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Overview

What are side-channel attacks?

Definition, examples

How to thwart side-channel attacks?

Masking countermeasure

How to make sure that you did it?

Leakage models, proofs, automatic tools
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Definition: Cryptography is the science and art of protecting information despite 
external attacks.
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389 2

 
possibilities

10 + 10 + 10 + 10 = 40

Correct PIN: 9401

Execution time:  ms2α
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SPA: one single trace to recover the secret key
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AES: Advanced Encryption Standard

Message ( ) and key ( )  on 16 bytes

First round: 16 S-boxes

p0, p1, …, p15 k0, k1, …, k15
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AES: Advanced Encryption Standard

Message ( ) and key ( )  on 16 bytes

First round: 16 S-boxes

p0, p1, …, p15 k0, k1, …, k15
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Side-Channel Attacks
Cheap equipment

Basic oscilloscope is enough

Few traces

Less than a hundred traces to recover secrets in software

A few hundreds/thousands traces in hardware

Fast

A few minutes to get the traces

A few seconds to mount the attack
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Problem: the leakage is key-dependent

A solution: masking  randomizing the leakage
• replace each sensitive variable  into 
• such that any tuple of at most  shares is independent from 

Example of linear masking:

≈
v (v1, v2, …, vn)
n − 1 v
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Problem: the leakage is key-dependent

A solution: masking  randomizing the leakage
• replace each sensitive variable  into 
• such that any tuple of at most  shares is independent from 

Example of linear masking:

≈
v (v1, v2, …, vn)
n − 1 v

…

v1 ← $
v2 ← $

vn−1 ← $
vn ← v−v1 − v2 − … − vn−1
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‣ Masking linear operations:     
‣ Sharing( )  )
‣ Sharing( )  )

‣ Masking non linear operations:     
‣ Cannot be done share by share
‣ Example of multiplication with 
‣ Sharing( )  , )
‣ Sharing( )   )

z ← x + y
x = (x1, …, xn
y = (y1, …, yn

z ← x ⋅ y

n = 2
x = (x1 x2
y = (y1, y2
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‣ Masking linear operations:     
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‣ Masking linear operations:     
‣ Sharing( )  )
‣ Sharing( )  )

‣ Masking non linear operations:     
‣ Cannot be done share by share
‣ Example of multiplication with 
‣ Sharing( )  , )
‣ Sharing( )   )

z ← x + y
x = (x1, …, xn
y = (y1, …, yn

z ← x ⋅ y

n = 2
x = (x1 x2
y = (y1, y2

 (    + )⇒ x1 + y1, …, xn yn

    +  + 
    -  + 

⇒ z1 ← x1⋅y1 r x2⋅y1
⇒ z2 ← x1⋅y2 r x2⋅y2

r ← $
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Only t variables leak in the implementation

Leakage = exact value

Security in the -probing model: any set of  intermediate variables is independent 
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥
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Only t variables leak in the implementation
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Security in the -probing model: any set of  intermediate variables is independent 
from the secret
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x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥
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Probe 2: 

y1
x2 ⋅ y1
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z1 ← x1⋅y1 r x2⋅y1
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Leakage

Only t variables leak in the implementation
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Only t variables leak in the implementation

Leakage = exact value

Security in the -probing model: any set of  intermediate variables is independent 
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example with t = 2
Probe 1: 
Probe 2: 

x1
x2

Secret x = x1 + x2
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Only t variables leak in the implementation

Leakage = exact value

Pros and Cons

Easy to make security proofs

Not that close to the reality…

Security in the -probing model: any set of  intermediate variables is independent 
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Security in the -random probing model: given p, the probability to recover 
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥
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   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Security in the -random probing model: given p, the probability to recover 
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example

1 probe with probability p(1 − p)s−1
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Security in the -random probing model: given p, the probability to recover 
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example

1 probe with probability p(1 − p)s−1

2 probes with probability p2(1 − p)s−2
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Security in the -random probing model: given p, the probability to recover 
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example

1 probe with probability p(1 − p)s−1

2 probes with probability p2(1 − p)s−2

 probes with probability i pi(1 − p)s−i
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Pros and Cons

A bit more complicated to make security 
proofs

Closer to the reality

Security in the -random probing model: given p, the probability to recover 
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks

Leakage = noisy function of the value

Security in the -noisy leakage model: given the noise standard deviation , 
the probability to recover information on the secret is bounded by .

(σ, ε) σ
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks

Leakage = noisy function of the value

Security in the -noisy leakage model: given the noise standard deviation , 
the probability to recover information on the secret is bounded by .

(σ, ε) σ
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example

The adversary gets f(x1 ⋅ y1) + η
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   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks

Leakage = noisy function of the value

Pros and Cons

Much more complicated to make security 
proofs

The closest to the reality

Security in the -noisy leakage model: given the noise standard deviation , 
the probability to recover information on the secret is bounded by .

(σ, ε) σ
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥
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Security Proofs

Small gadgets (small circuit and small masking order)

Check the security by hand or using automatic tools

Probing Security

Random Probing Security

Bigger gadgets (bigger circuits and/or higher masking order)
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   +  + 
   -  + 
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-probing secure?2
Independent from secrets?

23 wires   pairs of variables to check→ (23
2 ) = 253
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Security in the -random probing model: given p, the probability to recover 
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(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

1. Identify all the sets of probes revealing  or 

2. Compute their probability to happen

x y

We count how many probes of size  
depends on the secrets 

1
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Security in the -random probing model: given p, the probability to recover 
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

1. Identify all the sets of probes revealing  or 

2. Compute their probability to happen

x y

We count how many probes of size 2 
depends on the secrets ⇒ c2

   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2
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Security in the -random probing model: given p, the probability to recover 
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

1. Identify all the sets of probes revealing  or 

2. Compute their probability to happen

x y

ε =
s

∑
i=1

ci ⋅ pi ⋅ (1 − p)s−i

We count how many probes of size I 
depends on the secrets ⇒ ci

   +  + 
   -  + 

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2
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for i = 1 to n
ci ← ai + bi

Example: 

Addition between two secrets  and  with the shares 
 and  

Possible probes

a b
(ai)1≤i≤n (bi)1≤i≤n

a1, a2, ⋯, an

b1, b2, …, bn

c1, c2, …, cn

With at most  probes 
 impossible to recover  or 

n − 1
⇒ a b
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for i = 1 to n
for j = i + 1 to n

ri,j ← $
rj,i ← (ri,j ⊕ ai ⋅ bj) ⊕ aj ⋅ bi

Example: 

Extract of a multiplication between two secrets  and  with 
the shares  and 

Possible probes

 ( )

a b
(ai)1≤i≤n (bi)1≤i≤n

ri, j i < j

a1, a2, ⋯, an

b1, b2, …, bn

 ( )

 ( )

rj,i i < j

ai ⋅ bj

ri, j ⊕ ai ⋅ bj i < j

2 shares in a 
single probe
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Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of 
at most t variables is independent from the secret

How to reason on composition?

Stronger property: -non-interference

any set of  variables can be simulated with at most  input shares

t
t t
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Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of 
at most t variables is independent from the secret

How to reason on composition?

Stronger property: -non-interference

any set of  variables can be simulated with at most  input shares

Stronger property: strong non-interference

any set of 

•  internal variables

•  output variables

can be simulated with at most  input shares

t
t t

t1
t2

t1
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Composition of gadgets
Reminder: an implementation is -random probing secure 
iff the probability to recover information on the secret is 
bounded by .

How to reason on composition?

(p, ε)

ε
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Composition of gadgets
Reminder: an implementation is -random probing secure 
iff the probability to recover information on the secret is 
bounded by .

How to reason on composition?

Stronger property: -RPC

Any  output shares + the leakage can be simulated with at 
most  input shares with probability 

(p, ε)

ε

(t, p, ε)
t
t ≥ 1 − ε
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 its leakage and ’s and ’s inputs can be simulated with  input shares with probability  

A1 (t, p, ε1)
→ A2 A3 t 1 − ε1
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 is -RPC
 its leakage and ’s inputs can be simulated with  input shares with probability  

A0 (t, p, ε0)
→ A1 t 1 − ε0
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Probability of failure:  fails or  fails or  fails or  fails A0 A1 A2 A3 ≤ ε1 + ε2 + ε3 + ε4
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Summary
Side-channel attacks are very powerful

Few seconds to recover the key on some software devices

Cheap equipments

Countermeasures are mandatory for sensitive devices

Hardware and low cost countermeasures

Fresh re-keying

Masking

Practical security

Security proofs in relevant leakage models

Automatic tools
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Challenges
Efficiency

The least possible randomness

The least possible operations

Security

Theoretical proofs of existing schemes

Automatic tools to verify the security of implementations

Practicality

Security of implementations under leakage models as close 
as possible to the reality
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Compilers in the 
Random Leakage Model

AMAskZONE 
compiler

Random probing

+ side-
effects

Probing + device 
features

Noisy leakage

+ device 
features

+ side-
effects

Two steps

- Identify composition rules to assemble 
gadgets with some security properties
- Example: RPC security

- Build basic (then advanced) gadgets with 
these security guarantees
- Example: RPC secure multiplication, 

addition, etc

Objective: 
- Exhibit masked function such that 

 with  small enoughI(Xi+1, Xi |Li+1, Li) ≤ b b
G1 G2

RPC RPC
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1) verification of advanced properties 
(linear algebra)

2) composition rules (linear algebra) 

3) toolbox (computer science)
 x y
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 ×  ⋆

z

 ⋅2

 ×
 intermediate variables  
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