
Sonia Belaïd

Securing Cryptography Against
Side-Channel Attacks
Practical Tools and Proven Countermeasures

Overview

What are side-channel attacks?

Definition, examples

How to thwart side-channel attacks?

Masking countermeasure

How to make sure that you did it?

Leakage models, proofs, automatic tools

2

Side-Channel Attacks

3

Side-Channel Attacks

4

Alice’s
message
for Bob

Alice Bob

Charlie

Definition: Cryptography is the science and art of protecting information despite
external attacks.

Side-Channel Attacks

5

Alice’s
message
for Bob

Alice’s
message
for Bob

Ceci
est le
messa

Encryption
Ceci est

le
message
d’Alice

pour Bob

Decryption
Alice’s

message
for Bob

Side-Channel Attacks

6

Alice’s
message
for Bob

Alice’s
message
for Bob

Ceci
est le
messa

Encryption

Side-Channel Attacks

7

Alice’s
message
for Bob

Alice’s
message
for Bob

Ceci
est le
messa

Encryption
Black-box cryptanalysis:

𝒜 ← (m, c)

Side-Channel Attacks

8

Alice’s
message
for Bob

Alice’s
message
for Bob

Ceci
est le
messa

Encryption
Black-box cryptanalysis:

𝒜 ← (m, c)

Side-Channel Attacks

9

Alice’s
message
for Bob

Alice’s
message
for Bob

Ceci
est le
messa

Encryption
Side-channel analysis:

𝒜 ← (m, c, ℒ)

Side-Channel Attacks

10

Alice’s
message
for Bob

Alice’s
message
for Bob

Ceci
est le
messa

Encryption
Side-channel analysis:

𝒜 ← (m, c, ℒ)

Side-Channel Attacks

11

Alice’s
message
for Bob

Alice’s
message
for Bob

Ceci
est le
messa

Encryption
Side-channel analysis:

𝒜 ← (m, c, ℒ)

Side-Channel Attacks

12

Alice’s
message
for Bob

Side-channel analysis:
𝒜 ← (m, c, ℒ)

Alice’s
message
for Bob

Ceci
est le
messa

Encryption

Side-Channel Attacks

13

Side-Channel Attacks

14

10000 possibilities

Side-Channel Attacks

15

387 2

10000 possibilities

Correct PIN: 9401

Side-Channel Attacks

16

387 2

10000 possibilities

Correct PIN: 9401

Side-Channel Attacks

17

387 2

10000 possibilities

Correct PIN: 9401

Execution time: msα

Side-Channel Attacks

18

389 2

10000 possibilities

Correct PIN: 9401

Side-Channel Attacks

19

389 2

10000 possibilities

Correct PIN: 9401

Side-Channel Attacks

20

389 2

10000 possibilities

Correct PIN: 9401

Side-Channel Attacks

21

389 2

10000 possibilities

Correct PIN: 9401

Execution time: ms2α

Side-Channel Attacks

22

389 2

possibilities

10 + 10 + 10 + 10 = 40

Correct PIN: 9401

Execution time: ms2α

Example of SPA

23

SPA: one single trace to recover the secret key

Example of DPA

24

AES: Advanced Encryption Standard

Message () and key () on 16 bytes

First round: 16 S-boxes

p0, p1, …, p15 k0, k1, …, k15

Alice’s
message
for Bob

Ceci
est le
messa

Encryption
Ceci est

le
message
d’Alice

pour Bob

Decryption
Alice’s

message
for Bob

Example of DPA

25

Sbox

k0

p0

Sbox

k1

p1

Sbox

k15

p15

. . .

AES: Advanced Encryption Standard

Message () and key () on 16 bytes

First round: 16 S-boxes

p0, p1, …, p15 k0, k1, …, k15

Example of DPA

26

Sbox

k0

p0

Example of DPA

27

Sbox

k0

p0

Example of DPA

28

Sbox

k0

p0

v0 = ℒ(p0
0)

v1 = ℒ(p1
0)

v2 = ℒ(p2
0)

…

vn−1 = ℒ(pn−1
0)

Example of DPA

29

𝖲𝖻𝗈𝗑(p0
0 ⊕ 0)

𝖲𝖻𝗈𝗑(p1
0 ⊕ 0)

𝖲𝖻𝗈𝗑(p2
0 ⊕ 0)

…

𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 0)

v0 = ℒ(p0
0)

v1 = ℒ(p1
0)

v2 = ℒ(p2
0)

…

vn−1 = ℒ(pn−1
0)

Sbox

k0

p0

Example of DPA

30

𝖧𝖶(𝖲𝖻𝗈𝗑(p0
0 ⊕ 0))

𝖧𝖶(𝖲𝖻𝗈𝗑(p1
0 ⊕ 0))

𝖧𝖶(𝖲𝖻𝗈𝗑(p2
0 ⊕ 0))

…

𝖧𝖶(𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 0))

𝖲𝖻𝗈𝗑(p0
0 ⊕ 0)

𝖲𝖻𝗈𝗑(p1
0 ⊕ 0)

𝖲𝖻𝗈𝗑(p2
0 ⊕ 0)

…

𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 0)

v0 = ℒ(p0
0)

v1 = ℒ(p1
0)

v2 = ℒ(p2
0)

…

vn−1 = ℒ(pn−1
0)

Sbox

k0

p0

Example of DPA

31

𝒞0

𝖲𝖻𝗈𝗑(p0
0 ⊕ 0)

𝖲𝖻𝗈𝗑(p1
0 ⊕ 0)

𝖲𝖻𝗈𝗑(p2
0 ⊕ 0)

…

𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 0)

𝖧𝖶(𝖲𝖻𝗈𝗑(p0
0 ⊕ 0))

𝖧𝖶(𝖲𝖻𝗈𝗑(p1
0 ⊕ 0))

𝖧𝖶(𝖲𝖻𝗈𝗑(p2
0 ⊕ 0))

…

𝖧𝖶(𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 0))

v0 = ℒ(p0
0)

v1 = ℒ(p1
0)

v2 = ℒ(p2
0)

…

vn−1 = ℒ(pn−1
0)

Sbox

k0

p0

Example of DPA

32

𝖧𝖶(𝖲𝖻𝗈𝗑(p0
0 ⊕ 1))

𝖧𝖶(𝖲𝖻𝗈𝗑(p1
0 ⊕ 1))

𝖧𝖶(𝖲𝖻𝗈𝗑(p2
0 ⊕ 1))

…

𝖧𝖶(𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 1))

𝖲𝖻𝗈𝗑(p0
0 ⊕ 1)

𝖲𝖻𝗈𝗑(p1
0 ⊕ 1)

𝖲𝖻𝗈𝗑(p2
0 ⊕ 1)

…

𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 1)

(𝒞0, 𝒞1)

v0 = ℒ(p0
0)

v1 = ℒ(p1
0)

v2 = ℒ(p2
0)

…

vn−1 = ℒ(pn−1
0)

Sbox

k0

p0

Example of DPA

33

(𝒞0, 𝒞1, 𝒞2)

𝖧𝖶(𝖲𝖻𝗈𝗑(p0
0 ⊕ 2))

𝖧𝖶(𝖲𝖻𝗈𝗑(p1
0 ⊕ 2))

𝖧𝖶(𝖲𝖻𝗈𝗑(p2
0 ⊕ 2))

…

𝖧𝖶(𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 2))

𝖲𝖻𝗈𝗑(p0
0 ⊕ 2)

𝖲𝖻𝗈𝗑(p1
0 ⊕ 2)

𝖲𝖻𝗈𝗑(p2
0 ⊕ 2)

…

𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 2)

v0 = ℒ(p0
0)

v1 = ℒ(p1
0)

v2 = ℒ(p2
0)

…

vn−1 = ℒ(pn−1
0)

Sbox

k0

p0

Example of DPA

34

(𝒞0, 𝒞1, 𝒞2, …, 𝒞255)

𝖧𝖶(𝖲𝖻𝗈𝗑(p0
0 ⊕ 255))

𝖧𝖶(𝖲𝖻𝗈𝗑(p1
0 ⊕ 255))

𝖧𝖶(𝖲𝖻𝗈𝗑(p2
0 ⊕ 255))

…

𝖧𝖶(𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 255))

𝖲𝖻𝗈𝗑(p0
0 ⊕ 255)

𝖲𝖻𝗈𝗑(p1
0 ⊕ 255)

𝖲𝖻𝗈𝗑(p2
0 ⊕ 255)

…

𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 255)

v0 = ℒ(p0
0)

v1 = ℒ(p1
0)

v2 = ℒ(p2
0)

…

vn−1 = ℒ(pn−1
0)

Sbox

k0

p0

Example of DPA

35

(𝒞0, 𝒞1, 𝒞2, …, 𝒞255)argmax

𝖧𝖶(𝖲𝖻𝗈𝗑(p0
0 ⊕ 255))

𝖧𝖶(𝖲𝖻𝗈𝗑(p1
0 ⊕ 255))

𝖧𝖶(𝖲𝖻𝗈𝗑(p2
0 ⊕ 255))

…

𝖧𝖶(𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 255))

𝖲𝖻𝗈𝗑(p0
0 ⊕ 255)

𝖲𝖻𝗈𝗑(p1
0 ⊕ 255)

𝖲𝖻𝗈𝗑(p2
0 ⊕ 255)

…

𝖲𝖻𝗈𝗑(pn−1
0 ⊕ 255)

v0 = ℒ(p0
0)

v1 = ℒ(p1
0)

v2 = ℒ(p2
0)

…

vn−1 = ℒ(pn−1
0)

Sbox

k0

p0

Side-Channel Attacks
Cheap equipment

Basic oscilloscope is enough

Few traces

Less than a hundred traces to recover secrets in software

A few hundreds/thousands traces in hardware

Fast

A few minutes to get the traces

A few seconds to mount the attack

36

Masking Countermeasure

37

How to thwart SCA?

38

Problem: the leakage is key-dependent

A solution: masking randomizing the leakage
• replace each sensitive variable into
• such that any tuple of at most shares is independent from

Example of linear masking:

≈
v (v1, v2, …, vn)
n − 1 v

Alice’s
messag
e for
Bob

C
eci

Encryption

How to thwart SCA?

39

Problem: the leakage is key-dependent

A solution: masking randomizing the leakage
• replace each sensitive variable into
• such that any tuple of at most shares is independent from

Example of linear masking:

≈
v (v1, v2, …, vn)
n − 1 v

…

v1 ← $
v2 ← $

vn−1 ← $
vn ← v−v1 − v2 − … − vn−1

Alice’s
messag
e for
Bob

C
eci

Encryption

Masking in Practice

40

‣ Masking linear operations:
‣ Sharing())
‣ Sharing())

‣ Masking non linear operations:
‣ Cannot be done share by share
‣ Example of multiplication with
‣ Sharing() ,)
‣ Sharing())

z ← x + y
x = (x1, …, xn
y = (y1, …, yn

z ← x ⋅ y

n = 2
x = (x1 x2
y = (y1, y2

Masking in Practice

41

‣ Masking linear operations:
‣ Sharing())
‣ Sharing())

‣ Masking non linear operations:
‣ Cannot be done share by share
‣ Example of multiplication with
‣ Sharing() ,)
‣ Sharing())

z ← x + y
x = (x1, …, xn
y = (y1, …, yn

z ← x ⋅ y

n = 2
x = (x1 x2
y = (y1, y2

 (+)⇒ x1 + y1, …, xn yn

Masking in Practice

42

‣ Masking linear operations:
‣ Sharing())
‣ Sharing())

‣ Masking non linear operations:
‣ Cannot be done share by share
‣ Example of multiplication with
‣ Sharing() ,)
‣ Sharing())

z ← x + y
x = (x1, …, xn
y = (y1, …, yn

z ← x ⋅ y

n = 2
x = (x1 x2
y = (y1, y2

 (+)⇒ x1 + y1, …, xn yn

Masking in Practice

43

‣ Masking linear operations:
‣ Sharing())
‣ Sharing())

‣ Masking non linear operations:
‣ Cannot be done share by share
‣ Example of multiplication with
‣ Sharing() ,)
‣ Sharing())

z ← x + y
x = (x1, …, xn
y = (y1, …, yn

z ← x ⋅ y

n = 2
x = (x1 x2
y = (y1, y2

 (+)⇒ x1 + y1, …, xn yn

 +
 +

⇒ z1 ← x1⋅y1 x2⋅y1
⇒ z2 ← x1⋅y2 x2⋅y2

Masking in Practice

44

‣ Masking linear operations:
‣ Sharing())
‣ Sharing())

‣ Masking non linear operations:
‣ Cannot be done share by share
‣ Example of multiplication with
‣ Sharing() ,)
‣ Sharing())

z ← x + y
x = (x1, …, xn
y = (y1, …, yn

z ← x ⋅ y

n = 2
x = (x1 x2
y = (y1, y2

 (+)⇒ x1 + y1, …, xn yn

 + +
 - +

⇒ z1 ← x1⋅y1 r x2⋅y1
⇒ z2 ← x1⋅y2 r x2⋅y2

r ← $

Security of an implementation
How to evaluate the security of an implementation?

45

Security of an implementation
How to evaluate the security of an implementation?

Integrate it on a device and try to attack it

Not always possible

46

Security of an implementation
How to evaluate the security of an implementation?

Integrate it on a device and try to attack it

Not always possible

Model the leakage and prove its security or exhibit an attack

47

Security of an implementation
How to evaluate the security of an implementation?

Integrate it on a device and try to attack it

Not always possible

Model the leakage and prove its security or exhibit an attack

48

Leakage Models

49

50

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

Probing Model

51

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Only t variables leak in the implementation

Leakage = exact value

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

Probing Model

52

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Only t variables leak in the implementation

Leakage = exact value

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example with t = 2
Probe 1:
Probe 2:

y1
x2 ⋅ y1

Probing Model

53

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Only t variables leak in the implementation

Leakage = exact value

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example with t = 2
Probe 1:
Probe 2:

y2
r

Probing Model

54

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Only t variables leak in the implementation

Leakage = exact value

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example with t = 2
Probe 1:
Probe 2:

x1
x2

Probing Model

55

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Only t variables leak in the implementation

Leakage = exact value

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example with t = 2
Probe 1:
Probe 2:

x1
x2

Secret x = x1 + x2

Probing Model

56

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Only t variables leak in the implementation

Leakage = exact value

Pros and Cons

Easy to make security proofs

Not that close to the reality…

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

Random Probing Model

57

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

Random Probing Model

58

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example

1 probe with probability p(1 − p)s−1

Random Probing Model

59

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example

1 probe with probability p(1 − p)s−1

2 probes with probability p2(1 − p)s−2

Random Probing Model

60

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example

1 probe with probability p(1 − p)s−1

2 probes with probability p2(1 − p)s−2

 probes with probability i pi(1 − p)s−i

Random Probing Model

61

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks with probability p

Leakage = exact value

Pros and Cons

A bit more complicated to make security
proofs

Closer to the reality

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

Noisy Leakage Model

62

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks

Leakage = noisy function of the value

Security in the -noisy leakage model: given the noise standard deviation ,
the probability to recover information on the secret is bounded by .

(σ, ε) σ
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

Noisy Leakage Model

63

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks

Leakage = noisy function of the value

Security in the -noisy leakage model: given the noise standard deviation ,
the probability to recover information on the secret is bounded by .

(σ, ε) σ
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥Example

The adversary gets f(x1 ⋅ y1) + η

Noisy Leakage Model

64

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Leakage

Every variable leaks

Leakage = noisy function of the value

Pros and Cons

Much more complicated to make security
proofs

The closest to the reality

Security in the -noisy leakage model: given the noise standard deviation ,
the probability to recover information on the secret is bounded by .

(σ, ε) σ
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

Reductions

65

realism

co
nv

en
ie

nc
e

fo
r

se
cu

ri
ty

 p
ro

of
s t-probing model

p-random
probing model

noisy leakage
model

Reductions

66

realism

co
nv

en
ie

nc
e

fo
r

se
cu

ri
ty

 p
ro

of
s t-probing model

p-random
probing model

noisy leakage
model

Security Proofs

67

Security Proofs

Small gadgets (small circuit and small masking order)

Check the security by hand or using automatic tools

Probing Security

Random Probing Security

Bigger gadgets (bigger circuits and/or higher masking order)

Build theoretical proofs

Probing Security

Composition of gadgets

Probing Security

Random Probing Security

68

Security Proofs

Small gadgets (small circuit and small masking order)

Check the security by hand or using automatic tools

Probing Security

Random Probing Security

Bigger gadgets (bigger circuits and/or higher masking order)

Build theoretical proofs

Probing Security

Composition of gadgets

Probing Security

Random Probing Security

69

Proof in the Probing Model

70

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Proof in the Probing Model

71

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1

Proof in the Probing Model

72

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1
Independent from secrets?

x1 →

Proof in the Probing Model

73

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1
Independent from secrets?

x2 →

Proof in the Probing Model

74

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1
Independent from secrets?

y1 →

Proof in the Probing Model

75

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1
Independent from secrets?

y2 →

Proof in the Probing Model

76

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1
Independent from secrets?

x1 →

Proof in the Probing Model

77

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1
Independent from secrets?

x1 →

Proof in the Probing Model

78

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1
Independent from secrets?

x1 ⋅ y1 →

Proof in the Probing Model

79

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1
Independent from secrets?

x1 ⋅ y1 + r →

Proof in the Probing Model

80

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?1
Independent from secrets?

23 wires 23 variables to check→

Proof in the Probing Model

81

Security in the -probing model: any set of intermediate variables is independent
from the secret

t t

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

-probing secure?2
Independent from secrets?

23 wires pairs of variables to check→ (23
2) = 253

Security Proofs

Small gadgets (small circuit and small masking order)

Check the security by hand or using automatic tools

Probing Security

Random Probing Security

Bigger gadgets (bigger circuits and/or higher masking order)

Build theoretical proofs

Probing Security

Composition of gadgets

Probing Security

Random Probing Security

82

Proof in the Random Probing Model

83

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Proof in the Random Probing Model

84

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

1. Identify all the sets of probes revealing or

2. Compute their probability to happen

x y

Proof in the Random Probing Model

85

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

1. Identify all the sets of probes revealing or

2. Compute their probability to happen

x y

We count how many probes of size
depends on the secrets

1
⇒ c1

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Proof in the Random Probing Model

86

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

1. Identify all the sets of probes revealing or

2. Compute their probability to happen

x y

We count how many probes of size 2
depends on the secrets ⇒ c2

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

Proof in the Random Probing Model

87

Security in the -random probing model: given p, the probability to recover
information on the secret is bounded by .

(p, ε)
ε

x1 x2 y2y1

r⋅ ⋅ ⋅ ⋅
+ −

+ +

z1 z2

∥ ∥ ∥ ∥

∥

1. Identify all the sets of probes revealing or

2. Compute their probability to happen

x y

ε =
s

∑
i=1

ci ⋅ pi ⋅ (1 − p)s−i

We count how many probes of size I
depends on the secrets ⇒ ci

 + +
 - +

z1 ← x1⋅y1 r x2⋅y1
z2 ← x1⋅y2 r x2⋅y2

With Formal Methods

88

Formally verify security in the probing model with a tool

With Formal Methods

89

Rules to decide
whether a set of

variables depend on
the secret

Formally verify security in the probing model with a tool

With Formal Methods

90

Rules to decide
whether a set of

variables depend on
the secret

All the
secret
shares?

Random
values to
simplify?

Math
simplifications

to help?

Formally verify security in the probing model with a tool

With Formal Methods

91

Smart
enumeration to go
through all the sets

of variables

Rules to decide
whether a set of

variables depend on
the secret

All the
secret
shares?

Random
values to
simplify?

Math
simplifications

to help?

Formally verify security in the probing model with a tool

Example of Automatic Tools

92

Verification
tool

Example of Automatic Tools

93

Verification
tool

Security property

Example of Automatic Tools

94

Verification
tool

Security property

Security proof
or potential

attacks

Security Proofs

Small gadgets (small circuit and small masking order)

Check the security by hand or using automatic tools

Probing Security

Random Probing Security

Bigger gadgets (bigger circuits and/or higher masking order)

Build theoretical proofs

Probing Security

Composition of gadgets

Probing Security

Random Probing Security

95

Proof in the Probing Model

96

for i = 1 to n
ci ← ai + bi

Example:

Addition between two secrets and with the shares
 and

a b
(ai)1≤i≤n (bi)1≤i≤n

Proof in the Probing Model

97

for i = 1 to n
ci ← ai + bi

Example:

Addition between two secrets and with the shares
 and

Possible probes

a b
(ai)1≤i≤n (bi)1≤i≤n

a1, a2, ⋯, an

b1, b2, …, bn

c1, c2, …, cn

Proof in the Probing Model

98

for i = 1 to n
ci ← ai + bi

Example:

Addition between two secrets and with the shares
 and

Possible probes

a b
(ai)1≤i≤n (bi)1≤i≤n

a1, a2, ⋯, an

b1, b2, …, bn

c1, c2, …, cn

With at most probes
 impossible to recover or

n − 1
⇒ a b

Proof in the Probing Model

99

for i = 1 to n
for j = i + 1 to n

ri,j ← $
rj,i ← (ri,j ⊕ ai ⋅ bj) ⊕ aj ⋅ bi

Example:

Extract of a multiplication between two secrets and with
the shares and

a b
(ai)1≤i≤n (bi)1≤i≤n

Proof in the Probing Model

100

for i = 1 to n
for j = i + 1 to n

ri,j ← $
rj,i ← (ri,j ⊕ ai ⋅ bj) ⊕ aj ⋅ bi

Example:

Extract of a multiplication between two secrets and with
the shares and

Possible probes

 (),

a b
(ai)1≤i≤n (bi)1≤i≤n

ri, j i < j rj,i

a1, a2, ⋯, an

b1, b2, …, bn

 ()

 ()

rj,i i < j

ai ⋅ bj

ri, j ⊕ ai ⋅ bj i < j

Proof in the Probing Model

101

for i = 1 to n
for j = i + 1 to n

ri,j ← $
rj,i ← (ri,j ⊕ ai ⋅ bj) ⊕ aj ⋅ bi

Example:

Extract of a multiplication between two secrets and with
the shares and

Possible probes

 ()

a b
(ai)1≤i≤n (bi)1≤i≤n

ri, j i < j

a1, a2, ⋯, an

b1, b2, …, bn

 ()

 ()

rj,i i < j

ai ⋅ bj

ri, j ⊕ ai ⋅ bj i < j

2 shares in a
single probe

Security Proofs

Small gadgets (small circuit and small masking order)

Check the security by hand or using automatic tools

Probing Security

Random Probing Security

Bigger gadgets (bigger circuits and/or higher masking order)

Build theoretical proofs

Probing Security

Composition of gadgets

Probing Security

Random Probing Security

102

Composition of gadgets

103

Composition of gadgets

Random values

104

Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

How to reason on composition?

105

Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

How to reason on composition?

Stronger property: -non-interference

any set of variables can be simulated with at most input shares

t
t t

106

Composition of gadgets

107

!"

!#

!$

!%

&" observations

&# observations

&$ observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

108

!"

!#

!$

!%

&" observations

&# observations

&$ observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

109

!"

!#

!$

!%

&" observations

&# + &%
observations

&$ + &%
observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

110

!"

!#

!$

!%

&" observations

&# + &%
observations

&$ + &%
observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

111

!"

!#

!$

!%

&" observations

&# + &$ + 2&%
observations

&$ + &%
observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets

112

!"

!#

!$

!%

&" observations

&# + &$ + 2&% ≤ &	?
observations

&$ + &%
observations

&% observations

&" + &# + &$ + &% ≤ &

Composition of gadgets
Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

How to reason on composition?

Stronger property: -non-interference

any set of variables can be simulated with at most input shares

Stronger property: strong non-interference

any set of

• internal variables

• output variables

can be simulated with at most input shares

t
t t

t1
t2

t1

113

Composition of gadgets

114

!"

!#

!$

!%

&" observations

&# observations

&$ observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(observations

Composition of gadgets

115

!"

!#

!$

!%

&" observations

&# observations

&$ observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(observations

Composition of gadgets

116

!"

!#

!$

!%

&" observations

&# observations

&$ + &% observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(+ &% (output)
observations

Composition of gadgets

117

!"

!#

!$

!%

&" observations

&# observations

&$ + &% observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(+ &% (output)
observations

Composition of gadgets

118

!"

!#

!$

!%

&" observations

&# + &$ + &(+ &% ≤ & !
observations

&$ + &% observations

&% observations

&" + &# + &$ + &% + &(≤ &

* &(+ &% (output)
observations

Security Proofs

Small gadgets (small circuit and small masking order)

Check the security by hand or using automatic tools

Probing Security

Random Probing Security

Bigger gadgets (bigger circuits and/or higher masking order)

Build theoretical proofs

Probing Security

Composition of gadgets

Probing Security

Random Probing Security

119

Composition of gadgets

120

Composition of gadgets
Reminder: an implementation is -random probing secure
iff the probability to recover information on the secret is
bounded by .

How to reason on composition?

(p, ε)

ε

121

Composition of gadgets
Reminder: an implementation is -random probing secure
iff the probability to recover information on the secret is
bounded by .

How to reason on composition?

Stronger property: -RPC

Any output shares + the leakage can be simulated with at
most input shares with probability

(p, ε)

ε

(t, p, ε)
t
t ≥ 1 − ε

122

Composition of gadgets

123

Composition of gadgets

124

 is -RPC
 its leakage can be simulated with input shares with probability

A3 (t, p, ε3)
→ t 1 − ε3

Composition of gadgets

125

 is -RPC
 its leakage and ’s inputs can be simulated with input shares with probability

A2 (t, p, ε2)
→ A3 t 1 − ε2

Composition of gadgets

126

 is -RPC
 its leakage and ’s and ’s inputs can be simulated with input shares with probability

A1 (t, p, ε1)
→ A2 A3 t 1 − ε1

Composition of gadgets

127

 is -RPC
 its leakage and ’s inputs can be simulated with input shares with probability

A0 (t, p, ε0)
→ A1 t 1 − ε0

Composition of gadgets

128

Probability of failure: fails or fails or fails or fails A0 A1 A2 A3 ≤ ε1 + ε2 + ε3 + ε4

Conclusion

129

Summary
Side-channel attacks are very powerful

Few seconds to recover the key on some software devices

Cheap equipments

130

Summary
Side-channel attacks are very powerful

Few seconds to recover the key on some software devices

Cheap equipments

Countermeasures are mandatory for sensitive devices

Hardware and low cost countermeasures

Fresh re-keying

Masking

131

Summary
Side-channel attacks are very powerful

Few seconds to recover the key on some software devices

Cheap equipments

Countermeasures are mandatory for sensitive devices

Hardware and low cost countermeasures

Fresh re-keying

Masking

Practical security

Security proofs in relevant leakage models

Automatic tools

132

Challenges
Efficiency

The least possible randomness

The least possible operations

133

Challenges
Efficiency

The least possible randomness

The least possible operations

Security

Theoretical proofs of existing schemes

Automatic tools to verify the security of implementations

134

Challenges
Efficiency

The least possible randomness

The least possible operations

Security

Theoretical proofs of existing schemes

Automatic tools to verify the security of implementations

Practicality

Security of implementations under leakage models as close
as possible to the reality

135

ERC Project AMAskZONE

136

AMAskZONE

How to design and verify cryptographic
implementations so that they achieve
measurable practical security?

AMAskZONE

How to design and verify cryptographic
implementations so that they achieve
measurable practical security?

Scientific objective 1

AMAskZONE

How to design and verify cryptographic
implementations so that they achieve
measurable practical security?

Scientific objective 1
Scientific objective 2

Compilers in the
Random Leakage Model

AMAskZONE
compiler

Random probing

+ side-
effects

Probing + device
features

Noisy leakage

+ device
features

+ side-
effects

G1 G2

Compilers in the
Random Leakage Model

AMAskZONE
compiler

Random probing

+ side-
effects

Probing + device
features

Noisy leakage

+ device
features

+ side-
effects

Two steps

- Identify composition rules to assemble
gadgets with some security properties
- Example: RPC security

- Build basic (then advanced) gadgets with
these security guarantees
- Example: RPC secure multiplication,

addition, etc

Objective:
- Exhibit masked function such that

 with small enoughI(Xi+1, Xi |Li+1, Li) ≤ b b
G1 G2

RPC RPC

Verification with
Polynomial Complexity

o

AMAskZONE
verifier

Random probing

+ side-
effects

Probing + device
features
+ device
features

+ side-
effects

Noisy leakage

or

o

AMAskZONE
verifier

Random probing

+ side-
effects

Probing + device
features
+ device
features

+ side-
effects

Verification is exponential in the size of
the circuit

We will make it polynomial

 intermediate variables
 complexity in

n
⇒ 2n

x y

 +

 × ⋆

z

 ⋅2

 ×

Noisy leakage

or

Verification with
Polynomial Complexity

o

AMAskZONE
verifier

Random probing

+ side-
effects

Probing + device
features
+ device
features

+ side-
effects

1) verification of advanced properties
(linear algebra)

2) composition rules (linear algebra)

3) toolbox (computer science)
 x y

 +

 × ⋆

z

 ⋅2

 ×

Noisy leakage

or

Verification with
Polynomial Complexity

o

AMAskZONE
verifier

Random probing

+ side-
effects

Probing + device
features
+ device
features

+ side-
effects

1) verification of advanced properties
(linear algebra)

2) composition rules (linear algebra)

3) toolbox (computer science)
 x y

 +

 × ⋆

z

 ⋅2

 ×

Noisy leakage

or

Verification with
Polynomial Complexity

o

AMAskZONE
verifier

Random probing

+ side-
effects

Probing + device
features
+ device
features

+ side-
effects

1) verification of advanced properties
(linear algebra)

2) composition rules (linear algebra)

3) toolbox (computer science)
 x y

 +

 × ⋆

z

 ⋅2

 ×
 intermediate variables

complexity in
n ⇒

m ⋅ b

Bounded
number of
variables

Noisy leakage

or

Verification with
Polynomial Complexity

o

AMAskZONE
verifier

Random probing

+ side-
effects

Probing + device
features
+ device
features

+ side-
effects

1) verification of advanced properties
(linear algebra)

2) composition rules (linear algebra)

3) toolbox (computer science)

Noisy leakage

royalty-free open-source
toolbox

or

Verification with
Polynomial Complexity

o

AMAskZONE
verifier

Random probing

+ side-
effects

Probing + device
features

Noisy leakage

+ device
features

+ side-
effects

1) verification of advanced properties
(linear algebra)

2) composition rules (linear algebra)

3) toolbox (computer science)

or

Verification with
Polynomial Complexity

Thank you

149

