf{log}(\; \mathbb{P}[b_0 = 1 \mid \ell] \;)$$

*Second Idea:* when more than 128 traces are available, choose 128 linearly independent samples from the *highest LLR absolute values* 

Example:

if  $\ell_1 = 64.01$  and  $\ell_2 = 64.49$ 

- →  $|LLR(\ell_1)| > |LLR(\ell_2)|$
- → we choose  $\ell_1$  and we throw away  $\ell_2$

# 1. Reducing the Noise Impact



Figure: Error probability with rounding (black), LLR (blue) and best 128 LLRs (red) over 500 measurements

# 2. Saving Executions

AES in counter mode



Second Multiplication:

$$X_2 = (M_1 \otimes_P H \oplus M_2) \otimes_P H$$
$$= M_1 \otimes_P H^2 \oplus M_2 \otimes_P H$$

# 2. Saving Executions

AES in counter mode



Second Multiplication:

$$X_2 = (M_1 \otimes_P H \oplus M_2) \otimes_P H$$
$$= M_1 \otimes_P H^2 \oplus M_2 \otimes_P H$$

Since squaring is linear over GF(2), there exists S such that

$$X_2 = (M_1 \otimes_P S \oplus M_2) \otimes_P H$$

▶ two multiplications with a single execution :  $C_s \leftarrow C_s/2$ 

3. Solving the System with Dedicated Algorithms

*Noisy codeword:* LSBs extracted from leaking multiplications that encode the authentication key *H* 

Issue: decoding the noisy codeword

- Learning Parities with Noise (LPN) Algorithms
- Linear Decoding

| σ               | 0.1                              | 0.2                             | 0.3                             | 0.4                             | 0.5                              |
|-----------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|
| Method          | $C_s/C_t$                        | $C_s/C_t$                       | $C_s/C_t$                       | $C_s/C_t$                       | $C_s/C_t$                        |
| LLR + naive     | 2 <sup>8</sup> /2 <sup>21</sup>  | 2 <sup>8</sup> /2 <sup>21</sup> | 2 <sup>8</sup> /2 <sup>22</sup> | 2 <sup>8</sup> /2 <sup>65</sup> | 2 <sup>8</sup> /2 <sup>107</sup> |
| LPN (LF Algo)   | 2 <sup>11</sup> /2 <sup>14</sup> | $2^{20}/2^{22}$                 | $2^{26}/2^{28}$                 | $2^{32}/2^{34}$                 | 248/250                          |
| Linear decoding | 2 <sup>6</sup> /2 <sup>6</sup>   | 2 <sup>6</sup> /2 <sup>7</sup>  | 2 <sup>7</sup> /2 <sup>11</sup> | 2 <sup>8</sup> /2 <sup>25</sup> | 2 <sup>9</sup> /2 <sup>62</sup>  |

Context AES-GCM Attacker Model

#### Attack

Main Idea Known Inputs Chosen Inputs

Countermeasure

Another Application: Re-keying

#### Improvements

Complexities to improve

- number of queries/samples C<sub>s</sub>
- solving time  $C_t$

Methods

- 1. Averaging the traces  $\longrightarrow$  to decrease (mainly)  $C_t$
- 2. Structuring the messages to make the system easier to solve  $\longrightarrow$  to decrease (mainly)  $C_t$
- 3. Saving more executions  $\longrightarrow$  to decrease  $C_s$

# 1. Averaging Traces

Repeating the same computation  $\lambda$  times:  $\sigma \mapsto \sigma/\sqrt{\lambda}$ 



Experimental Results: tests on the Virtex-5 FPGA of a SASEBO board with an EM probe for the acquisition

→ confirm the simulations

# 2. Structuring the Messages

*Current Issue:* the linear code corresponding to our attack is random and have a high dimension (128)

Better Code: concatenation of smaller random linear codes

- with the enumeration algorithm from <sup>1</sup>, an attacker can enumerate keys from ordered lists of key chunks
- each block corresponds to a smaller linear code that may be fully decoded by a Fast Walsh Transform.

$$\begin{pmatrix} \boxed{\mathcal{S}_0} & & \\ & \boxed{\mathcal{S}_1} & & \\ & & \ddots & \end{pmatrix} \cdot \begin{pmatrix} H \end{pmatrix} = \begin{pmatrix} \widehat{b}_0 \\ \vdots \\ \widehat{b}_t \end{pmatrix}$$

<sup>&</sup>lt;sup>1</sup>Veyrat-Charvillon, Gérard, Renauld, and Standaert. *An optimal key enumeration* <sup>9225</sup> *algorithm and its application to side-channel attacks.* In SAC 2012, LNCS, pp 390–406. <sup>31/42</sup>

# 2. Structuring the Messages



<sup>&</sup>lt;sup>2</sup>Veyrat-Charvillon, Gérard, and Standaert. *Security evaluations beyond computing* pgwer. In EUROCRYPT 2013, LNCS, pp 126–141.

# 3. Saving more Executions



AES in counter mode

More Multiplications [Ferguson]:

$$\begin{array}{rcl} X_1 & = & M_1 \otimes_P H, \\ X_2 & = & M_1 \otimes_P H^2 \oplus M_2 \otimes_P H, \\ X_3 & = & M_1 \otimes_P H^3 \oplus M_2 \otimes_P H^2 \oplus M_3 \otimes_P H, \\ X_4 & = & M_1 \otimes_P H^4 \oplus M_2 \otimes_P H^3 \oplus M_3 \otimes_P H^2 \oplus M_4 \otimes_P H. \end{array}$$

# 3. Saving more Executions





More Multiplications [Ferguson]:

$$\begin{array}{rcl} X_{1} & = & M_{1} \otimes_{P} H, \\ X_{2} & = & M_{1} \otimes_{P} H^{2} \oplus M_{2} \otimes_{P} H, \\ X_{3} & = & M_{1} \otimes_{P} H^{3} \oplus M_{2} \otimes_{P} H^{2} \oplus M_{3} \otimes_{P} H, \\ X_{4} & = & M_{1} \otimes_{P} H^{4} \oplus M_{2} \otimes_{P} H^{3} \oplus M_{3} \otimes_{P} H^{2} \oplus M_{4} \otimes_{P} H. \end{array}$$

 $M_2 = 0$ 

# 3. Saving more Executions





More Multiplications [Ferguson]:

$$X_1 = M_1 \otimes_P H,$$

$$X_2 = M_1 \otimes_P H^2,$$

$$X_3 = M_1 \otimes_P H^3 \oplus M_3 \otimes_P H,$$

$$X_4 = M_1 \otimes_P H^4 \oplus M_3 \otimes_P H^2 \oplus M_4 \otimes_P H.$$

 $M_2 = 0$ 

Context AES-GCM Attacker Model

#### Attack

Main Idea Known Inputs Chosen Inputs

#### Countermeasure

Another Application: Re-keying

#### Countermeasure



Complexity

- twice slower than the initial complexity
- additional generation of a 128-bit random value: mask
- first-order masked AES: around 2.7 slower than the original AES

Context AES-GCM Attacker Model

#### Attack

Main Idea Known Inputs Chosen Inputs

#### Countermeasure

Another Application: Re-keying

# Multiplication-based Re-keying<sup>3</sup>: Principle



<sup>&</sup>lt;sup>3</sup>M. Medwed, C. Petit, F. Regazzoni, M. Renauld, F.-X. Standaert, Fresh Re-Keying

# Multiplication-based Re-keying<sup>3</sup>: Principle

#### Re-keying Primitive:

$$r \leftarrow \$; \quad k^* \leftarrow r \otimes k$$
  
in  $GF(2^8)[y]/P(y) = y^{16} + 1$   
$$R_P \cdot k = \begin{pmatrix} r_0 k_0 & r_{15}k_1 & \cdots & r_1k_{15} \\ r_1 k_0 & r_0 k_1 & \cdots & r_2 k_{15} \\ \vdots & \vdots & \ddots & \vdots \\ r_{15}k_0 & r_{14}k_1 & \cdots & r_0 k_{15} \end{pmatrix}$$

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ 

k

Block Cipher:

 $c \leftarrow BC_{k^{\star}}(m)$ 

<sup>&</sup>lt;sup>3</sup>M. Medwed, C. Petit, F. Regazzoni, M. Renauld, F.-X. Standaert, Fresh Re-Keying <sup>102224</sup>Ji<sub>15</sub>Securing Multiple Parties against Side-Channel and Fault Attacks, CARDIS 2011

#### Multiplication-based Re-keying: Attack ?

$$R_{p} \cdot \mathbf{k} = \begin{pmatrix} r_{0}k_{0} & r_{15}k_{1} & \cdots & r_{1}k_{15} \\ r_{1}k_{0} & r_{0}k_{1} & \cdots & r_{2}k_{15} \\ \vdots & \vdots & \ddots & \vdots \\ r_{15}k_{0} & r_{14}k_{1} & \cdots & r_{0}k_{15} \end{pmatrix} = \begin{pmatrix} k_{0}^{*} \\ k_{1}^{*} \\ \vdots \\ k_{15}^{*} \end{pmatrix}$$

Equation of the LSB:

$$\mathsf{lsb}_0\left(\mathsf{HW}\left[\left(\bigoplus_{0\leqslant i\leqslant m-1}r_i\right)\cdot\left(\bigoplus_{0\leqslant j\leqslant m-1}k_j\right)\right]\right)=b_0$$

Recovery:

$$\rightarrow \quad \text{only} \ \left(\bigoplus_{0 \leqslant j \leqslant m-1} k_j\right)$$

### Multiplication-based Re-keying: Better Attack



### Multiplication-based Re-keying: Better Attack



### Multiplication-based Re-keying: Better Attack



 $HW(k_0^{\star} \oplus m_0)$ 

with

$$(R_{\rho} \cdot k)_0 = \begin{pmatrix} r_0 k_0 & r_{15} k_1 & \cdots & r_1 k_{15} \end{pmatrix} = \begin{pmatrix} k_0^{\star} \end{pmatrix}$$

thus

$$\mathsf{Isb}_0\left(\mathsf{HW}\left(\bigoplus_{0\leqslant i\leqslant m-1}r_ik_i\oplus m_0
ight)
ight)=b_0$$

Context AES-GCM Attacker Model

#### Attack

Main Idea Known Inputs Chosen Inputs

Countermeasure

Another Application: Re-keying

### Conclusion

#### Summary

- ★ attack the AES-GCM authentication without observing inside the multiplication
- \* different improvements
- \* adaptation of the attack on the multiplication-based re-keying

#### Further Work

- \* application of similar attacks to other primitives
- \* exploitation of more leakage bits with different techniques

# Thank you

Thank you for your attention.