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Side-Channel Attacks

I physical leakage

• timing

• power consumption

• temperature

• . . .

I statistical treatment

I key recovery
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Key-Dependent Leakage

AES Block Cipher
Attack on 8 bits

I prediction of the outputs for the
256 possible 8-bit secret

I correlation between predictions
and leakage

I selection of the best correlation to
find the correct 8-bit secret

Attack on 128 bits
I repetition of the attack on 8 bits

on each S-box
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Key-Dependent Leakage

Multiplication in GF(2128) (e.g., in the AES-GCM’s authentication)
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AES-GCM

secret: hashed key H = AESK (0128) with K the encryption key
inputs: I 128-bit blocks of data to authenticate Ai

I 128-bit encrypted blocks Ci
notation: M for either Ai or Ci
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Galois Field Multiplication ⊗P

GF(2128) = GF(2)[Y ]/P(Y ), P(Y ) = Y 128 + Y 7 + Y 2 + Y + 1

MP · H =


m0 m127 · · · m1 ⊕m127 ⊕m126
m1 m0 ⊕m127 · · · m2 ⊕m123 ⊕m1 ⊕m127 ⊕m122
...

...
. . .

...
m127 m126 · · · m0 ⊕m127 ⊕m126 ⊕m121




h0
h1
...

h127


︸ ︷︷ ︸
M⊗Pα0

︸ ︷︷ ︸
M⊗Pα1

︸ ︷︷ ︸
M⊗Pα127
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Leakage Models

Hamming Weight

L(HW)
i = HW(Xi) + εσ, εσ ∼ N (0, σ)

Hamming Distance

L(HD)
i = HD(Xi ,Xi−1) + εσ = HW(Xi ⊕ Xi−1) + εσ
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Attacker Capabilities

Known/Chosen Inputs:
I ciphertexts
I authenticated data

Limited/Unlimited Queries:
I error-counter for the tag verifications
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Main Idea of The Attack

Current Issue:
each bit of the 128-bit multiplication’s
result depends on all the key bits

Ü no divide-and-conquer strategy

What we have:
the leakage of the first multiplication’s output

HW(M ⊗ H) + εσ

Main observation:
the LSB of the Hamming Weight (same for HD) of a variable is a
linear function of its bits:

lsb0 (HW(V )) =
⊕

06i6127

vi
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LSB of the first multiplication output’s Hamming weight:

b0
def
= lsb0 (HW(M ⊗P H)) =

⊕
06i6127

(M ⊗P H)i

=
⊕

06i6127

 ⊕
06j6127−i

mj

 hi

=

⊕
...
⊕


m0h0 ⊕ m127h1 ⊕ · · · (m1 ⊕ m127 ⊕ m126)h127

m1h0 ⊕ (m0 ⊕ m127)h1 ⊕ · · · (m2 ⊕ m123 ⊕ m1 ⊕ m127 ⊕ m122)h127
...

...
...

...
...

m127h0 ⊕ m126h1 ⊕ · · · (m0 ⊕ m127 ⊕ m126 ⊕ m121)h127
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Linear system to solve:

S =



⊕
06i6127

(⊕
06j6127−i m(0)

j

)
hi = b0

(0)⊕
06i6127

(⊕
06j6127−i m(1)

j

)
hi = b0

(1)

. . .⊕
06i6127

(⊕
06j6127−i m(t−1)

j

)
hi = b0

(t−1)

Solution: hashed key H
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New Issue

New Issue: leakage comes with noise

b̃0
def
= lsb0 (dHW(M ⊗P H) + εσc)
= lsb0 (HW(M ⊗P H))⊕ bN

Probability of error on bN : pσ = 1−
∞∑

i=−∞

∫ 2i+0.5

2i−0.5
φσ(t)dt

σ = 0.5 → pσ = 0.31
σ = 1 → pσ = 1/2− 4.6 10−3

σ = 2 → pσ = 1/2− 1.7 10−9

σ > 3 → pσ = 1/2− ε
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Application on the other bits ?

bi =
⊕

06j1<···<j2i 6127

 ∏
16`62i

⊕
06k6127

(M ⊗P α
k )j` hk

 , ∀ 0 6 i 6 7

Bernoulli parameter p
σ b0 b1 b2 b3 b4 b5 b6 b7
0.5 3.1 10−1 1.6 10−1 8.0 10−2 4.0 10−2 2.3 10−2 2.2 10−2 2.2 10−2 ε

1 1
2 − 4.6 10−3 3.7 10−1 1.9 10−1 9.5 10−2 5.5 10−2 5.3 10−2 5.3 10−2 ε

2 1
2 − 1.5 10−4 1

2 − 3.2 10−3 3.8 10−1 2.0 10−1 1.1 10−1 1.1 10−1 1.1 10−1 ε

3 1
2 − ε 1

2 − 6.8 10−8 4.7 10−1 3.0 10−1 1.6 10−1 1.5 10−1 1.5 10−1 ε

4 1
2 − ε 1

2 − 1.2 10−9 1
2 − 3.0 10−3 3.8 10−1 2.1 10−1 1.9 10−1 1.9 10−1 ε

5 1
2 − ε 1

2 − ε 1
2 − 1.9 10−4 4.4 10−1 2.6 10−1 2.3 10−1 2.3 10−1 ε
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Naive Attack

S̃ =



⊕
06i6127

(⊕
06j6127−i m(0)

j

)
hi = b̃0

(0)

⊕
06i6127

(⊕
06j6127−i m(1)

j

)
hi = b̃0

(1)

. . .⊕
06i6127

(⊕
06j6127−i m(t−1)

j

)
hi = b̃0

(t−1)

Naive attack
i) extract 128 equations linearly independent

ii) remove the errors on bits b̃0
(`)

by enumeration
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Improved Attack

Complexities to improve
I number of queries/samples Cs

I solving time Ct

Methods
1. Reducing the Noise Impact −→ to decrease (mainly) Ct

2. Saving Executions −→ to decrease Cs

3. Solving the System with Dedicated Algorithms −→ to decrease
Cs and Ct



02-25-2015 24 / 42

1. Reducing the Noise Impact

First Idea: use the LLR (Log Likelihood Ratio) to approximate better
the bit value b0

b̂0
def
=

{
0 if LLR(`) > 0,
1 otherwise.

with
LLR(`) = log( P[b0 = 0 | `] )− log( P[b0 = 1 | `] )

Second Idea: when more than 128 traces are available, choose 128
linearly independent samples from the highest LLR absolute values

Example:
if `1 = 64.01 and `2 = 64.49

Ü |LLR(`1)| > |LLR(`2)|
Ü we choose `1 and we throw away `2
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1. Reducing the Noise Impact

Figure: Error probability with rounding (black), LLR (blue) and best 128 LLRs
(red) over 500 measurements
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2. Saving Executions

Second Multiplication:

X2 = (M1 ⊗P H ⊕M2)⊗P H
= M1 ⊗P H2 ⊕M2 ⊗P H

Since squaring is linear over GF(2), there exists S such that

X2 = (M1 ⊗P S ⊕M2)⊗P H

I two multiplications with a single execution : Cs ← Cs/2
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3. Solving the System with Dedicated Algorithms

Noisy codeword: LSBs extracted from leaking multiplications that
encode the authentication key H

Issue: decoding the noisy codeword
I Learning Parities with Noise (LPN) Algorithms
I Linear Decoding

0.1 0.2 0.3 0.4 0.5PPPPPPPPMethod
σ

Cs/Ct Cs/Ct Cs/Ct Cs/Ct Cs/Ct

LLR + naive 28/221 28/221 28/222 28/265 28/2107

LPN (LF Algo) 211/214 220/222 226/228 232/234 248/250

Linear decoding 26/26 26/27 27/211 28/225 29/262
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Improvements

Complexities to improve
I number of queries/samples Cs

I solving time Ct

Methods
1. Averaging the traces −→ to decrease (mainly) Ct

2. Structuring the messages to make the system easier to solve
−→ to decrease (mainly) Ct

3. Saving more executions −→ to decrease Cs
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1. Averaging Traces

Repeating the same computation λ times: σ 7→ σ/
√
λ

Figure: Solving
complexities (naive
attack) with repetitions
for σ = 1 (blue), σ = 3
(red) and σ = 4 (black)

Experimental Results: tests on the Virtex-5 FPGA of a SASEBO
board with an EM probe for the acquisition

Ü confirm the simulations
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2. Structuring the Messages

Current Issue: the linear code corresponding to our attack is
random and have a high dimension (128)

Better Code: concatenation of smaller random linear codes
- with the enumeration algorithm from 1, an attacker can enumerate

keys from ordered lists of key chunks
- each block corresponds to a smaller linear code that may be fully

decoded by a Fast Walsh Transform.


S0

S1

. . .

 ·
H

 =

b̂0
...

b̂t



1Veyrat-Charvillon, Gérard, Renauld, and Standaert. An optimal key enumeration
algorithm and its application to side-channel attacks. In SAC 2012, LNCS, pp 390–406.
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2. Structuring the Messages
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Figure: Security graph2 for σ = 0.5

2Veyrat-Charvillon, Gérard, and Standaert. Security evaluations beyond computing
power. In EUROCRYPT 2013, LNCS, pp 126–141.
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3. Saving more Executions

More Multiplications [Ferguson]:

X1 = M1 ⊗P H,
X2 = M1 ⊗P H2 ⊕M2 ⊗P H,
X3 = M1 ⊗P H3 ⊕M2 ⊗P H2 ⊕M3 ⊗P H,
X4 = M1 ⊗P H4 ⊕M2 ⊗P H3 ⊕M3 ⊗P H2 ⊕M4 ⊗P H.
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Countermeasure

Complexity
I twice slower than the initial complexity
I additional generation of a 128-bit random value: mask

I first-order masked AES: around 2.7 slower than the original AES
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Multiplication-based Re-keying3: Principle

Re-keying Primitive:

r ← $; k? ← r ⊗ k
in GF(28)[y ]/P(y) = y16 + 1

RP · k =


r0k0 r15k1 · · · r1k15

r1k0 r0k1 · · · r2k15
...

...
. . .

...
r15k0 r14k1 · · · r0k15


Block Cipher:

c ← BCk?(m)

3M. Medwed, C. Petit, F. Regazzoni, M. Renauld, F.-X. Standaert, Fresh Re-Keying
II: Securing Multiple Parties against Side-Channel and Fault Attacks, CARDIS 2011
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Multiplication-based Re-keying: Attack ?

Rp · k =


r0k0 r15k1 · · · r1k15
r1k0 r0k1 · · · r2k15

...
...

. . .
...

r15k0 r14k1 · · · r0k15

 =


k?0
k?1
...

k?15


Equation of the LSB:

lsb0

HW

 ⊕
06i6m−1

ri

 ·
 ⊕

06j6m−1

kj

 = b0

Recovery:

Ü only

 ⊕
06j6m−1

kj
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Multiplication-based Re-keying: Better Attack

We have:
HW(k?0 ⊕m0)

with
(Rp · k)0 =

(
r0k0 r15k1 · · · r1k15

)
=
(
k?0
)

thus

lsb0

HW

 ⊕
06i6m−1

riki ⊕m0

 = b0
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Conclusion

I Summary
? attack the AES-GCM authentication without observing inside the

multiplication
? different improvements
? adaptation of the attack on the multiplication-based re-keying

I Further Work
? application of similar attacks to other primitives
? exploitation of more leakage bits with different techniques
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Thank you

Thank you for your attention.
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