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WE INNOVATE TO SECURE YOUR BUSINESS

Securing Cryptography Against
Side-Channel Attacks

Practical Tools and Proven Countermeasures

Sonia Belaid



Overview

What are side-channel attacks?

= Definition, examples

How to thwart side-channel attacks?

= Masking countermeasure

How to make sure that you did it?

= | eakage models, proofs, automatic tools

O
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Side-Channel Attacks

On
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Charlie
N
: Cryptography is the science and art of protecting information despite
external attacks.
J
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10000 possibilities
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Execution time: @ ms 10000 possibilities
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Side-Channel Attacks

Correct PIN: 940 |

98|32

10000 possibilities
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Side-Channel Attacks

Correct PIN: 940 |

98|32

Execution time: 2a ms 10000 possibilities
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Side-Channel Attacks

9|/8][3]|2

Execution time: 2a ms 104+ 104+ 10+ 10 =40
possibilities

Correct PIN: 940 |

O
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Example of SPA

Algorithm 1 Example

for: =1 ton do
if key[i] = O then
do treatment O
else
do treatment 1
end if
end for

LYJ

treatment 0

M

treatment 1

secret

= 1011100101001

SPA: one single trace to recover the secret key

23
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AES: Advanced Encryption Standard
= Message (pg, Py, ---» P15) and key (ky, &y, -

®m First round: | 6 S-boxes

Alice’s
message
for Bob

— Encryption

—>
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Example of DPA

AES: Advanced Encryption Standard
= Message (pg, Py, ---» P15) and key (kg, ky, ..., k;5) on |6 bytes

®m First round: | 6 S-boxes

Po P1 P15

T T
kh— Kk —p

O
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Example of DPA

OP\T‘
N
N
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Example of DPA
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Example of DPA
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/ Vo—ff(P )
= Z(p,

v, = Z(pg)

\ nl_g(p 1)[

O
CrRYPTOCXPeRTS"




N
N

[ Sbox(p? & 0)
Sbox(p. @ 0)
Sbox(pg ®0)

| Sbox(p!™' @ 0) |
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ﬁ ﬂ \ / vo = Z(py) |
Po | \ A\ \ v = Z(py)
M fn AN f A v, = Z(py)
D V|
\J1/ | U “ : \ Vi = Z(p;h |
[ sbox(p)®0) [ HW(Sbox(p{ @ 0)
Sbox(p, @ 0) HW(Sbox(p! @ 0))
Sbox(pg ®0) -W(Sbox(pg D 0))
| Sbox(pi~' @ 0) | | HW(Sbox(p{~' @ 0)) |

30 CEXPERTS




ﬁ ﬂ \ / vo = Z(py) |
Po | \ A\ \ v = Z(py)
M fn AN f A v, = Z(py)
D V|
\J1/ | U “ : \ Vi = Z(p;h |
[ sbox(p)®0) [ HW(Sbox(p{ @ 0)
Sbox(p, @ 0) HW(Sbox(p! @ 0))
Sbox(pg ®0) -W(Sbox(pg D 0))
| Sbox(pi~' @ 0) | | HW(Sbox(p{~' @ 0)) |
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\ ﬂ \ / vo = Z(py) |
Po | |\ \ v = Z(py)
M JM AN f A v, = Z(pg)
R V|
\J1/ | U “ : \ Vi = Z(p;h |
[ sbox(p@1) [ HW(Sbox(p{ @ 1))
Sbox(pl @ 1) HW(Sbox(p! @ 1))
Sbox(p; @ 1) HW (Sbox(pg @ 1))
| Sbox(pi~'é@1) | HW(Sbox(p{ ' @ 1)) |
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ﬁ ﬂ \ / vo = Z(py) |
Po | |\ \ v = Z(py)
M fn AN f A v, = Z(pg)
R V|
\J1/ | U “ : \ Vi = Z(p;h |
[ sbox(pl@2) [ HW(Sbox(pl ®2))
Sbox(p! @ 2) HW(Sbox(p, @ 2))
Sbox(p; @ 2) HW (Sbox(pg @ 2))
| Sbox(pi~' ®2) | HW(Sbox(p{~' @ 2)) |
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N

[ Sbox(p? & 255)

Sbox(p, @ 255)
Sbox( pg @ 255)

| Sbox(pi~! @ 255),

34

[ w=20)

v = Z(py)
v, = Z(pg)

\ nl_g(p 1)[

[ HW(Sbox(p? & 255))
HW(Sbox(p! @ 255))
HW (Sbox(pg @ 255))

| HW(Sbox(p]~! & 255)),
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I

1
N u
argmax
[ Sbox(p? & 255) [ HW(Sbox(p? & 255)) |
Sbox(p, @ 255) HW(Sbox(p, @ 255))
Sbox(pg @ 255) HW (Sbox(pg @ 255))
| Sbox(p~! & 255), | HW(Sbox(p]~! & 255)),
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Side-Channel Attacks

® Cheap equipment

m Basic oscilloscope is enough

® Few traces
® Less than a hundred traces to recover secrets in software

m A few hundreds/thousands traces in hardware

m Fast
= A few minutes to get the traces

m A few seconds to mount the attack

O
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Masking Countermeasure

On
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How to thwart SCA! %\\
) T — ->|.]

Problem: the leakage is key-dependent

A solution: masking &~ randomizing the leakage
 replace each sensitive variable v into (v, v,,...,V,)
* such that any tuple of at most n — 1 shares is independent from v

O
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How to thwart SCA? %\\

Alice’s
"= || Encryption —>|.|
Bob

Problem: the leakage is key-dependent

A solution: masking &~ randomizing the leakage
 replace each sensitive variable v into (v, v,,...,V,)
* such that any tuple of at most n — 1 shares is independent from v

Example of linear masking:

v < $
Vy — $
Vn—1<_s‘D

V, = V=V —Vy— ... =V,

O
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Masking in Practice

> Masking linear operations: 7 < x + y
> Sharing(x) = (x;, ..., x,)

> Shal’lng(y) — (}71, 9yn)

O
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Masking in Practice

> Masking linear operations: 7 < x + y
> Sharing(x) = (x;, ..., x,)

> Shar’"‘]g(y) — (yl, ""yn) = (xl + )’1, ...,)Cn + yn)

O
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Masking in Practice

» Masking linear operations: 7 «<— x + y
> Sharing(x) = (x;, ..., x,)

> Sharing(y) = (v, ---» ),,) = (X F VX, T )

>~ Masking non linear operations: z <= x - y
» Cannot be done share by share
> Example of multiplication with n = 2
> Sharing(x) = (x, x,)
» Sharing(y) = (y}, y»)

O

42 CrYPTOCEXPERTS"



Masking in Practice

» Masking linear operations: 7 «<— x + y
> Sharing(x) = (x;, ..., x,)

> Sharing(y) = (v, ---» ),,) = (X F VX, T )

>~ Masking non linear operations: z <= x - y
» Cannot be done share by share
> Example of multiplication with n = 2
> Sharing(x) = (x, x,)
» Sharing(y) = (y}, y») = 7, < X0y F XY
= L <X Xy,

O

43 CrYPTOCEXPERTS"



Masking in Practice

» Masking linear operations: 7 «<— x + y
> Sharing(x) = (x;, ..., x,)

> Sharing(y) = (v, ---» ),,) = (X F VX, T )

>~ Masking non linear operations: z <= x - y
» Cannot be done share by share
> Example of multiplication with n = 2
> Sharing(x) = (x, x,)
» Sharing(y) = (y}, y») = 71 < X'y tr+ -y,
= L < XY=t Xy,

re—$

O
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Security of an implementation

® How to evaluate the security of an implementation!?

O
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Security of an implementation

B How to evaluate the security of an implementation?

= |[ntegrate it on a device and try to attack it

» Not always possible

O
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Security of an implementation

B How to evaluate the security of an implementation?

= |[ntegrate it on a device and try to attack it

» Not always possible

O
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Security of an implementation

B How to evaluate the security of an implementation?

= |[ntegrate it on a device and try to attack it

» Not always possible

/ = Model the leakage and prove its security or exhibit an attack

—\,H
K

A\

—

O
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Leakage Models

On
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Probing Model 2y Xy + 7 X0y
L < XY =1t X0y,

Leakage

= Only t variables leak in the implementation

= | eakage = exact value

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Probing Model 2y < Xy
L < XY =1t X0y,

m Leakage

= Only t variables leak in the implementation

= | eakage = exact value

Example with = 2

4 Probe |:y,
" Probe 2:x, - y;

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Probing Model 2y < Xy
L < XY =1t X0y,

m Leakage

= Only t variables leak in the implementation

= | eakage = exact value

Example with = 2

4 Probe I:y,
4 Probe 2: 7

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Probing Model 2y < Xy
L < XY =1t X0y,

m Leakage

= Only t variables leak in the implementation

= | eakage = exact value

Example with = 2

4 Probe 1:x,
" Probe 2: x,

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Probing Model 2y < Xy
L < XY =1t X0y,

m Leakage

= Only t variables leak in the implementation

= | eakage = exact value

Example with = 2

4 Probe 1:x,
" Probe 2: x,

Secret x = x; + x,

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Probing Model 2y Xy + 7 X0y
L < XY =1t X0y,

Leakage

= Only t variables leak in the implementation

= | eakage = exact value

Pros and Cons

= Easy to make security proofs

= Not that close to the reality...

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Random Probing Model z; « x-y, + r+ x,y,
L < XY= T+ Xy

Leakage

= Every variable leaks with probability p

= | eakage = exact value

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Random Probing Model 7z, « x-y, + r+ x,y,
L < XY= T+ Xy

m Leakage

= Every variable leaks with probability p

= | eakage = exact value

Example

“ | probe with probability p(1 — p)*~!

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Random Probing Model 7z, « x-y, + r+ x,y,
L < XY= T+ Xy

m Leakage

= Every variable leaks with probability p

= | eakage = exact value

Example

“ | probe with probability p(1 — p)*~!
4 2 probes with probability p2(1 — p)*~2

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Random Probing Model 7z, « x-y, + r+ x,y,
L < XY= T+ Xy

m Leakage

= Every variable leaks with probability p

= | eakage = exact value

Example

“ | probe with probability p(1 — p)*~!
4 2 probes with probability p2(1 — p)*~2

“u i probes with probability p'(1 — p)*™*

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Random Probing Model z; « x-y, + r+ x,y,
L < XY= T+ Xy

Leakage

= Every variable leaks with probability p

= | eakage = exact value

Pros and Cons

= A bit more complicated to make security
proofs

= Closer to the reality

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Noisy Leakage Model Z) < Xyt Xy
Q<X - Tty

Leakage

= Every variable leaks

= | eakage = noisy function of the value

Security in the (o, £)-noisy leakage model: given the noise standard deviation o,
the probability to recover information on the secret is bounded by e¢.

O
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Noisy Leakage Model Z) < Xyt Xy
Q<X - Tty

Leakage

= Every variable leaks

= | eakage = noisy function of the value

Example

" The adversary gets f(x; - ) + 77

Security in the (o, £)-noisy leakage model: given the noise standard deviation o,
the probability to recover information on the secret is bounded by e¢.

O
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Noisy Leakage Model Z) < Xyt Xy
Q<X - Tty

Leakage

= Every variable leaks

= | eakage = noisy function of the value

Pros and Cons

= Much more complicated to make security
proofs

® The closest to the reality

Security in the (o, £)-noisy leakage model: given the noise standard deviation o,
the probability to recover information on the secret is bounded by e¢.

O
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t-probing model

p-random
probing model

noisy leakage
model

convenience for security proofs

realism
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t-probing model

p-random
probing model

noisy leakage
model

convenience for security proofs

realism
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Security Proofs

On
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Security Proofs

Small gadgets (small circuit and small masking order)

> Check the security by hand or using automatic tools
= Probing Security

= Random Probing Security
Bigger gadgets (bigger circuits and/or higher masking order)

> Build theoretical proofs

= Probing Security

Composition of gadgets
= Probing Security

= Random Probing Security

O
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Security Proofs

m Small gadgets (small circuit and small masking order)

> Check the security by hand or using automatic tools

= Probing Security

O

69 CrYPTOCEXPERTS"



Proof in the Probing Model

2 < Xy vty
D < X Y-ty

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Independent from secrets!?

X —=>

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Independent from secrets!?

Xy >

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Independent from secrets!?

= v

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Independent from secrets!?

Vo=

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Independent from secrets!?

X —=>

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Independent from secrets!?

X —=>

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Independent from secrets!?

Xy = v

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Independent from secrets!?

x1°y1+l’—>\/

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

1-probing secure?

Independent from secrets!?

23 wires — 23 variables to check

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Proof in the Probing Model

2 < Xy vty
D < X Y-ty

2-probing secure?

Independent from secrets!?

23
23 wires — < 5 > = 2353 pairs of variables to check

Security in the 7-probing model: any set of 7 intermediate variables is independent
from the secret

O
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Security Proofs

m Small gadgets (small circuit and small masking order)

> Check the security by hand or using automatic tools

= Random Probing Security

O
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Proof in the Random Probing Model

<Xyt rt ey
< XYy -ty

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Proof in the Random Probing Model

<Xyt rt ey
< XYy -ty

| Identify all the sets of probes revealing x or y

2. Compute their probability to happen

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Proof in the Random Probing Model

<Xyt rt ey
< XYy -ty

| Identify all the sets of probes revealing x or y

2. Compute their probability to happen

We count how many probes of size |
depends on the secrets = ¢

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Proof in the Random Probing Model

<Xyt rt ey
< XYy -ty

| Identify all the sets of probes revealing x or y

2. Compute their probability to happen

We count how many probes of size 2
depends on the secrets = ¢,

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Proof in the Random Probing Model

<Xyt rt ey
< XYy -ty

| Identify all the sets of probes revealing x or y

2. Compute their probability to happen

We count how many probes of size |
depends on the secrets = ¢;

o= Y e pl- (1= py
i=1

Security in the (p, €)-random probing model: given p, the probability to recover
information on the secret is bounded by e¢.

O
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Formally verify security in the probing model with a tool
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Formally verify security in the probing model with a tool

Rules to decide
whether a set of
variables depend on
the secret

89
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Formally verify security in the probing model with a tool

Rules to decide
whether a set of
variables depend on
the secret

All the
secret
shares!? , I‘.’Iath.
! simplifications
Random to help!?
values to
simplify?

920
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Formally verify security in the probing model with a tool

Rules to decide
whether a set of
variables depend on
the secret

All the
secret
shares!? , I‘.’Iath.
! simplifications
Random to help!?
values to
simplify?

91

Smart
enumeration to go
through all the sets
of variables
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Example of Automatic Tools

Verification

tool

On
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Example of Automatic Tools

Security property

function example(a, a;, a,, by, by, b,)

Toos Tors Toos T12 < $

t < ay- b

Co < 1D ry

t—ay-b

t—1tDry

=Dt

te—ay-b, >
t—1Dry

tool
t—a,-b

< 1D ry

t<—al‘b1

Verification

e Dt

return (cg, ¢y, C)

93
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Example

function example(ay, a,, a,, by, b;, b,)

Toos Tors Toos T12 < $
t < ay- b
Co < 1D ry
t—ay-b
t—1tDry
=Dt
te—ay-b,

t—1Dry
oDt
t—a,-b
< 1D ry
t<a; b
e Dt

return (cg, ¢y, C)

of Automatic Tools

Security property

Verification

tool

94
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Security Proofs

W Bigger gadgets (bigger circuits and/or higher masking order)

> Build theoretical proofs

= Probing Security

O
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Proof in the Probing Model

® Example:

= Addition between two secrets a and b with the shares
(ai)lgign and (bi)lgign

fori=1ton
c; < a;+ b,

O
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Proof in the Probing Model

® Example:

= Addition between two secrets a and b with the shares
(ai)lgign and (bi)lgign

fori=1ton
c; < a;+ b,

= Possible probes
O al, az, oo,
= D,Dy, ..., D

" C{,Coy ey C

O
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Proof in the Probing Model

® Example:

= Addition between two secrets a and b with the shares

(@)1 <i<,, and (bi)lgign

= Possible probes

"ay,ay, 0,0

« by, b, ...

" C,Cy -

fori=1ton
c; < a;+ b;

With at most n — 1 probes
= impossible to recover a or b

98
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Proof in the Probing Model

® Example:

= Extract of a multiplication between two secrets a and b with
the shares ()| <;<, and (b;)<;<,

fori=1ton
forj=i+1ton

< $

J
Vi « (ri,j@ai'bj)@aj'bi

I"l-,

O
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Proof in the Probing Model

® Example:

= Extract of a multiplication between two secrets a and b with
the shares ()| <;<, and (b;)<;<,

fori=1ton
forj=i+1ton

< $

J
Vi « (ri,j@ai'bj)@aj'bi

I"l-’

= Possible probes

= 1y (<)) " 7 (<))
n al’a2’ ”.’al’l u Cll°b]
" bl’bZ""’bl’l u I’Z’J@Cll-bj(l<])

O
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Proof in the Probing Model

® Example:

= Extract of a multiplication between two secrets a and b with
the shares ()| <;<, and (b;)<;<,

fori=1ton
forj=i+1ton

< $

J
Vi « (ri,j@ai'bj)@aj'bi

I"l-’

2 shares in a

= Possible probes / single probe
m ri,j (l <]) . rjai (l <‘])

[ | al’a2’ ”.’al’l n Cll°b]

u bl’bz""’bl’l u I’Z’J@Cll-b](l<])

O
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Security Proofs

m Composition of gadgets

= Probing Security

O
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Composition of gadgets

O
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Composition of gadgets

|
O
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Composition of gadgets

® Reminder: an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

® How to reason on composition?
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Composition of gadgets

® Reminder:an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

® How to reason on composition?

= Stronger property: i-non-interference

any set of 7 variables can be simulated with at most ¢ input shares
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Composition of gadgets

t, observations {

tot+t1+ta+t3 <t

} t, observations
t, observations {

} t; observations
O
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Composition of gadgets

t, observations { Ay

tot+t1+ta+t3 <t

Ay } t, observations

t, observations A,

ST

Az } t; observations
O
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Composition of gadgets

to observo’rions{

to+t1+tp, +t3<t

t; + t3
observations

t, + t3
observations

} t; observations
O
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Composition of gadgets

t, observations {

tot+t1+t2+t3 <t

t; + t3
observations

t, + t3
observations

.

} t; observations
O
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Composition of gadgets

t, observations {

tot+t1+t2+t3 <t

t; +t, + 2tg
observations

t, + t3
observations
} t; observations
|
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Composition of gadgets

t, observations «[

tot+t1+t+t3 <t

t;+t, +2t3 <t?
observations

ty + t3
observations
} t; observations
O
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Composition of gadgets

® Reminder:an implementation is t-probing secure iff any set of
at most t variables is independent from the secret

® How to reason on composition?

= Stronger property: i-non-interference

any set of 7 variables can be simulated with at most ¢ input shares

= Stronger property: strong non-interference
any set of

e / internal variables

® [, output variables

can be simulated with at most #; input shares
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Composition of gadgets

t, observations {

to+ti+ta+ts+tg <t

:|» t, observations

} tg observations
} t; observations

t, observations {

O
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Composition of gadgets

t, observations { A 0

to+t1+ta+ts+tg <t

Aq :|» t, observations

t, observations A, ,
A\ tgr Observations
As } t; observations

O
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Composition of gadgets

to+t1+ta+tzs+tg <t

t, observations

t, observations

tg + t3 (OUtpuUT)
observations

As t; observations

t, + t3 observations

O
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Composition of gadgets

t, observations {

to+t1+ty+t3+tg <t

} t, observations
t, + tz observations ( tr + t3 (output)
observations

} t; observations

O

117 CrRYPTOCEXPERTS"

O



Composition of gadgets

t, observations {

to+t1+ta+tzs+tg <t

ti+t,+tp+t;<t!
observations

t, + t3 observations tg + t3 (output)

observations

t; observations

O
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Security Proofs

m Composition of gadgets

= Random Probing Security

O
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Composition of gadgets

O
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Composition of gadgets

W Reminder: an implementation is (p, £)-random probing secure
iff the probability to recover information on the secret is
bounded by e¢.

® How to reason on composition?
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Composition of gadgets

W Reminder: an implementation is (p, £)-random probing secure
iff the probability to recover information on the secret is
bounded by e¢.

® How to reason on composition?

m Stronger property: (7, p, £€)-RPC

= Any ¢ output shares + the leakage can be simulated with at
most ¢ input shares with probability > 1 — ¢
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Composition of gadgets

p —leakage <|:

} p —leakage
p —leakage {

} p —leakage

O
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Composition of gadgets

p —leakage <|:

} p —leakage
p —leakage {

} p —leakage

Ajis (1, p, £5)-RPC
— its leakage can be simulated with 7 input shares with probability 1 — &,

O
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Composition of gadgets

p —leakage <|:

} p —leakage

p —leakage

~

} p —leakage

A, is (1, p, e,)-RPC
— its leakage and A;’s inputs can be simulated with 7 input shares with probability 1 — &,

O
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Composition of gadgets

p —leakage <|:

} p —leakage
p —leakage {

} p —leakage

Ayis (1, p, e,)-RPC
— its leakage and A,’s and A’s inputs can be simulated with ¢ input shares with probability 1 — ¢,

O
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Composition of gadgets

p —leakage <|:

} p —leakage
p —leakage {

} p —leakage

Agis (1, p, g)-RPC
— its leakage and A’s inputs can be simulated with 7 input shares with probability 1 — ¢,

O
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Composition of gadgets

p —leakage <|:

} p —leakage
p —leakage {

} p —leakage

Probability of failure: A, fails or A, fails or A, fails or A5 fails <&+ &, + &+ ¢

O
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Conclusion

On
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Summary

® Side-channel attacks are very powerful
= Few seconds to recover the key on some software devices

= Cheap equipments

O
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Summary

Side-channel attacks are very powerful
= Few seconds to recover the key on some software devices

= Cheap equipments

Countermeasures are mandatory for sensitive devices
= Hardware and low cost countermeasures
® Fresh re-keying

= Masking

O
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Summary

Side-channel attacks are very powerful
= Few seconds to recover the key on some software devices

= Cheap equipments

Countermeasures are mandatory for sensitive devices
= Hardware and low cost countermeasures
® Fresh re-keying

= Masking

Practical security
= Security proofs in relevant leakage models

m Automatic tools

O
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Challenges

m Efficiency
® The least possible randomness

m The least possible operations

O
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Challenges

m Efficiency
® The least possible randomness

m The least possible operations

W Security
® Theoretical proofs of existing schemes

= Automatic tools to verify the security of implementations

O
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Challenges

Efficiency
® The least possible randomness

m The least possible operations

Security
® Theoretical proofs of existing schemes

= Automatic tools to verify the security of implementations

Practicality

= Security of implementations under leakage models as close
as possible to the reality

O
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CEXPERTS
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AMAskZONE

How to design and verify cryptographic
implementations so that they achieve
measurable practical security?

On
CRrRYPTOCXPeRTS"



AMAskZONE

Scientific objective |

!

How to and verify cryptographic
implementations so that they achieve

practical security?

|
O
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Scientific objective |
T Scientific objective 2

GoipDandGeri)e
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Compilers in the AMASKZONE

Random Leakage Model — & —

Noisy leakage

Random probing

- Y Y N
+ side- | + device
effects | features

Probing

O
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AMAskZONE
compiler

h—-&— 8

Two steps
Noisy leakage
- ldentify composition rules to assemble
gadgets with some security properties
Random probing - Example: RPC security

~ Y Y R - Build basic (then advanced) gadgets with
+ side- | + device these security guarantees

effects | features - Example: RPC secure multiplication,
addition, etc

Probing

RPC RPC

CEXPERTS



Verification with AMAskZONE

verifier

Polynomial Complexity E — (& — Do X

Noisy leakage

.
I
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1

Y4

Random probing

4 Y Y )
+ side- | + device
effects | features
) NS, W —

Probing

'------
------

O
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Noisy leakage

)
I
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1

4

’------

Random probing

( Y Y )
Probin + side- | + device
8 effects | features

N U, W—

------

AMAskZONE
verifier

B 6

Verification is exponential in the size of
the circuit

X y Z
Jollye
& &
intermediate variables
\®/ = complexity in
]
We will make it polynomial

CXPCERTS



AMAskZONE
verifier

B 6

|) verification of advanced properties

effects | features

N N, W——

Noisy leakage ( )
: : 2) composition rules ( )
1 Random probing 1
: : 3) toolbox ( )
18 Y Y W:
‘| Probing + side- | + device : X y 7
3 ’

N |

OIS,

/

©

CXPCERTS



Noisy leakage

)
I
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1

4

Random probing

( )
Probing

’------

~

+ side-
effects

Y, G

~

a )

+ device
features

'\ V.

------

AMAskZONE
verifier

B 6

|) verification of advanced properties

(

2) composition rules (

3) toolbox (

X

N
/@\

LN

)

Y

/

/

X

CXPCERTS
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AMAskZONE
verifier

B 6

|) verification of advanced properties

Noisy leakage ( )
e EEEEEEEREREERERERRRS® 5
: ; 2) composition rules ( ) +—
1 Random probing 1
1 1
: : 3) toolbox (comy )
18 Y Y AL LT e
1 + < _ + . | ¢ . -
| Probing side device |, X Vo 7
: effects | features |! N4 } |
N\ A A ) N
, / ?\ / Bounded
: : : X Lok _.“4+— number of
intermediate variables = I L variables
complexity in s T
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Noisy leakage

)
I
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1

4

’------

Random probing

( )
Probing

-

+ side-
effects

~

(- )

+ device

features

N U, W—

------

AMAskZONE
verifier

B 6

|) verification of advanced properties

( )

2) composition rules ( )

3) toolbox ( )

royalty-free open-source
toolbox

CXPCERTS



Verification with AMASKZONE

verifier

Polynomial Complexity a — (& — Do X

|) verification of advanced properties
Noisy leakage (linear algebra)

.
I
|
1
1
|
1
1
|
1
1
|
1
1
|
1
1
|
1

Y4

2) composition rules (linear algebra)
Random probing

3) toolbox (computer science)

'------
------

a2 Y Y )
Probing + side- | + device
effects | features
NS, W) W ‘ ‘ ‘ ‘

CRYPTOCEXPERTS



Thank you

On
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