
Leakage-Resilient Symmetric Encryption via
Re-keying?

Michel Abdalla1, Sonia Beläıd1,2, and Pierre-Alain Fouque1

1 École Normale Supérieure, 45 rue d’Ulm 75005 Paris
2 Thales Communications & Security, 4 avenue des Louvresses 92230 Gennevilliers

{Michel.Abdalla, Sonia.Belaid, Pierre-Alain.Fouque}@ens.fr

Abstract. In the paper, we study whether it is possible to construct an
efficient leakage-resilient symmetric scheme using the AES block cipher.
We aim at bridging the gap between the theoretical leakage-resilient
symmetric primitives used to build encryption schemes and the prac-
tical schemes that do not have any security proof against side-channel
adversaries. Our goal is to construct an as efficient as possible leakage-
resilient encryption scheme, but we do not want to change the crypto-
graphic schemes already implemented. The basic idea consists in adding
a leakage-resilient re-keying scheme on top of the encryption scheme and
has been already suggested by Kocher to thwart differential power analy-
sis techniques. Indeed, in such analysis, the adversary queries the encryp-
tion box and from the knowledge of the plaintext/ciphertext, she can per-
form a divide-and-conquer key recovery attack. The method consisting in
changing the key for each or after a small number of encryption with the
same key is known as re-keying. It prevents DPA adversaries but not SPA
attacks which uses one single leakage trace. Here, we prove that using a
leakage-resilient re-keying scheme on top of a secure encryption scheme
in the standard model, leads to a leakage-resilient encryption scheme.
The main advantage of the AES block cipher is that its implementations
are generally heuristically-secure against SPA adversaries. This assump-
tion is used in many concrete instantiations of leakage-resilient symmet-
ric primitives. Consequently, if we use it and change the key for each
new message block, the adversary will not be able to recover any key if
the re-keying scheme is leakage-resilient. There is mainly two different
techniques for re-keying scheme, either parallel or sequential, but if we
want to avoid the adversary having access to many inputs/outputs, only
the sequential method is possible. However, the main drawback of the
latter technique is that in case of de-synchronization, many useless com-
putations are required. In our re-keying scheme, we use ideas from the
skip-list data structure to efficiently recover a specific key.

Keywords: leakage-resilience, symmetric encryption, re-keying, synchro-
nization

? Full version of the paper published in the proceedings of CHES 2013.

1 Introduction

Most of widely used cryptosystems are secure in the black-box model when the
adversary is limited to the observation of the inputs and outputs. However, this
model does not faithfully reflect the reality of embedded devices. Introduced in
the nineties, a more realistic model in which the attacker can observe the physical
leakage of the device has revealed a new class of attacks gathered around the term
Side-Channel Analysis (SCA for short). These attacks exploit the dependence
between sensitive values of an algorithm and the physical leakage of the device
(time, power consumption, electromagnetic radiation, . . .).

In order to avoid the large variety of side-channel attacks, many counter-
measures have been proposed. Most of them are designed to thwart one specific
attack. A widely used example is masking [5,11,30] that aims at protecting im-
plementations against Differential Power Analysis (DPA) [17] but can be de-
feated by higher-order attacks [20]. However, over the last few years, significant
efforts have been made to define generic models capturing physical attacks in
order to provide guarantees of a generic security. Two main examples are the
physically observable cryptography [21] and leakage-resilient cryptography [7].
Several pseudorandom functions, generators and permutations have already been
proposed in the latter [6,8,26,34,33]. Unfortunately, these primitives are not al-
ways relevant to practice. They are often associated to large complexities and
are sometimes constructed in a non realistic model in view of current embed-
ded devices. Nevertheless and as stressed in [19], theoretical ideas proposed in
the design of these primitives can be used to significantly improve the physical
security of cryptographic primitives against side-channel attacks.

In this paper, we propose a more efficient and provably secure symmetric
encryption based on fresh re-keying. This technique has first been investigated
in [1] in the context of increasing the lifetime of a key and in [16] to thwart
side channel attacks by updating regularly the secret key. The principle of re-
keying is based on an inherent primitive that, given a master key and a public
nonce, generates a new session key. Such schemes have already been designed
[18] but no security proof has been given. Here, we rather focus on a mode
of operation provably secure in the leakage model. A first requirement for the
security is to encrypt each block of message with a different session key. As
formally described in [1], the session keys can be generated either from the
same master key (in parallel by applying a pseudorandom function on the index
with a part of the master key) or sequentially, using the previous session key
to derive the current one. Although the choice of the model depends on the
underlying primitive, the second one is more suited to avoid DPA as it changes
the key at each execution in the re-keying part also. However, the sequential
method faces a problem of efficiency when a client and a server need to re-
synchronize. For example, servers that operate with many clients (as in electronic
cash applications) cannot precompute all the possible session keys. They have
to derive them, that is operate as many operations as the difference of indices
between the key they currently have and the key they need. As a result, the

process of re-keying suffers from the time complexity of the number of similar
operations required to obtain the correct session key.

Related Work. The first construction of leakage-resilient symmetric encryp-
tion has only been recently proposed in [12] by Hazay et al.. However, the main
objective of the authors was to propose a generic scheme based on minimal as-
sumptions and the efficiency was not their priority. There are several works on
the construction of leakage-resilient symmetric primitives such as block ciphers
or stream ciphers [26,6,7]. One of the main assumptions to design such schemes
is that AES implementations are heuristically secure against SPA [4,31,22,23,9]
or AES can be implemented to be a leakage-resilient block cipher if the num-
ber of queries with the same key is small. Consequently, this block cipher is
the main practical building block used by theoreticians to instantiate their con-
structions and namely in [26], Pietrzak proposes to use AES(0‖p)‖AES(1‖p)
for constructing a weak PRF with 2n bits of outputs. A weak PRF is a PRF
when the adversary cannot choose the inputs but only has access to random
evaluations of the function. Such weak PRF is a critical ingredient of the design
of GGM (Goldreich, Goldwasser and Mical) leakage-resilient PRF [10] which is
resistant for many queries and not only two. To construct a leakage-resilient
block cipher, Faust et al. propose to use this PRF in a three Feistel rounds in [8]
but the overall construction has been shown to be inefficient by Bernstein at
the CHES’12 rump session [3]. The GGM construction is however very ineffi-
cient and in an effort improve it, Medwed, Standaert and Joux in [19] propose
a version of the tree by considering byte rather than bit. They analyze the se-
curity of this variant with the AES block cipher and lead to the conclusion that
AES is not well-suited for this purpose. Indeed, even though the adversary does
not control the inputs, she can still efficiently recover the secret key of the first
round byte after byte. A similar conclusion has been made by Jaffe in [15] on
the AES-CTR mode of operation. Constructing a leakage-resilient PRF is a cru-
cial issue since the construction of a leakage-resilient block-cipher as in [6,8] or
a leakage-resilient stream-cipher require this primitive [26]. It is an important
problem to design leakage-resilient block ciphers but here, we avoid to consider
it when building a practical leakage-resilient symmetric encryption.

Contributions. Our goal is to construct an efficient leakage-resilient symmetric
encryption scheme using the AES block cipher without constructing a leakage-
resilient block cipher. Since AES is only secure if we encrypt a limited number
of plaintexts with the same key, we need to regularly change the key. Therefore,
re-keying appears to be an interesting solution as it was earlier proposed by
Kocher in [16] to avoid DPA attacks, but here we want to prove that this idea
leads to an efficient leakage-resilient symmetric encryption scheme. To this end,
we need to construct an efficient re-keying scheme. However, to design such a
scheme, one solution is to use a leakage-resilient PRF and we will be back to
our initial problem since we want to use AES in an efficient leakage-resilient
encryption scheme. Our first solution consists in showing that a leakage-resilient

PRF combined with a block cipher is a leakage-resilient encryption scheme. To
this end, we can use the GGM construction as proven by Faust et al. in [8].
However, in order to build a more efficient scheme and to solve the synchroniza-
tion problem, avoiding the computation of all the intermediate keys, we propose
a new one. We show that we do not need a PRF to build a secure encryption
scheme, but we only need a leakage-resilient re-keying scheme. To this end, we
use similar ideas from the skip-list data structure [29] proposed by Pugh in the
late eighties. In this list, one half of the main list elements are chosen randomly
to constitute a new list and from this list, another smaller one are derived and so
on using O(log n) stages with high probability if we have n elements. The idea
to look for an element in this sorted list consists in beginning with the last floor
and identifying the interval where the element is and recurse in the next floor
up to identifying the element or finding that it is not in the list. On average, the
running time is also O(log n) which is asymptotically as efficient as a random
binary tree. Our problem is similar to finding an element in a sorted list since we
have the index of the key we are looking for. It turns out that this construction
serves the same purpose than the one proposed by Kocher in [16]. However, the
latter does not share the same design mainly because of the multiple use of the
same re-keying keys and suffers from the absence of security proof.

Organization. In Sect. 2, we give a theoretical background on leakage-resilient
notions. Then, we describe in Sect. 3 our new leakage-resilient symmetric en-
cryption. In Sect. 4, we provide the proof of our construction while in Sect. 5,
we evaluate its efficiency in practice.

2 Theoretical Background

In this section, we introduce our security model inspired from most previous
works [7,26,8]. We also formally define the functions we use in the following.

2.1 Notations

For the rest of the paper, we introduce some useful notations. In the following, the
uppercase letters will be used to denote random variables and lowercase letters
to denote their realization. Exceptions are made to define security parameters or
sizes. We denote with Rm,n the set of uniformly random functions from {0, 1}m

to {0, 1}n. For a set X , we eventually write X
∗← X to denote the sampling of a

uniformly random X from X .

2.2 Preliminaries on Leakage Resilient Cryptography

Bounded Leakage. Under the bounded leakage model introduced in [7], the adver-
sary is limited to the learning of a bounded amount of information. In practice,
this model may correspond to a limitation of the number of invocations.

Continuous Leakage. In the continuous leakage model, the attacker has access to
an unlimited amount of leakage. There is only a few works on provable security
against continuous side-channel attacks and most of them only target one specific
attack like probing [14].

Leakage-Resilient Primitives. As in [7], we consider an adversary able to collect
a bounded amount of leakage at each invocation of the primitive without being
limited in the number of invocations. From the axiom ”Only computation leaks”
[21], we assume that only the data involved in an invocation can leak in this
invocation. We leave to the adversary the choice of the function f which will be
used to compute the leakage. However there is no other choice than restricting
the range of this function. Otherwise, the adversary could choose to learn the
exact secret state S using the identity function: f(S) = S. Hence, we limit to
the leakage functions with range {0, 1}λ, λ � |S|. All the primitives which are
secure under these conditions will be referred to as leakage-resilient primitives.

Granular Leakage Resilience. In this model introduced in [8], we consider the
global cryptographic primitive as a combination of smaller blocks that leak inde-
pendently. These blocks can be either different primitives or several invocations
of the same primitive, following the works [6,33,8]. Let us denote by τi the state
before step i. The adversary can choose a leakage function fi before step i and
gets fi(τi) at the end of the step execution. In the following, we will omit the
term granular but all the schemes will be proven secure under this model.

Non-adaptive Leakage-Resilience (naLR). In this paper and as in [6,8], we allow
the attacker to choose a new leakage function per independent block and to
learn its output. However, we require these leakage functions to be chosen non-
adaptively, that is before obtaining any leakage or outputs. This model actually
fits the reality since these functions entirely depend on the embedded devices.

Non-adaptive Function (na). Another relaxation is the notion of non-adaptive
function, introduced in [8] for PRFs. In this context, the adversary is expected to
choose her input queries in advance, that is before seeing any leakage or output.

2.3 Definitions and Security Notions

Secure and efficient cryptosystems require functions which are indistinguishable
from equivalent random objects and which require only a few amount of ran-
domness. A widely used function which fills these criteria is the pseudorandom
random function (PRF for short). To define the security notion of such a PRF
F we consider a challenge oracle which is either the PRF F (K, .) instantiated
with a uniformly random key K (with probability 1/2) or a uniformly random
function R(.). As formalized in Definition 1, the PRF is secure if no adversary
is able to distinguish both games with a significant advantage.

Definition 1. A function F : {0, 1}k × {0, 1}m → {0, 1}n is a (ε, s, q)-secure
PRF if for any adversary (or statistical test) A of size s that can make up to q
disjoint queries to its challenge oracle, we have:

AdvprfF (A) = | IP
K
∗←{0,1}k

[A(F (K, .)) = 1]− IP
R←Rm,n

[A(R(.)) = 1]| 6 ε.

A weak PRF (wPRF) shares the same definition except that its inputs are chosen
uniformly at random. Contrary to the PRFs and as proven in [26], the wPRFs
remain secure whenever they are used with the so-called low keys defined below.

Definition 2. A α-low key K ∈ {0, 1}k is a key with min-entropy equal to k−α:

∀x ∈ {0, 1}k, IP[K = x] 6 2−(k−α).

Both wPRFs and PRFs can be leakage-resilient secure, that are secure even
if an adversary observes a bounded amount of leakage at each execution. This
second security notion requires the introduction of a second oracle referred to
as leakage oracle and denoted by F f (K, .). It returns both the output of the
function F (K,X) and the corresponding leakage f(K,X) on an input query X.

Definition 3. A function F : {0, 1}k × {0, 1}m → {0, 1}n is a (ε, s, q)-secure
leakage-resilient PRF if for any adversary A of size at most s who can make up
to q distinct queries to its two oracles, we have:

Advlr prfF (A) = | IP
K
∗←{0,1}k

[A(F (K, .), F f (K, .)) = 1]

− IP
R←Rm,n,K

∗←{0,1}k
[A(R(.), F f (K, .)) = 1]| 6 ε.

Although they also provide pseudorandomness, encryption schemes are stronger
notions than PRFs. Given the ciphertexts of two different messages, no adversary
can decide with a significant confidence which ciphertext is related to which
plaintext. In this paper, we focus on an equivalent security notion for encryption
schemes introduced in [2] and called the real-or-random indistinguishability. The
security of an encryption scheme is then verified if no adversary can distinguish
the encryption of a real query from the encryption of a random string.

Definition 4. An encryption scheme S : {0, 1}k ×{0, 1}n → {0, 1}n is (ε, s, q)-
secure in the real-or-random sense, if any adversary A of size at most s who
asks at most q distinct queries, has an advantage bounded as follows:

AdvencS (A) = | IP
K
∗←{0,1}k

[A(SK(.)) = 1]− IP
K
∗←{0,1}k

[A(SK($)) = 1]| 6 ε

where $ represents a random string in {0, 1}n.

Let us now define the leakage-resilient security of an encryption scheme.This
notion ensures that even with additional leakage, no adversary should be able
to distinguish both games with a significant advantage. As for the PRFs, we
consider a leakage oracle referred to as SfK(.) for a uniformly random key K.

Definition 5. An encryption scheme S : {0, 1}k×{0, 1}n → {0, 1}n is a (ε, s, q)-
secure leakage-resilient encryption scheme if any adversary A of size at most s
who asks at most q distinct queries has an advantage bounded as follows:

Advlr encS (A) = | IP
K
∗←{0,1}k

[A(SK(.), SfK(.)) = 1]

− IP
K
∗←{0,1}k

[A(SK($), SfK(.)) = 1]| 6 ε.

In the following, we will consider a function secure if the advantage of the at-
tacker is negligible in the key size k and if s and q are superpolynomial in k.

3 Leakage-Resilient Symmetric Encryption Scheme

In this section, we propose to build a non-adaptive leakage-resilient symmetric
encryption scheme. As suggested by Kocher in [16], this security can be achieved
by key updates, also referred to as re-keying, combined with secure primitives.
Following this design principle, we propose in a first part a construction based
on a naLR naPRF and a block cipher which yields a naLR encryption scheme
secure in the sense of Definition 5. In a second part, we focus on the instantiation
of the inherent naLR naPRF. We start with the recent construction of [8] since
to the best of our knowledge, it is the most efficient proven one. Based on this
construction, we try to improve the efficiency of the whole scheme in the context
of re-synchronization. However through the improvements, we observe that the
naLR naPRF is not a requirement to build a naLR encryption scheme. In fact,
we introduce a new re-keying scheme which does not fulfil the properties of
a PRF but surprisingly still yields a naLR encryption scheme. Furthermore,
it improves significantly the efficiency of a sequential re-keying scheme when
instantiated with the AES in the context of the synchronisation issue exhibited
in Sect. 1. Eventually, we conclude the section by discussing the generation and
the repartition of the public random values used in the whole encryption scheme.

3.1 Leakage-Resilient Encryption from a naLR naPRF

As outlined in [19], PRFs appear to be good candidates for integration in leakage-
resilient re-keying schemes. In this work, we show that a naLR naPRF F asso-
ciated with a secure block cipher β (in the sense of PRF in Definition 1) yields
a naLR encryption scheme. For this purpose, Theorem 1 is proven is Sect. 4.

Theorem 1. Let F denote a naLR naPRF and β a block cipher in the sense
of PRF. Then the symmetric encryption scheme SF,β is a non-adaptive leakage-
resilient encryption scheme. The amount of leakage λ tolerated per time step
depends on the inherent naLR naPRF: λ ∈ O(log(1/εF)).

The principle is as follows. From an initial secret key k and a public random
value p, the PRF outputs a session key k? = F (k, p) that is further used by
the block cipher for a single block encryption. Figure 1 illustrates this process.
Since each block is encrypted with a different secret key, the block cipher is not
expected to be resistant against differential attacks.

Fig. 1: Non-adaptive leakage-resilient encryption scheme from a naLR naPRF.

3.2 Leakage-Resilient Encryption Scheme from a weak PRF

We have proposed the construction of a naLR encryption scheme from a naLR
naPRF. Now we aim to instantiate this naLR naPRF in the most efficient way.
Since it is proven secure, we start with the naLR naPRF introduced in [8]. We
observe that it has likeable security features but it is not optimal in terms of
efficiency since among all the nodes of the binary tree, only the leaves are finally
exploited. As a consequence, we propose to improve the efficiency of the whole
scheme by also using the intermediate nodes in a suitable order.

A solution to benefit from the intermediate nodes is to slightly change the
inherent wPRF. In [8], this wPRF outputs 2n-bit values from n-bit inputs. In
this paper, we refer to as φ the wPRF we use to compute n-bit values from n-bit
values and as φ2 (resp. φ3) the concatenation of two (resp. three) invocations
of φ. Instead of deriving two keys generally from two random public values of
same size, we could directly use the wPRF φ3 to derive three keys using one
more random value. Among these three keys, two would still be used to derive
the subsequent tree keys while the third one would be processed in the block
cipher. Although this solution exploits the intermediate nodes, it requires a more
expensive derivation since the intermediate wPRF is expected to generate one
more key with an additional amount of randomness.

A more efficient option is to maintain the binary tree construction with the
wPRF φ2 and to use directly the intermediate keys in the block cipher. In this
case, a third random value can be used with the intermediate key and the output
of the block cipher can be bitwise added to the chosen message3. However, the
re-keying scheme involved in this new construction is not a PRF anymore, since

3 We could also have chosen to add the message to the random value before the
encryption, referring to Lemma 3 from [26] in the case of leakage. However, in case

an adversary could easily take advantage of its outputs to derive the following
keys. One may consequently expect the encryption scheme (we refer to as SRφ,φ)
not to be secure anymore. Surprisingly, this intuition is wrong. By Theorem 2
that will be proven in Sect. 4, we show that we are still able to build a naLR
symmetric encryption scheme with relaxed properties on the re-keying scheme.
However unlike the previous scheme, the proof we established requires the block
cipher to be the same primitive than the wPRF used to derive the keys.

Theorem 2. Let φ be a secure wPRF. Let Rφ denote the re-keying scheme de-
scribed above. Then SRφ,φ is a naLR encryption scheme. The amount of leakage
λ tolerated per time step depends on φ: λ = O(log(1/εφ)).

Now that we have presented the security aspects when exploiting all the nodes
of the binary tree, we still have to fix a suitable order in the nodes to be as
efficient as possible in the re-synchronization scenario. For this purpose, we need
to define short-cuts between distant keys to avoid the expensive computation of
all the intermediate keys. Inspired by the skip-list data structure introduced in
[29], we suggest to organize our re-keying scheme in s stages, s > 2 containing
increasingly sequences of keys 4. This organization in lists, illustrated in Fig. 2

Fig. 2: Stage representation of our new re-keying scheme Rφ in the case s = 3.

with pi and qi public random values, involves a more efficient lookup with a
reduction of the complexity from linear to logarithmic. Nevertheless, it is worth
noticing that unlike skip-lists, this structure does not expect additional relations

the public random values are known after the first encryption, the message blocks
would have been chosen non-adaptively to avoid non random inputs.

4 In this description, each node generates s nodes at the first upper stage. Although
convenient for the analysis, another choice can be made.

between keys. There is still one single computation path to derive each key.
Figure 3 illustrates the whole encryption scheme using φ3 for the concatenation
of the block cipher and the wPRFs used for the derivation. The values ri are
the public random values used for the encryption, the values mi represent the
blocks of message to encrypt and the values ci the corresponding ciphertexts.

Fig. 3: Tree representation of our new encryption scheme SRφ,φ in the case s = 3.

The very first key K0 is the entry point of the first stage. Keys from the
first stage allow to generate the following first stage keys or to go down to the
second stage. When going down, the index of the key increases by one whereas
when computing the next key in the same stage sc, the index is increased by
1 + s + · · · + ss−sc . Each derivation requires one public value that we refer to
as pi when going down and qi otherwise with i referring to the index of the
key used for the derivation. In practice, the sender updates his own secret key
after each operation, following the indices order. When he wants to perform a
transaction with the receiver, he just has to relay his current transaction counter.
The receiver then performs a series of operations to derive the expected session
key. For this purpose, he can either decides to always start with the very first key
K0 or to start with another key that he already computed and that is compliant
with the new index. Algorithm 15 depicts the process for the first situation.

3.3 Efficient Generation of Random Values

For efficiency purpose, one tries to minimize the generation of fresh randomness
in our construction. We propose several methods to distribute the public random

5 The input sc can also be directly computed from c.

Algorithm 1 Re-keying Scheme

Require: current key Kc, index c, stage sc, new index i
Ensure: key Ki, index i, stage si

1: (K, ind, st)← (Kc, c, sc)
2: while (ind 6= i) do

3: while (i > ind+
s−st∑
j=1

sj) do . Horizontal steps

4: K ← φ(K, qind)

5: ind← ind+
s−st∑
j=0

sj

6: end while

7: while (i > ind) & (i 6 ind+
s−st∑
j=1

sj) do . Vertical steps

8: K ← φ(K, pind)
9: ind← ind+ 1

10: st ← st + 1
11: end while
12: end while
13: return (K, st)

values. In a first attempt, we generate two fresh public random values p and q
for the key derivation as illustrated in Fig. 2 and 3 and one additional random
value for the input message block. Although the encryption scheme is naLR,
the solution is impractical. Another solution is to follow the method from [8]
and attribute two fresh random values by tree layer plus one for each block of
message. This new proposal reduces the amount of randomness without loss of
security since each path uses different random values for each time step.

The work of Yu and Standaert in [34] allows to reduce even more the cost of
the generation of randomness. It suggests to replace the randomness by pseudo-
random values generated by a PRF in counter mode from a single public seed.
This solution can directly be applied to ours and results in a significant improve-
ment of the performances. The global scheme can still be proven naLR in the
peculiar world of minicrypt [13], that is either the scheme is secure or we can
build public-key primitives from our symmetric functions, which is very unlikely.

Theorem 3. Let φ be a weak PRF and G a PRF. Then the system SRφ,φ,G de-
scribed above is a naLR encryption scheme or we can build public-key primitives
from the PRFs φ and G and the related leakage functions.

4 Leakage-Resilient Security Analysis

In this section, we give the security proofs of the three theorems presented in
Sect. 3.

4.1 Security Analysis of Theorem 1

In Sect. 3, Theorem 1 states the non-adaptive leakage-resilient security of an
encryption scheme composed of a naLR naPRF and a block cipher, as illustrated
in Fig 1. The following depicts the proof.

Proof. From the granular leakage-resilient model, our scheme is split into time
steps which leak independently. The attacker is allowed to choose non-adaptively
a leakage function f = (f1, f2) with components for each of these time steps:
f1 for the PRF and f2 for the block cipher. Then, she can submit q distinct
queries to her oracles which can be divided between challenge queries and leakage
queries. For each challenge query, she gets back either the real output of her query
or the encryption of a random string. For each leakage query, she gets both the
real output of her query and the leakage which is exactly the output of the
leakage function f she chose. Let us now show the proof that the construction is
a naLR encryption scheme. As explained in [32], we organize the security proof
of Theorem 1 as a sequence of games. The first one, referred to as Game 0,
represents the real case, that is when the attacker gets both the leakage and
the real outputs of her queries. It directly corresponds to the left-hand side
probability in Definition 5 for an adversary A having access to challenge and
leakage oracles:

IP
K
∗←{0,1}k

[A(SK(.), SfK(.)) = 1].

We denote by G0 the event A(SK(.), SfK(.)) = 1 and corresponding to Game 0.
The last game Game N represents the random case, that is when all the challenge
outputs are generated from random queries. It corresponds to the right-hand side
probability in Definition 5 with $ a random string in {0, 1}n:

IP
K
∗←{0,1}n

[A(SK($), SfK(.)) = 1].

Similarly, we denote by GN the event: A(SK($), SfK(.)) = 1. We aim to show
that the difference between these probabilities (which is exactly the advantage of
the attacker according to Definition 5) is negligible. To proceed, we go through
intermediate games and we iteratively prove that the probability P(Gi) corre-
sponding to Game i is negligibly close to the probability P(Gi+1) corresponding
to Game i + 1 for i ∈ [N − 1]. The difference between two successive games is
expected to be very small for the needs of the proof. In the following, we will
use three kinds of games transition: the transitions based on indistinguishability,
the transitions based on failure events and the so-called bridging steps.

Game 0 [SYM-REAL]. This game is referred to as the real game. In this
game, the attacker A who submits adaptive leakage and challenge queries to her
challenger, gets back both the leakage and the real outputs of her queries. We
depict below the process in details.

Leakage functions. The adversary A first chooses a leakage function f = (f1, f2)
to observe the leakage during both the naLR naPRF and the block cipher ex-
ecutions. In our security model, we impose the leakage function to be chosen
non-adaptively that is before seeing any leakage or outputs.

Challenge Before everything, the challenger of A chooses uniformly at random
a key K ∈ {0, 1}n for the naLR naPRF F . Subsequently, A is allowed to sub-
mit adaptively to her challenger q distinct queries whose q0 are leakage queries
M1, . . . ,Mq0 and q1 = q − q0 are challenge queries M ′1, . . . ,M

′
q1 . Then, for each

leakage query Mi, i ∈ [q0] the challenger receives from A, the challenger chooses
uniformly at random an index indi as input for the PRF and returns both the
real output ci and the corresponding leakage:

ci ← βKi(Mi) with Ki = F (K, indi) and f1(K, indi), f2(Ki,Mi).

For each challenge query M ′i , i ∈ [q1], the challenger also chooses uniformly at
random an index ind′i and returns to A only the real output:

c′i ← βK′i(M
′
i) with K ′i = F (K, ind′i).

We aim now to transform this real game into a new game that is equivalent to
the computation of the adversary given an oracle access to the encryption of a
random value in {0, 1}n and such that the probability that b = 1 in this latter
game is negligibly close to P[G0].

Game 1 [bridging step] In Game 0, the challenger chooses uniformly at
random a index as input for the naLR naPRF at each leakage or challenge
query. We make here a conceptual change. Instead of choosing the indices at each
query, the challenger chooses now all the q indices at the very beginning, that is
before receiving the first query from the attacker. Since the indices are chosen
uniformly at random, it does not change anything for the attacker. However, it
is mandatory to use the naLR naPRF since it expect its inputs to be chosen
non-adaptively that is before seeing any leakage or output. Eventually,

P[G0] = P[G1].

Game 2 [transition based on a failure event]. In Game 1, the challenger
chooses uniformly at random the q indices of the future queries. We now modify
this first game so that we ensure that all the uniformly random indices chosen
by the challenger are pairwise distinct. It is easy to note that Games 1 and 2
proceed identically, unless there is a collision in the set of uniformly random
indices. Let us denote by E this specific event. If E does not occur, then the
output of both games is exactly the same. Equivalently, the following relation is
satisfied:

G1 ∧ E ⇔ G2 ∧ E.

Then, from the common Lemma denoted by Difference Lemma in [32], we have
the following result:

|P[G1]− P[G2]| 6 P[E].

Let us now determine the probability of event E. The q index values of Game
0 are sampled uniformly at random. Therefore, from the birthday bound, the
probability of having at least a collision is less than q(q− 1)/2n+1 if q 6 n. This
result gives us a bound on the difference between the probabilities of the events
of b = 1 in both games:

|P[G1]− P[G2]| 6 q(q − 1)

2n+1
.

Game 3 [transition based on indistinguishability]. We now make a small
change to the above game. Namely, instead of computing the intermediate keys
from the naLR naPRF F (for the challenge queries), we generate them using a
random function:

R← Rn,n K ′i ← R(M ′i) c′i ← βK′i(M
′
i) ∀i ∈ [q1]

or indistinguishably

K ′i ← $ c′i ← βK′i(M
′
i) ∀i ∈ [q1]

where $ is a random string in {0, 1}n.

Let us consider an adversary A who distinguish these two games. A interacts
with a challenger CA as in Game 0 and gets back either outputs using random
keys if b = 1 or outputs using keys computed from the naLR naPRF F if b = 0.
A then outputs a bit b′A in view of the information she got that aims to be
identical to b.

Let us now show that ifA actually exists, we are able to build a new adversary
B against the naLR naPRF F who uses A. The process is as follows. As above,
the adversary A first chooses a leakage function f = (f1, f2) but this time
sends it to the adversary B who transmits f1 to her own challenger CB. Then,
as the challenger of adversary A in previous games, CB chooses q uniformly
random distinct indices and a uniformly random key K that he submits to the
naLR naPRF leakage and challenge oracles with the leakage function f1. The
challenger then gets back from the leakage oracle and transmits to B both the
leakage during the execution of this naLR naPRF:

f1(K, indi) ∀i ∈ [q0]

and the keys corresponding to the leakage queries:

K1, . . . ,Kq0 .

Then, CB gets back from the challenge oracle the keys K ′i, i ∈ [q1] representing
either the real keys (if b = 0) or uniformly random strings in {0, 1}n (if b =

1). Once these data collected, B is ready to answer the adaptive leakage and
challenge queries of A. For each leakage query Mi, B computes βKi(Mi) and
f2(Ki,Mi) and with the oracle previous replies sends back to A:

f1(K, indi) f2(Ki,Mi) ci = βKi(Mi).

For each challenge query M ′i , i ∈ [q1], B directly uses the key K ′i given by its
challenge oracle and sends back to A according to the bit b:

b=0: c′i = βK′i(M
′
i) with K ′i ← F (K, ind′i)

b=1: c′i = βK′i(M
′
i) with K ′i ← $.

Eventually, A got the leakage outputs corresponding to its leakage queries and
the outputs of the encryption scheme with its challenge queries either with the
real keys if b = 0 or with uniformly random keys if b = 1. This situation perfectly
simulates Game 0 with the real keys (when b = 0) and Game 1 with the uniformly
random keys (when b = 1). As a result, the bit b′B given by adversary B after its
challenge on the naLR naPRF F is exactly the same than the bit b′A given by
adversary A to distinguish both Games.

Consequently, an adversary who aims to distinguish both games has the same
advantage an adversary who aims to break the security of the naLR naPRF
F . This is bounded by the naLR naPRF advantage εF . Eventually, we have:
|P(G2)− P(G3)| = εF .

Game 4 [transition based on a failure event]. We now modify Game 3
so that in addition to be uniformly random, the keys we use are also pairwise
distinct.

K ′i ← $ s.t. K ′i 6= K ′j if i 6= j c′i ← βK′i(M
′
i) ∀i, j ∈ [q1].

It is worth noticing that Games 3 and 4 proceed identically, unless there is a
collision in the set of uniformly random keys. Let us denote by E this specific
event. If E does not occur, then the output of both games is exactly the same.
As detailed in [32] with the Difference Lemma and since the following relation
is satisfied:

G3 ∧ E ⇔ G4 ∧ E,

we have

|P[G3]− P[G4]| 6 P(E).

We now determine the probability of event E. The q1 key values of Game 1 are
sampled independently and at random. Therefore, from the birthday bound, the
probability of a collision is less than (q1(q1 − 1))(2n+1) if q1 6

√
n. Straightfor-

wardly, this result gives us a bound on the difference between the probabilities

of the events of b = 1 in both games: |P[G3]− P[G4]| 6 q1(q1−1)
2n+1 .

Game 5.0 [bridging step]. We now make a purely conceptual change to Game
4. In this game, the challenge outputs are computed from uniformly random keys
without any intervention of the naLR naPRF:

K ′i ← $ s.t. K ′i 6= K ′j ∀i, j ∈ [q1], i 6= j

c′i ← βK′i(M
′
i) ∀i ∈ [q1]

Since the keys are now uniformly random and pairwise distinct, the invocations
to the block cipher are completely independent from each other. So we can now
consider them separately. Let us say that in this game, zero challenge query is
computed from a random function and the q1 others using the block cipher β.
Clearly,

P[G4] = P[G5.0].

Game 5.t [transition based on indistinguishability]. We now modify
Game 5.0 by replacing the t first invocations of the block cipher β for the chal-
lenge queries by invocations of a truly random function R← Rn,n:

K ′i ← $ s.t. K ′i 6= K ′j ∀i, j ∈ [q1], i 6= j

c′i ← R(M ′i) ∀i ∈ [t] and c′i ← βK′i(M
′
i) ∀i ∈ t+ 1, . . . , q1.

We consider an adversary A who aims to distinguish Games 5.0 and 5.t. A
first chooses a leakage function f = (f1, f2) (respectively related to F and β)
and sends it to her challenger. For each leakage query Mi, i ∈ [q0] she makes, A
gets back:

f1(K, indi) f2(Ki,Mi) ci = SF,β(Mi) = βKi(Mi)

with K uniformly generated at random by the challenger. For the t first challenge
queries M ′1, . . . ,M

′
t sent to her challenge oracle, A gets back according to the

game:

Game 5.0: c′i = βK′i(M
′
i) ∀i ∈ [t]

Game 5.t: c′i = R(M ′i) , R← Rn,n ∀i ∈ [t].

The other challenge queries are equivalent to Game 5.0. Eventually from these
data, A output a bit b′A indicating which game is played.

Now, let us show that if such an adversaryA exists, we can build an adversary
B against the block cipher β that uses A. B proceeds as follows. B gets from
A the leakage function f = (f1, f2) and transmits it to her challenger CB. CB
generates the master K and the indices uniformly at random and uses them to
compute the leakage of F and the intermediate keys. For each leakage query
Mi, i ∈ [q0] from A, CB directly computes the leakage of the whole encryption.
B gets back the corresponding leakage and outputs and sends to A:

f1(K, indi) f2(Ki,Mi) ci = βKi(Mi).

For each of the t first challenge queries from A, B sends both the query and the
corresponding intermediate key to her challenge oracle. According to the bit b,
B gets back and returns to A:

b=0: c′i = βK′i(M
′
i)

b=1: c′i = $.

The other challenge queries are directly computed by B and sent back to A.

Eventually, this experience perfectly simulates Games 5.0 when b = 0 and
5.t when b = 1. The adversary B faces the same challenge to distinguish the real
output of the block cipher and a random string thanA to distinguish both games.
Their output bits b′B and b′A are perfectly equal which allows us to conclude
that the difference between probabilities of events of both games when b = 1 is
directly based on the security parameter of the block cipher as a PRF for each
invocation:

|P[G5.0]− P[G5.t]| = |P[G5.0]− P[G5.1] + P[G5.1]− · · · − P[G5.t]|
6 |P[G5.0]− P[G5.1]|+ · · ·+ |P[G5.t−1]− P[G5.t]|
6 t · εβ .

from the triangular inequality.

Game 6 [SYM-RANDOM]. In this game, the invocations of the block cipher
corresponding to all the qth1 query are replaced by the invocations of uniformly
random functions.

K ′i ← $ s.t. K ′i 6= K ′j ∀i, j ∈ [q1], i 6= j

c′i ← R(M ′i) ∀i ∈ [q1]

or equivalently

K ′i ← $ s.t. K ′i 6= K ′j ∀i, j ∈ [q1], i 6= j

c′i ← $ ∀i ∈ [q1].

As explained in this introduction, this last game represents the right-hand
side of the advantage of the attacker in Definition 5. Let us now compute the
difference of the probability of G0 corresponding to Game 0 and the probability
of G6 corresponding to this last game:

|P[G0]− P[G5]| = |P[G0]− P[G1] + P[G1]− P[G2] + P[G2]− P[G3]

+ P[G3]− P[G4.0] + P[G4.0]− P[G4.t] + P[G4.t]− P[G5]|.

From the triangular inequality, we obtain:

|P[G0]− P[G5]| 6 |P[G0]− P[G1]|+ |P[G1]− P[G2]|+ |P[G2]− P[G3]|
+ |P[G3]− P[G4.0]|+ |P[G4.0]− P[G4.t]|+ |P[G4.t]− P[G5]|

6
q(q − 1)

2n+1
+ εF +

q1(q1 − 1)

2n+1
+ 0 + t · εβ + (q1 − t) · εβ .

Eventually the advantage of an attacker against the encryption scheme described
in Theorem 1 is bounded by:

q(q − 1) + q1(q1 − 1)

2n+1
+ εF + q1 · εβ

which is negligible.

4.2 Security Analysis of Theorem 2

Unfortunately, our new re-keying scheme is not a PRF since the adversary could
easily take advantage of the outputs of the intermediate nodes to recover the
following keys. However we prove hereafter that instantiated with a specific
wPRF, it still yields a naLR encryption scheme.

Proof. To prove Theorem 2, we first prove the security of the independent time
steps in the new re-keying scheme. Let us consider an intermediate node of
the re-keying scheme. If a challenge or a leakage query is defined on this node,
the related operation will be the concatenation φ3 of three wPRFs: two for the
derivation of the next keys and one for the encryption. In the case no query is
defined on this node, the concatenation φ2 of only two wPRFs is required. As a
result, we prove that the concatenation of two or three invocations of the wPRF
φ using the same key (two for the derivation and in some cases one for the block
cipher) still forms a secure wPRF.

Proposition 1. Let φ : {0, 1}n×{0, 1}n → {0, 1}n be a (ε, s, 3q)-secure wPRF.

φ3 : {0, 1}n × {0, 1}3n → {0, 1}3n

(k, p, q) 7→ (φ(k, p)‖φ(k, q))

is then a (ε′, s, q)-secure weak PRF with ε′ 6 3q(3q−1)
2n+1 + ε 6.

Proof (Proof of Proposition 1). As done in the previous section, we organize this
proof as a sequence of games. But this time, we aim to show the security of a
function as a weak PRF in the sense of Definition 1. We start with Game 0 which
represents the real game in which the attacker gets exclusively the real outputs
of her queries.

Game 0 [SYM-REAL]. As briefly mentioned, in this game the attacker gets
the real outputs of her queries. Contrary to the previous proof, there is no leakage
here so we only consider challenge queries.

6 Similarly, the security parameter of φ2 is bounded by 2q(2q−1)

2n+1 + ε.

Challenge As usual, we consider an attacker A and her challenger CA. The
attacker A asks her challenger for q queries. The challenger CA then chooses
uniformly at random an initial key K ∈ {0, 1}n and q queries M1, . . . ,Mq ∈
{0, 1}3n and returns to A both the queries and their real outputs:

(Mi, φ3(K,Mi)) = ((pi, qi, ri), (φ(K, pi)||φ(K, qi)||φ(K, ri))), ∀i ∈ [q].

We will now slightly transform this game until we reach the random game in
which the adversary only gets random values in answer to her challenge queries.
At each step, we show that the probability of b = 1 is negligibly close between
consecutive games.

Game 1 [transition based on a failure event]. In Game 0, the challenger
chooses q random and distinct challenge queries (pi||qi||ri)16i6q. We now slightly
modify this game to ensure that the intermediate queries (pi), (qi) and (ri) for
i ∈ [q] are all pairwise distinct. From the birthday bound and the Difference
Lemma in [32], we obtain a bound on the difference between the probabilities of
the events of b = 1 in both games:

|P[G0]− P[G1]| 6 3q(3q − 1)

2n+1
.

Game 2 [transition based on indistinguishability]. Game 1 is different
from the original game since all the intermediate parts of the q queries are pair-
wise distinct. Let us now consider instead of the weak PRF φ3, three invocations
of a random function in {0, 1}n.

We consider an adversary A3 who is able to distinguish both games. We show
now that we are able to build a new adversary A against the weak PRF φ who
uses A3. The process is as follows. The challenger CA of the adversary A replaces
the challenger of A3 to generate the initial key K and the random queries. He
then submits to his challenge oracle Oφ this initial key and the 3q distinct and
uniformly random intermediate queries. According to the random bit b, he gets
back and gives to A either the real outputs of the weak PRF φ or random values.
Thus, A returns to A3:

b = 0 : (Mi, φ3(K,Mi)) = ((pi, qi, ri), (φ(K, pi)||φ(K, qi)||φ(K, ri)))

b = 1 : ((pi, qi, ri), (R(pi)||R(qi)||R(ri))).

with R a random function in {0, 1}n. Eventually, this situation perfectly simu-
lates Game 1 with the real outputs (b = 0) and Game 2 with the random ones
(b = 1). The adversary A faces the same challenge in distinguishing the real and
random outputs than A3 to distinguish Games 1 and 2. Consequently, we have

|P[G1]− P[G2]| = εφ.

Game 3 [transition based on a failure event]. In Game 1, we modified
the inputs to ensure the absence of collision between the intermediate values.
Now we switched to random functions, we can come back to the initial random
values in order to reach the final game according to Definition 1. The difference
of probabilities between these two games is straightforwardly the same than
between Game 0 and 1:

|P[G2]− P[G3]| 6 3q(3q − 1)

2n+1
.

Game 4 [SYM-REAL]. For the security definition to be perfectly verified,
we conceptually modify Game 3 to only consider one invocation of a random
function in {0, 1}3n instead of three in a smaller range. Both games are equivalent
and we can observe that this new one represents exactly the right-hand side of
Definition 1. As a result, we obtain:

|P[G0]− P[G3]| = |P[G0]− P[G1] + P[G1]− P[G2]

+ P[G2]− P[G3] + P[G3]− P[G4]|

6
3q(3q − 1)

2n
+ εφ

which concludes the security proof.

Now we have independent time steps, we can build the proof on the security
model previously established. The attacker is still allowed to choose a global
leakage function f = (f1, f2) but this time f1 related to the invocations of
weak PRF φ2 during the re-keying Rφ and f2 to the final encryption. Then,
she submits q0 distinct leakage queries and q1 = q − q0 different and pairwise
distinct challenge queries. For each leakage query, the adversary gets the leakage
of the intermediate nodes computed with function phi2 and both the leakage
and the output of the last node computed with function φ3. For each challenge
query, she receives either the real output or the encryption of a random string of
the input’s size. Let us now give the proof organised as a sequence of games as
proposed by Shoup in [32]. As detailed in Subsection 4.1, the first game refers to
the left-hand side probability of Definition 5 whereas the last game refers to the
right-hand side probability in the same definition. By showing that the games
are negligibly close, we prove that the advantage of the attacker in distinguishing
them is negligible and as a result that the scheme is leakage-resilient secure.

Game 0 [SYM-REAL]. In this game, the attacker gets from her challenger
both the leakage and the real outputs of her leakage and challenge queries. Below
we formally describe the process.

Leakage functions. The adversary A is allowed to choose a leakage function
f = (f1, f2) giving the leakage of the key derivation and the leakage of the
encryption. Recall that the naLR security notion requires that the adversary
choose this leakage function non-adaptively, that is before seeing any leakage or
output.

Challenge. In this game, the challenger of A chooses uniformly at random an
initial key K ∈ {0, 1}n. Then, for each leakage query Mi, i ∈ [q0] chosen by A,
the challenger chooses uniformly at random an index indi for the naLR naPRF
and returns the real output and the corresponding leakage:

ci ← φ(Ki, ri)⊕Mi and f1(K, indi) and f2(Ki,Mi)

with
ri

?← {0, 1}n and Ki ← Rφ(K, indi).

For each challenge query M ′i , i ∈ [q1], he also chooses uniformly at random an
index ind′i and only returns the real output:

c′i ← φ(K ′i, r
′
i)⊕M ′i with r′i

?← {0, 1}n and K ′i ← Rφ(K, ind′i).

We denote this first game by Game 0 and the related event by G0. We will now
transform this real game into a new one whose probability will be negligibly
close.

Game 1 [bridging step]. In Game 0, the indices for the PRF are chosen by the
challenger at each query. In this game, we make a conceptual change consisting
in choosing all the indices before the first query. Since they are chosen uniformly
at random, it does not change the advantage of the attacker. However, it is
mandatory for the use the naLR naPRF which requires non-adaptive inputs.
We have:

P[G0] = P[G1].

Game 2 [transition based on indistinguishability]. In this game, we mod-
ify all the nodes involved in leakage queries included the intermediate ones. Since
the related keys leak, we replace all the invocations of the related weak PRFs
φ2 and φ3 by truly random functions: R← Rn,n:

K ′j ← $ for all keys generated from low keys

c′i ← φ(K ′i, r
′
i) ⊕ M ′i with r′i

?← {0, 1}n and K ′i ← (φ ◦R)?(K, ind′i)

with (φ ◦ R)? representing the combination of invocations of function φ and
random function according to the nodes involved in leakage queries. To perform
the reduction we use a lemma from [26] that we recall here.

Lemma 1 (Lemma 2 from [26]). For any α > 0 and t ∈ N : If F : {0, 1}n ×
{0, 1}n → {0, 1}n is a (ε, s, q)-secure wPRF (for uniform keys), then it is a
(ε′, s′, q′)- secure wPRF with α-low keys if the following holds:

q > q′.t

ε 6 ε′/2α+1 − q2/2n+1 − 2exp(−t2ε′2/8)

s > s′.t.

Now we consider an adversary A who aims to distinguish Games 1 and 2. A first
chooses a leakage function f = (f1, f2) and sends it to her challenger C. For each
leakage query Mi, i ∈ [q0] A submits, she gets back:

f1(K, indi) f2(Ki,Mi)

ci = φ(Ki, ri)⊕Mi with ri
?← {0, 1}n and Ki ← Rφ(K, indi).

For each challenge query M ′i , i ∈ [q1], A gets back according to the game:

Game 1 : c′i = φ(K ′i, r
′
i)⊕M ′i with r′i

?← {0, 1}n and K ′i ← Rφ(K, ind′i)

Game 2 : c′i = φ(K ′i, r
′
i)⊕M ′i with r′i

?← {0, 1}n and K ′i ← (φ ◦R)?(K, ind′i).

Now let us demonstrate that if such an adversary A exists, we are able to build
an adversary B against the weak PRF that uses A as follows. B gets from A the
leakage function f = (f1, f2) and transmits it to her challenger D. D generates
the master key K and q0 indices (for each leakage query) uniformly at random
and uses them to compute the leakage and the intermediate keys. Then for each
leakage query M ′i submitted by A, he sends the results to B who returns to A:

f1(K, indi) and f2(Ki,Mi)

ci = φ(Ki, ri)⊕Mi with ri
?← {0, 1}n and Ki ← Rφ(K, indi).

For each challenge query Mi submitted by A and transmitted by B, D computes
the derivations for all the nodes not involved in the transformation and sends the
data to her challenge oracle for the others. According to the bit b representing
the choice of her oracle, B gets back the results, computes the encryptions and
returns to A:

b = 0 : c′i = φ(K ′i, r
′
i)⊕M ′i with r′i

?← {0, 1}n and K ′i ← Rφ(K, ind′i)

b = 1 : c′i = φ(K ′i, r
′
i)⊕M ′i with r′i

?← {0, 1}n and K ′i ← (φ ◦R)?(K, ind′i).

Eventually, this experience perfectly simulates Game 1 when b = 0 and Game 2
when b = 1. Indeed, the adversary B faces the same challenge to distinguish the
real output of the weak PRF and a random string than A to distinguish both
games. We can conclude from this reduction that the probabilities related to
both games are negligibly close. The difference directly comes from the Lemma
2 in [26] and the number of nodes involved in leakage queries.

|P[G1]− P[G2]| 6 23λ+1(εφ2
+ q20/2

n+1 + 2 exp(−ε2φ2
/8)) · (v0 − q0)

+ 23λ+1(εφ3 + q20/2
n+1 + 2 exp(−ε2φ3

/8)) · q0

with v0 the number of nodes involved in leakage queries. Note that the presence
of two terms is related to the use of function φ2 for keys derivation only and φ3
at the last node of the query for also an encryption.

Let us now compute the bound on the number of nodes involved in leakage
queries according to the parameters s (number of stages) and l (number of

children of a node at the upper stage)7. We consider the worst case, that is
when we always start from the initial key without storing any node, when no
node is used in several leakage queries and we take the average index 2n−1.

v0 < q0(
2n−1∑s−1
j=0 l

j
+ s.l)

invocations of weak PRFs. Choosing s = n and l = 2 gives us the following
bound:

v0 < q0(
2n−1

2n − 1
+ 2n) < q0(1 + 2n).

Game 3 [transition based on indistinguishability]. In this game, we mod-
ify all the nodes involved in challenge queries except those involved in leakage
queries and already transformed. We replace the weak PRFs instantiated with
the corresponding keys by random functions R← Rn,n:

K ′j ← $ for all keys involved in queries

c′i ← $⊕M ′i .

Let us consider an attacker A who is able to distinguish Game 3 from Game
2. A first chooses a leakage function f and sends it to her challenger. For each
leakage query Mi, i ∈ [q0] A submits, she gets back:

f1(K, indi) f2(Ki,Mi)

ci = φ(Ki, ri)⊕Mi with ri
?← {0, 1}n and Ki ← Rφ(K, indi).

For each challenge query M ′i , i ∈ [q1], A gets back according to the game:

Game 2 : c′i = φ(K ′i, r
′
i)⊕M ′i with r′i

?← {0, 1}n and K ′i ← (φ ◦R)?(K, ind′i)

Game 3 : $⊕M ′i .

with (φ ◦ R)? the combination of invocations φ and random functions (for the
node involved in leakage queries) corresponding to Game 2.

We now show that if such an attacker exists, we can build an attacker B who
is able to break the weak PRFs φ2, φ3 using A. The process is as follows. A first
chooses a leakage function f and submits it to B. B sends it to her challenger.
The latter generates the master key K and the q0 indices for the leakage queries
uniformly at random. He then computes both the leakage and the intermediate
keys. Then for each leakage query Mi that A submits to B, she transmits it to
her challenger who computes and returns the following results:

f1(K, indi) and f2(Ki,Mi)

ci = φ(Ki, ri)⊕Mi with ri
?← {0, 1}n and Ki ← Rφ(K, indi).

7 In Fig. 2, s = 3 and l = 3.

Then, for each challenge query M ′i that A submits, B sends it to her challenger.
The challenger sends the indices to B’s challenge oracle and B gets back according
to the bit b the real outputs of the weak PRFs or random values. She sends back
to A:

b = 0 : c′i = φ(K ′i, r
′
i)⊕M ′i with r′i

?← {0, 1}n and K ′i ← (φ ◦R)?

b = 1 : $⊕m = $.

This experience perfectly simulates Game 2 when b = 0 and Game 3 when b = 1.
So if the adversary A exists, we can build an adversary B who is able to break
the previous weak PRF. As a result, we obtain the following equality:

|P[G2]− P[G3]| 6 (v1 − q1) · εφ2
+ q1 · εφ3

with v1 the number of nodes involved in challenge queries. We apply the same
computation than in Game 2 to bound this value:

v1 6 q1(
2n−1∑s−1
j=0 l

j
+ sl).

Still instantiating s by n and l by 2, we obtain:

v1 6 q1(
2n−1

2n − 1
+ 2n) < q1(1 + 2n).

Game 4 [SYM-RANDOM]. In this last Game, all the nodes involved in
challenge queries have been replaced by random functions. Hence, this game
represents exactly the right-hand side probability in Definition 5. From the above
sequence of games, we are able to compute a bound on the advantage of an
attacker against this non-adaptive leakage-resilient encryption scheme.

|P[G0]− P[G4]| = |P[G0]− P[G1] + P[G1]− P[G2]

+ P[G2]− P[G3] + P[G3]− P[G4]

6 |P[G0]− P[G1]|+ |P[G1]− P[G2]|
+ |P[G2]− P[G3]|+ |P[G3]− P[G4]|
6 23λ+1(εφ2 + q20/2

n+1 + 2 exp(−ε2φ2
/8)) · (v0 − q0)

+ 23λ+1(εφ3
+ q20/2

n+1 + 2 exp(−ε2φ3
/8)) · q0

+ (v1 − q1)εφ2
+ q1εφ3

.

Note that the advantage of the attacker depends on the number of nodes in-
volved in leakage and challenge queries. This number depends in it turn on the
parameters of the skip-lists: the number of stages s and the number of children
for each node l. In Figure 1, we chose to order the keys linearly but we could
also have chosen to jump in the first stage by powers of two if it was relevant
for our implementation. In any case, one can find appropriate parameters which
maintain the advantage of the attacker negligible enough so that the whole en-
cryption scheme is still secure. As shown in example in the proof, s = n and
l = 2 gives interesting bounds.

4.3 Security Analysis of Theorem 3

In 1995, Impagliazzo defined five complexity worlds [13]: algorithmica in which
P = NP with all the amazing consequences, heuristica world in which on the
contrary NP -complete problems are hard in the worst-case (P 6= NP) but
are efficiently solvable on average and the three worlds on the existence of the
cryptographic functions. In the pessiland world, there exist average-case NP -
complete problems but one-way functions do not exist, which implies that we
cannot generate hard instances of NP -complete problem with known solution.
In the minicrypt world, one-way functions exist but public-key cryptographic
schemes are impossible and finally in the cryptomania world, public-key crypto-
graphic schemes exist and secure communication is possible. These worlds have
been used positively to establish security proofs in many papers [25,27,34].

In this section, we follow the work of Yu and Standaert who show in [34] how
to improve the efficiency of our re-keying scheme, maintaining its leakage-resilient
security in the minicrypt world. In fact, our new construction currently requires
a large amount of fresh randomness since we need to generate a new fresh random
value for each new session key. Yu and Standaert show that tweaking a similar
design to use only a small amount of randomness can still be leakage-resilient in
the world of minicrypt. That is, either the new design is leakage-resilient or it
becomes possible to build public-key primitives from the involved symmetric-key
blocks and the related leakage functions, which is very unlikely. Their technique
directly applies to our symmetric encryption scheme and only requires a public
seed s that is randomly chosen. Instead of being randomly generated, our public
values pi’s and qi’s are now computed from a PRF G in counter mode.

Proof of Theorem 3 from [34]. The scheme is trivially secure if the seed is secret
since it is like replacing the outputs of the PRF G by a true random values.
Let us now prove the leakage-resilience security when the seed is public. For this
purpose, we assume by contradiction that there exists an adversaryA against our
scheme. If the scheme is not a naLR encryption scheme, there exists an adversary
able to distinguish with a significant advantage the encryption of a real query
from the encryption of a random string with the same size given the previous
leakage and outputs. Let us now consider a protocol between two parties which
we refer to as Alice and Bob who want to communicate over an authenticated
channel. The protocol is a secure bit-agreement if an adversary, refer to as Eve,
cannot recover the output bit of Alice. We construct it as follows:

1. Bob generates a random initial key for the re-keying scheme.
2. Alice generates the public random seed s and compute the required amount

of public values using the PRF G. She sends these values to Bob.
3. Bob encrypts the message using the random values in the encryption scheme.

He obtains the ciphertext c. He then generates a random bit bB and sends
to Alice either c if bB = 0 or the encryption of a random value otherwise
and in both cases the current view containing the leakage.

4. Alice finally fixes the bit bA with the result of the distinction between the
true output and the encryption of a random input.

As Eve only has access to the communication, she only gets knowledge of the
intermediate public value (but not the seed), the current view and the correct
or false result of the encryption. Hence she cannot guess the bit bA without
breaking the scheme with secret seed. From the non negligible advantage of the
adversary A, the bit agreement we established achieves correlation (IP[bA = bB]
is greater than 1/2). As a consequence, this protocol is equivalent to a bit-PKE
in which the secret key corresponds to the seed generated by Alice and the
public key to the intermediate public values.

5 Practical Aspects

In previous sections, we have shown that our construction instantiated with a
weak PRF φ and combined with a PRF G yields a non-adaptive leakage-resilient
encryption scheme. We now focus on the practical aspects.

5.1 Instantiation

Our encryption scheme requires two primitives: a weak PRF φ for the derivation
and the block cipher and a PRF G for the generation of random values.

Weak PRF φ The concatenation of invocations of the weak PRF φ with ran-
dom inputs is a suitable solution for the key derivation and the block cipher. Such
a weak PRF can be built from any secure block cipher, like AES. Hence, inspired
by [26], we propose the constructions φ2(k, p) = AES(k, p‖0)‖AES(k, p‖1), for
the key derivation and φ3(k, p, r) = φ2(k, p)‖AES(k, r), for also the encryption
which benefit from the reuse of one public random input.

PRF G Following [34], we instantiate G with a secure block cipher, e.g. the
AES. Since the AES is already implemented for the weak PRF φ, this choice
benefits from the feature of limiting the code size. As proved in [34], only log(1/ε)
bits of fresh pseudo-randomness are required for each public value, with ε the
security parameter of the weak PRF φ (e.g. AES). As a consequence, we only
need one additional call of the AES every bn/ log(1/ε)c invocations of φ.

5.2 Complexity Evaluation

Let us now focus on the complexity of encrypting a n-block message using our
construction. We denote by τAES the complexity in time of one AES calls either
as a PRF for the re-keying or as a block cipher for the encryption. First, note
that without updating the secret key and without any mode of operation, the
complexity of the encryption is exactly C = n · τAES . Then, let us compute
the same complexity in our leakage-resilient construction by first omitting the
generation of randomness. For the sake of simplicity and because it is negligible,
we will omit the complexity of the bitwise addition which is performed once per

block encryption. Furthermore, we will start with the initial key K0 without
loss of generality since what counts is the distance between the current index
and the targeted one. We recall that the distance between two keys indices
from the same stage sc is equal to 1 + s + · · · + ss−sc . We denote by Ns this
distance which is also the number of children of a key from the same stage
plus one. As a result, the number of AES executions N required to reach the
key Ki is bounded as follows: i

N1
6 N ≤ i

N1
+ s(s − 1) with s(s − 1) the

maximum number of executions needed to reach a child from a first stage key.
These bounds can be squeezed with the parameters related to the other stages.
Table 1 presents the number of AES executions required to re-synchronize from
K0 to keys with increasing indices. For comparison purpose, when the keys are

Table 1: Number of AES executions to derive a key from K0 given its index

K10 K102 K103 K104 K105

#stages = 2 4 34 3.3 · 102 3.3 · 103 3.3 · 104

#stages = 3 4 10 82 7.7 · 102 7.7 · 103

#stages = 4 6 8 16 1.2 · 102 1.2 · 103

#stages = 5 5 10 15 20 1.4 · 102

sequential scheme 10 102 103 104 105

updated sequentially, 10,000 invocations of the re-keying primitives are required
to compute K104 from K0. When using our construction with five stages, only
N = 20 invocations are necessary that is five hundred times less. In the general
case, one also needs to consider the generation of random values. Since the
generation is also performed with the AES, the complexity of encrypting a n-
block message is: C = (2N + 4n− 2)τAES if we consider one invocation of G for
each key derivation and each block encryption. From [34] we could reduce the
number of invocations of the generator until one every bn/ log(1/ε)c invocations
of φ without loss of security:

C =

(
N + 2n− 1 +

N + 2n− 1

bn/ log(1/ε)c

)
τAES .

6 Conclusion

In this paper, we have studied the problem of constructing an efficient and
provably-secure symmetric encryption scheme based on re-keying ideas. In par-
ticular, we have first proven that a naLR naPRF combined with a block cipher
yields a non-adaptive leakage-resilient symmetric encryption scheme. Then we
have shown that such an encryption scheme does not actually require this level

of security for its re-keying scheme. In fact, we have introduced a new re-keying
process with relaxed security properties but which still yields a secure encryption
scheme. Furthermore, it benefits the feature of being much more efficient than
a sequential scheme when both parts of the symmetric communication need to
re-synchronize. We have both proven the security based on this new re-keying
scheme and evaluated the global complexity.

This work shows that it is possible to use the security of the mode of op-
erations in order to construct leakage-resilient encryption scheme. The previous
approach in this area tries to construct leakage-resilient block ciphers but it turns
out that they are very inefficient. One of the main drawback of this scheme is
that we need to compute the keyschedule algorithm for each message block. One
interesting idea would be to avoid it by using a more secure mode of operations
such as OCB. Indeed, this mode is interesting since the adversary cannot know
what is the real input of the block cipher and consequently classical DPA attack
are thwarted. However, the security proof of this mode is a real challenge.

References

1. Michel Abdalla and Mihir Bellare. Increasing the Lifetime of a Key: A Comparative
Analysis of the Security of Re-keying Techniques. In ASIACRYPT, pages 546–559,
2000.

2. Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A Concrete Security
Treatment of Symmetric Encryption. In FOCS, pages 394–403, 1997.

3. Daniel J. Bernstein. Implementing ”Practical leakage-resilient symmetric cryp-
tography”. CHES ’12 rump session, 2012. Available at http://cr.yp.to/talks/

2012.09.10/slides.pdf.
4. Alex Biryukov and Dmitry Khovratovich. Two New Techniques of Side-Channel

Cryptanalysis. In Paillier and Verbauwhede [24], pages 195–208.
5. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards

Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO, pages
398–412, 1999.

6. Yevgeniy Dodis and Krzysztof Pietrzak. Leakage-Resilient Pseudorandom Func-
tions and Side-Channel Attacks on Feistel Networks. In CRYPTO, pages 21–40,
2010.

7. Stefan Dziembowski and Krzysztof Pietrzak. Leakage-Resilient Cryptography. In
FOCS, pages 293–302, 2008.

8. Sebastian Faust, Krzysztof Pietrzak, and Joachim Schipper. Practical Leakage-
Resilient Symmetric Cryptography. In CHES, pages 213–232, 2012.

9. Benôıt Gérard and François-Xavier Standaert. Unified and Optimized Linear Col-
lision Attacks and Their Application in a Non-profiled Setting. In Prouff and
Schaumont [28], pages 175–192.

10. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

11. Louis Goubin and Jacques Patarin. DES and Differential Power Analysis (The
”Duplication” Method). In CHES, pages 158–172, 1999.

12. Carmit Hazay, Adriana Lopez-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-
Resilient Cryptography from Minimal Assumptions. Cryptology ePrint Archive,
Report 2012/604, 2012. http://eprint.iacr.org/, accepted at Eurocrypt 2013.

http://cr.yp.to/talks/2012.09.10/slides.pdf
http://cr.yp.to/talks/2012.09.10/slides.pdf
http://eprint.iacr.org/

13. Russell Impagliazzo. A Personal View of Average-Case Complexity. In Structure
in Complexity Theory Conference, pages 134–147, 1995.

14. Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In CRYPTO, pages 463–481, 2003.

15. Joshua Jaffe. A first-order dpa attack against aes in counter mode with unknown
initial counter. In Paillier and Verbauwhede [24], pages 1–13.

16. Paul C. Kocher. Leak-resistant cryptographic indexed key update. Patent, 03
2003. US 6539092.

17. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
CRYPTO, pages 388–397, 1999.

18. Marcel Medwed, François-Xavier Standaert, Johann Großschädl, and Francesco
Regazzoni. Fresh Re-keying: Security against Side-Channel and Fault Attacks for
Low-Cost Devices. In AFRICACRYPT, pages 279–296, 2010.

19. Marcel Medwed, François-Xavier Standaert, and Antoine Joux. Towards Super-
Exponential Side-Channel Security with Efficient Leakage-Resilient PRFs. In
Prouff and Schaumont [28], pages 193–212.

20. Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Resis-
tant Software. In CHES, pages 238–251, 2000.

21. Silvio Micali and Leonid Reyzin. Physically Observable Cryptography (Extended
Abstract). In TCC, pages 278–296, 2004.

22. Amir Moradi. Statistical Tools Flavor Side-Channel Collision Attacks. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lec-
ture Notes in Computer Science, pages 428–445. Springer, 2012.

23. Amir Moradi, Oliver Mischke, and Thomas Eisenbarth. Correlation-Enhanced
Power Analysis Collision Attack. In Stefan Mangard and François-Xavier Stan-
daert, editors, CHES, volume 6225 of Lecture Notes in Computer Science, pages
125–139. Springer, 2010.

24. Pascal Paillier and Ingrid Verbauwhede, editors. Cryptographic Hardware and
Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria,
September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in Computer
Science. Springer, 2007.

25. Krzysztof Pietrzak. Composition implies adaptive security in minicrypt. In Serge
Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Sci-
ence, pages 328–338. Springer, 2006.

26. Krzysztof Pietrzak. A Leakage-Resilient Mode of Operation. In EUROCRYPT,
pages 462–482, 2009.

27. Krzysztof Pietrzak and Johan Sjödin. Weak pseudorandom functions in minicrypt.
In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna
Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture
Notes in Computer Science, pages 423–436. Springer, 2008.

28. Emmanuel Prouff and Patrick Schaumont, editors. Cryptographic Hardware and
Embedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer
Science. Springer, 2012.

29. William Pugh. Skip Lists: A Probabilistic Alternative to Balanced Trees. In WADS,
pages 437–449, 1989.

30. Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking
of AES. In CHES, pages 413–427, 2010.

31. Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A Collision-
Attack on AES: Combining Side Channel- and Differential-Attack. In Marc Joye

and Jean-Jacques Quisquater, editors, CHES, volume 3156 of Lecture Notes in
Computer Science, pages 163–175. Springer, 2004.

32. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive, 2004:332, 2004.

33. François-Xavier Standaert, Olivier Pereira, Yu Yu, Jean-Jacques Quisquater, Moti
Yung, and Elisabeth Oswald. Leakage Resilient Cryptography in Practice. Towards
Hardware-Intrinsic Security, Information Security and Cryptography, pages 99–
134, 2010.

34. Yu Yu and François-Xavier Standaert. Practical Leakage-Resilient Pseudorandom
Objects with Minimum Public Randomness. In CT-RSA, 2013.

	Leakage-Resilient Symmetric Encryption via Re-keyingFull version of the paper published in the proceedings of CHES 2013.

