Side-Channel Analysis of Multiplications in GF(2¹²⁸) Application to AES-GCM

Sonia Belaïd¹ Pierre-Alain Fouque² Benoît Gérard³

¹École normale supérieure and Thales Communications & Security,

²Université de Rennes 1 and Institut Universitaire de France

³DGA–MI and IRISA

Side-Channel Attacks

physical leakage

- timing
- power consumption
- temperature
- ...
- statistical treatment
- key recovery

Key-Dependent Leakage

AES Block Cipher

Key-Dependent Leakage

Outline

Context

Attack

Main Idea Known Inputs Chosen Inputs

Conclusion

Outline

Context

Attack Main Idea Known Inputs Chosen Inputs

Conclusion

AES-GCM

AES in counter mode

hashed key *H*: $H = AES_{K}(0^{128})$ with *K* the encryption key authenticated data A_{i} : 128-bit blocks of data to authenticate ciphertexts C_{i} : 128-bit encrypted blocks

Galois Field Multiplication \otimes_P

 $GF(2^{128}) = GF(2)[Y]/P(Y), P(Y) = Y^{128} + Y^7 + Y^2 + Y + 1$

 $M_P \cdot H =$

Leakage Models

AES in counter mode

Hamming Weight

$$\mathcal{L}^{(\mathsf{HW})}_i = \mathsf{HW}(oldsymbol{X}_i) + arepsilon_\sigma, \ \ arepsilon_\sigma \sim \mathcal{N}(\mathbf{0},\sigma)$$

Hamming Distance

$$L_{i}^{(\mathsf{HD})} = \mathsf{HD}(X_{i}, X_{i-1}) + \varepsilon_{\sigma} = \mathsf{HW}(X_{i} \oplus X_{i-1}) + \varepsilon_{\sigma}$$

Outline

Context

Attack

Main Idea Known Inputs Chosen Inputs

Conclusion

Outline

Context

Attack Main Idea

Known Inputs Chosen Inputs

Conclusion

Main Idea of The Attack

Current Issue: each bit of the 128-bit multiplication's result depends on all the key bits

x no divide-and-conquer strategy

Main observation: the LSB of the Hamming Weight (same for HD) of a variable is a linear function of its bits:

$$\mathsf{lsb}_0(\mathsf{HW}(V)) = \bigoplus_{0 \leq i \leq 127} v_i$$

LSB of the first multiplication output's Hamming weight:

$$b_0 \stackrel{\text{def}}{=} \text{Isb}_0 (\text{HW}(M \otimes_P H)) = \bigoplus_{0 \leq i \leq 127} (M \otimes_P H)_i$$
$$= \bigoplus_{0 \leq j \leq 127} \left(\bigoplus_{0 \leq i \leq 127} (M_P)_{i,j} \right) h_j$$

Linear system to solve:

$$S = \begin{cases} \bigoplus_{0 \le j \le 127} \left(\bigoplus_{0 \le i \le 127} (M_P^{(0)})_{i,j} \right) & h_j = b_0^{(0)} \\ \bigoplus_{0 \le j \le 127} \left(\bigoplus_{0 \le i \le 127} (M_P^{(1)})_{i,j} \right) & h_j = b_0^{(1)} \\ & \dots \\ \bigoplus_{0 \le j \le 127} \left(\bigoplus_{0 \le i \le 127} (M_P^{(t-1)})_{i,j} \right) & h_j = b_0^{(t-1)} \end{cases}$$

New Issue

New Issue: leakage comes with noise

$$\widetilde{b_0} \stackrel{\text{def}}{=} \operatorname{Isb}_0\left(\left[\operatorname{HW}(M \otimes_P H) + \varepsilon_{\sigma}\right]\right) \\ = \operatorname{Isb}_0\left(\operatorname{HW}(M \otimes_P H)\right) \oplus b_{\mathcal{N}}$$

Probability of error on $b_{\mathcal{N}}$: $p_{\sigma} = 1 - \sum_{i=-\infty}^{\infty} \int_{2i-0.5}^{2i+0.5} \phi_{\sigma}(t) dt$

$$\begin{array}{lll} \sigma = 0.5 & \rightarrow & p_{\sigma} = 0.31 \\ \sigma = 1 & \rightarrow & p_{\sigma} = 1/2 - 4.6 \ 10^{-3} \\ \sigma = 2 & \rightarrow & p_{\sigma} = 1/2 - 1.7 \ 10^{-9} \\ \sigma \geqslant 3 & \rightarrow & p_{\sigma} = 1/2 - \varepsilon \end{array}$$

Outline

Context

Attack Main Idea Known Inputs Chosen Inputs

Conclusion

Naive Attack

$$\widetilde{S} = \begin{cases} \bigoplus_{0 \le j \le 127} \left(\bigoplus_{0 \le i \le 127} (M_P^{(0)})_{i,j} \right) & h_j = \widetilde{b_0}^{(0)} \\ \bigoplus_{0 \le j \le 127} \left(\bigoplus_{0 \le i \le 127} (M_P^{(1)})_{i,j} \right) & h_j = \widetilde{b_0}^{(1)} \\ & \dots \\ \bigoplus_{0 \le j \le 127} \left(\bigoplus_{0 \le i \le 127} (M_P^{(t-1)})_{i,j} \right) & h_j = \widetilde{b_0}^{(t-1)} \end{cases}$$

Naive attack:

- i) extract 128 equations linearly independent
- ii) remove the errors on bits $\widetilde{b_0}^{(\ell)}$ by enumeration

Improvements

- Reducing the Noise Impact
- Saving Executions
- Solving the System with Dedicated Algorithms

An Optimal Decision Rule

First Idea: use the LLR (Log Likelihood Ratio) to approximate better the bit value b_0

$$\widehat{b_0} \stackrel{\text{def}}{=} \left\{ egin{array}{cc} 0 & ext{if } \text{LLR}(\ell) \geqslant 0, \\ 1 & ext{otherwise.} \end{array}
ight.$$

with

$$LLR(\ell) = log(\mathbb{P}[b_0 = 0 \mid \ell]) - log(\mathbb{P}[b_0 = 1 \mid \ell])$$

Second Idea: when more than 128 traces are available, choose 128 linearly independent samples from the highest LLR values

Selecting Traces

Figure: Error probability with rounding (black), LLR (blue) and best LLRs (red)

AES in counter mode

Second Multiplication:

$$X_2 = (M_1 \otimes_P H \oplus M_2) \otimes_P H$$
$$= M_1 \otimes_P H^2 \oplus M_2 \otimes_P H$$

Since squaring is linear over GF(2), there exists S such that

$$X_2 = (M_1 \otimes_P S \oplus M_2) \otimes_P H$$

two multiplications with a single execution

Solving the System with Dedicated Algorithms

Noisy codeword: LSBs extracted from leaking multiplications that encode the authentication key *H*

Issue: decoding the noisy codeword

- Learning Parities with Noise (LPN) Algorithms
- Linear Decoding

σ	0.1	0.2	0.3	0.4	0.5
Method	C_s/C_t	C_s/C_t	C_s/C_t	C_s/C_t	C_s/C_t
LLR + naive	2 ⁸ /2 ²¹	2 ⁸ /2 ²¹	2 ⁸ /2 ²²	2 ⁸ /2 ⁶⁵	2 ⁸ /2 ¹⁰⁷
LPN (LF Algo)	2 ¹¹ /2 ¹⁴	$2^{20}/2^{22}$	$2^{26}/2^{28}$	$2^{32}/2^{34}$	2 ⁴⁸ /2 ⁵⁰
Linear decoding	2 ⁶ /2 ⁶	2 ⁶ /2 ⁷	2 ⁷ /2 ¹¹	2 ⁸ /2 ²⁵	2 ⁹ /2 ⁶²

Outline

Context

Attack Main Idea Known Inputs Chosen Inputs

Conclusion

Improvements

- Averaging the traces
- > Structuring the messages to make the system easier to solve
- Choosing messages to exploit more than two multiplications in a single execution

Averaging Traces

Figure: Solving complexities with repetitions for $\sigma = 1$ (blue), $\sigma = 3$ (red) and $\sigma = 4$ (black)

Experimental Results: tests on the Virtex-5 FPGA of a SASEBO board with an EM probe for the acquisition

confirm the simulations

Structuring the Messages

Current Issue: the linear code corresponding to our attack is random and have a high dimension (128)

Better Code: concatenation of smaller random linear codes

- with the enumeration algorithm from ¹, an attacker can enumerate keys from ordered lists of key chunks
- each block corresponds to a smaller linear code that may be fully decoded by a Fast Walsh Transform.

$$\begin{pmatrix} \boxed{\mathcal{S}_0} & & \\ & \boxed{\mathcal{S}_1} & \\ & & \ddots \end{pmatrix} \cdot \begin{pmatrix} H \end{pmatrix} = \begin{pmatrix} \widehat{b}_0 \\ \vdots \\ \widehat{b}_t \end{pmatrix}$$

¹Veyrat-Charvillon, Gérard, Renauld, and Standaert. *An optimal key enumeration algorithm and its application to side-channel attacks.* In SAC 2012,LNCS, pages 121, 390–406.

Structuring the Messages

²Veyrat-Charvillon, Gérard, and Standaert. *Security evaluations beyond computing* 1211, pgwer. In EUROCRYPT 2013,LNCS, pages 126–141.

Saving Executions: exploit the linearity of the squaring operation (as suggested by Ferguson)

$$\begin{array}{rcl} X_1 & = & M_1 \otimes_P H, \\ X_2 & = & M_1 \otimes_P H^2 \oplus M_2 \otimes_P H, \\ X_3 & = & M_1 \otimes_P H^3 \oplus M_2 \otimes_P H^2 \oplus M_3 \otimes_P H, \\ X_4 & = & M_1 \otimes_P H^4 \oplus M_2 \otimes_P H^3 \oplus M_3 \otimes_P H^2 \oplus M_4 \otimes_P H. \end{array}$$

Saving Executions: exploit the linearity of the squaring operation (as suggested by Ferguson)

$$\begin{array}{rcl} X_1 &=& M_1 \otimes_P H, \\ X_2 &=& M_1 \otimes_P H^2 \oplus M_2 \otimes_P H, \\ X_3 &=& M_1 \otimes_P H^3 \oplus M_2 \otimes_P H^2 \oplus M_3 \otimes_P H, \\ X_4 &=& M_1 \otimes_P H^4 \oplus M_2 \otimes_P H^3 \oplus M_3 \otimes_P H^2 \oplus M_4 \otimes_P H. \end{array}$$

 $M_2 = 0$

Saving Executions: exploit the linearity of the squaring operation (as suggested by Ferguson)

$$X_1 = M_1 \otimes_P H,$$

$$X_2 = M_1 \otimes_P H^2,$$

$$X_3 = M_1 \otimes_P H^3 \oplus M_3 \otimes_P H,$$

$$X_4 = M_1 \otimes_P H^4 \oplus M_3 \otimes_P H^2 \oplus M_4 \otimes_P H.$$

 $M_2 = 0$

Outline

Context

Attack Main Idea Known Inputs Chosen Inputs

Conclusion

Conclusion

Summary

- attack the AES-GCM authentication without looking inside the multiplication
- ★ exploitation of the LSB
- * different improvements
- Further Work
 - * application of similar attacks to other primitives
 - * exploitation of more leakage bits with different techniques

Thank you

Thank you for your attention.

Application on the other bits

$$b_i = \bigoplus_{0 \leqslant j_1 < \cdots < j_{2^i} \leqslant 127} \left(\prod_{1 \leqslant \ell \leqslant 2^i} \bigoplus_{0 \leqslant k \leqslant 127} (M \otimes_P \alpha^k)_{j_\ell} h_k \right), \ \forall \ 0 \leqslant i \leqslant 7$$

σ	Bernoulli parameter p									
	<i>b</i> 0	<i>b</i> ₁	b2	<i>b</i> 3	<i>b</i> 4	b5	<i>b</i> 6	b7		
0.5	3.1 10-1	1.6 10 ⁻¹	8.0 10 ⁻²	4.0 10 ⁻²	2.3 10 ⁻²	2.2 10 ⁻²	2.2 10 ⁻²	ε		
1	$\frac{1}{2}$ - 4.6 10 ⁻³	3.7 10 ⁻¹	1.910-1	9.5 10 ⁻²	5.5 10 ⁻²	5.3 10 ⁻²	5.3 10 ⁻²	ε		
2	$\frac{1}{2} - 1.5 10^{-4}$	$\frac{1}{2}$ - 3.2 10 ⁻³	3.8 10 ⁻¹	2.0 10-1	$1.1 10^{-1}$	1.1 10 ⁻¹	1.1 10 ⁻¹	ε		
3	$\frac{1}{2} - \varepsilon$	$\frac{1}{2}$ - 6.8 10 ⁻⁸	4.7 10 ⁻¹	3.0 10 ⁻¹	$1.6 10^{-1}$	1.5 10 ⁻¹	1.5 10 ⁻¹	ε		
4	$\frac{1}{2} - \varepsilon$	$\frac{1}{2}$ - 1.2 10 ⁻⁹	$\frac{1}{2}$ - 3.0 10 ⁻³	3.8 10 ⁻¹	2.1 10 ⁻¹	1.9 10 ⁻¹	1.9 10 ⁻¹	ε		
5	$\frac{1}{2} - \varepsilon$	$\frac{1}{2} - \varepsilon$	$\frac{1}{2}$ - 1.9 10 ⁻⁴	4.4 10 ⁻¹	2.6 10 ⁻¹	2.3 10 ⁻¹	2.3 10 ⁻¹	ε		

Re-keying from Medwed et al.³

 $k^{\star} = r \cdot k \in \operatorname{GF}(2^8)[Y]/P(Y) = Y^{16} + 1$ Matrix/vector product $K^{\star} = R_P \otimes_P K$ with

$$R_{\rho} = \begin{pmatrix} r_0 & r_{15} & \cdots & r_1 \\ r_1 & r_0 & \cdots & r_2 \\ \vdots & \vdots & \ddots & \vdots \\ r_{15} & r_{14} & \cdots & r_0 \end{pmatrix}$$

Equation of the LSB:

$$\mathsf{Isb}_0\left(\mathsf{HW}\left[\left(\bigoplus_{0\leqslant i\leqslant m-1}r_i\right)\cdot\left(\bigoplus_{0\leqslant j\leqslant m-1}k_j\right)\right]\right)=b_0$$

³ M. Medwed, C. Petit, F. Regazzoni, M. Renauld, F.-X. Standaert, Fresh Re-Keying II: Securing Multiple Parties against Side-Channel 12.11.and Fault Attacks, CARDIS 2011

Specific Implementations

if the key is split

divide-and-conquer strategy

Specific Implementations

if the key is split

divide-and-conquer strategy

if the message is split

- sparse messages
- easier than the generic (known inputs) scenario