Short Overview Ring-LWE Encryption Scheme Our Implementation Implementation Results Conclusion

Efficient Ring-LWE Encryption on 8-bit AVR Processors

Zhe Liu¹ Hwajeong Seo² Sujoy Sinha Roy³ Johann Großschädl¹ Howon Kim² Ingrid Verbauwhede³

¹University of Luxembourg ²Pusan National University ³Katholieke Universiteit Leuven

2015/09/16

Outline

- Short Overview
- 2 Ring-LWE Encryption Scheme
- Our Implementation
 - Optimization Techniques for NTT Computation
 - Optimization of the Knuth-Yao Sampler
- Implementation Results
 - Comparison with Related Work
- Conclusion

Outline

- Short Overview
- 2 Ring-LWE Encryption Scheme
- Our Implementation
 - Optimization Techniques for NTT Computation
 - Optimization of the Knuth-Yao Sampler
- 4 Implementation Results
 - Comparison with Related Work
- Conclusion

Lattice-based Cryptography

- RSA and ECC: Integer Factorization and ECDLP
 - Hard problems can be solved by Shor's algorithm

Lattice-based Cryptography

- RSA and ECC: Integer Factorization and ECDLP
 - Hard problems can be solved by Shor's algorithm
- Lattice-based Cryptography: Hard for quantum computers
 - Ring-LWE Encryption schemes: proposed [EUROCRYPT'10]
 - ightarrow optimized [CHES'14] (reducing the polynomial arithmetic)

Implementation Platform

8-bit XMEGA128 Microcontroller

- Wireless Sensor Networks; Internet of Things
- Operating Frequency: 32 MHz
- 128KB Flash, 8KB RAM, 32 registers
- Core instruction: 8-bit mul/add (2/1 cycles)
- AES/DES Crypto Engine (for PRNG)

Previous Works

Hardware Implementations

- Göttert et al. [CHES'12]: First hardware of Ring-LWE
- ullet Pöppelmann et al. [Latincrypt'12] o Roy et al. [CHES'14]

Previous Works

Hardware Implementations

- Göttert et al. [CHES'12]: First hardware of Ring-LWE
- ullet Pöppelmann et al. [Latincrypt'12] o Roy et al. [CHES'14]

Software Implementations on Embedded Processors

- 32-bit ARM processor:
 - Oder et al. [DATE'14]: BLISS
 - \rightarrow Boorghany et al. [ACM TEC'15]: NTRU, Ring-LWE
 - \rightarrow De Clercq et al. [DATE'15]: Ring-LWE
 - 8-bit AVR processor:
 - Boorghany et al. [ACM TEC'15]: NTRU, Ring-LWE
 - → Pöppelmann et al. [Latincrypt'15]: BLISS

Previous Works

Hardware Implementations

- Göttert et al. [CHES'12]: First hardware of Ring-LWE
- ullet Pöppelmann et al. [Latincrypt'12] o Roy et al. [CHES'14]

Software Implementations on Embedded Processors

- 32-bit ARM processor:
 - Oder et al. [DATE'14]: BLISS
 - ightarrow Boorghany et al. [ACM TEC'15]: NTRU, Ring-LWE
 - \rightarrow De Clercq et al. [DATE'15]: Ring-LWE
- 8-bit AVR processor:
 - Boorghany et al. [ACM TEC'15]: NTRU, Ring-LWE
 - → Pöppelmann et al. [Latincrypt'15]: BLISS
 - → This work [CHES'15]: Ring-LWE

Motivation & Contributions

- Motivation
 - Few 8-bit AVR implementation
 - "Cryptosystem of the Future" for "Internet of the Future"

Motivation & Contributions

- Motivation
 - Few 8-bit AVR implementation
 - "Cryptosystem of the Future" for "Internet of the Future"
- Contributions: Efficient implementation of Ring-LWE
 - Fast NTT computation: "MOV-and-ADD" + "SAMS2"
 - Reducing the RAM consumption for coefficient
 - Efficient techniques for Knuth-Yao sampler: "Byte-Scanning"

Outline

- Short Overview
- 2 Ring-LWE Encryption Scheme
- Our Implementation
 - Optimization Techniques for NTT Computation
 - Optimization of the Knuth-Yao Sampler
- 4 Implementation Results
 - Comparison with Related Work
- Conclusion

- Key generation stage: Gen(ã)
 - Two error polynomials $r_1, r_2 \in R_q$ from the discrete Gaussian distribution \mathcal{X}_{σ} by the Knuth-Yao sampler twice:

$$\tilde{r_1} = \operatorname{NTT}(r_1), \ \tilde{r_2} = \operatorname{NTT}(r_2), \ \tilde{p} = \tilde{r_1} - \tilde{a} \cdot \tilde{r_2} \in R_q$$

Public key (\tilde{a}, \tilde{p}) , Private key $(\tilde{r_2})$ are obtained

- Encryption stage: Enc(\tilde{a} , \tilde{p} , M)
 - Message $M \in \{0,1\}^n$ is encoded into a polynomial in the ring; Three error polynomials $e_1, e_2, e_3 \in R_q$ are sampled

$$(\tilde{\mathcal{C}}_1, \tilde{\mathcal{C}}_2) = (\tilde{a} \cdot \tilde{e_1} + \tilde{e_2}, \tilde{p} \cdot \tilde{e_1} + \operatorname{NTT}(e_3 + M'))$$

- Encryption stage: Enc(\tilde{a} , \tilde{p} , M)
 - Message $M \in \{0,1\}^n$ is encoded into a polynomial in the ring; Three error polynomials $e_1, e_2, e_3 \in R_q$ are sampled

$$(\tilde{C}_1, \tilde{C}_2) = (\tilde{a} \cdot \tilde{e_1} + \tilde{e_2}, \tilde{p} \cdot \tilde{e_1} + \text{NTT}(e_3 + M'))$$

- Decryption stage: Dec $(\tilde{C}_1, \tilde{C}_2, \tilde{r}_2)$
 - Inverse NTT has to be performed to recover M':

$$M' = \text{INTT}(\tilde{r_2} \cdot \tilde{C_1} + \tilde{C_2})$$

and a decoder is to recover the original message M from M'

- Number Theoretic Transform
 - Polynomial multiplication $a(x) = \sum_{i=0}^{n-1} a_i x^i \in \mathbb{Z}_q$ in the *n*-th roots of unity ω_n^i

Algorithm 1: Iterative Number Theoretic Transform

```
Require: Polynomial a(x), n-th root of unity \omega Ensure: Polynomial a(x) = NTT(a)
```

```
1: a \leftarrow \text{BitReverse}(a)
2: \text{for } i \text{ from } 2 \text{ by } 2i \text{ to } n \text{ do}
3: \omega_i \leftarrow \omega_n^{n/i}, \omega \leftarrow 1
4: \text{for } j \text{ from } 0 \text{ by } 1 \text{ to } i/2 - 1 \text{ do}
5: \text{for } k \text{ from } 0 \text{ by } i \text{ to } n - 1 \text{ do}
6: \underbrace{\mathbb{Q}} V \leftarrow \omega \cdot a[k+j+i/2]
7: \underbrace{\mathbb{Q}} a[k+j] \leftarrow U + V, \underbrace{\mathbb{Q}} a[k+j+i/2] \leftarrow U - V
8: \text{end for}
9: \omega \leftarrow \omega \cdot \omega_i
0: \text{end for}
1: \text{end for}
```

- Gaussian Sampler
 - Random walk by Discrete Distribution Generating tree

Algorithm 2: Low-level implementation of Knuth-Yao sampling

Require: Probability matrix P_{mat} , random number r, modulus q **Ensure:** Sample value s

```
1: d ← 0
 2:
3:
      for col from 0 by 1 to MAXCOL do
           d \leftarrow 2d + (r\&1): r \leftarrow r \gg 1
 4:
           for row from MAXROW by -1 to 0 do
 5:
               d \leftarrow d - P_{mat}[row][col]
6:
7:
8:
9:
10:
11:
12:
13:
               if d = -1 then
                    if (r\&1) = 1 then
                        return a - row
                    else
                        return row
                    end if
               end if
           end for
```

Outline

- Short Overview
- 2 Ring-LWE Encryption Scheme
- Our Implementation
 - Optimization Techniques for NTT Computation
 - Optimization of the Knuth-Yao Sampler
- 4 Implementation Results
 - Comparison with Related Work
- Conclusion

Outline

- Short Overview
- 2 Ring-LWE Encryption Scheme
- Our Implementation
 - Optimization Techniques for NTT Computation
 - Optimization of the Knuth-Yao Sampler
- 4 Implementation Results
 - Comparison with Related Work
- Conclusion

- Parameter Selection (n, q, σ) for Ring-LWE
 - 128-bit security level: $(256, 7681, 11.31/\sqrt{2\pi})$
 - 256-bit security level: $(512, 12289, 12.18/\sqrt{2\pi})$
 - ullet Discrete Gaussian sampler: 12σ

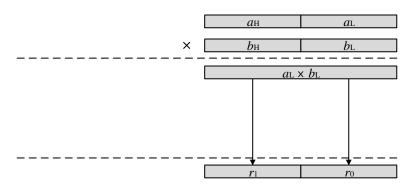
- Parameter Selection (n, q, σ) for Ring-LWE
 - 128-bit security level: $(256, 7681, 11.31/\sqrt{2\pi})$
 - 256-bit security level: $(512, 12289, 12.18/\sqrt{2\pi})$
 - ullet Discrete Gaussian sampler: 12σ
- LUT based Twiddle Factor: ω_n and $\omega \cdot \omega_i$ [LATINCRYPT'12]

- Parameter Selection (n, q, σ) for Ring-LWE
 - 128-bit security level: $(256, 7681, 11.31/\sqrt{2\pi})$
 - 256-bit security level: $(512, 12289, 12.18/\sqrt{2\pi})$
 - ullet Discrete Gaussian sampler: 12σ
- LUT based Twiddle Factor: ω_n and $\omega \cdot \omega_i$ [LATINCRYPT'12]
- Negative wrapped convolution: Reduce coefficient [CHES'14]

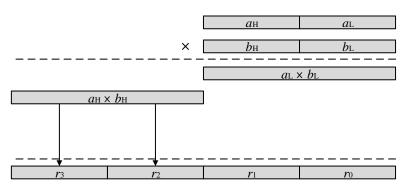
- Parameter Selection (n, q, σ) for Ring-LWE
 - 128-bit security level: $(256, 7681, 11.31/\sqrt{2\pi})$
 - 256-bit security level: $(512, 12289, 12.18/\sqrt{2\pi})$
 - ullet Discrete Gaussian sampler: 12σ
- LUT based Twiddle Factor: ω_n and $\omega \cdot \omega_i$ [LATINCRYPT'12]
- Negative wrapped convolution: Reduce coefficient [CHES'14]
- Changing of the j and k-loops in the NTT [HOST'13]

- Parameter Selection (n, q, σ) for Ring-LWE
 - 128-bit security level: $(256, 7681, 11.31/\sqrt{2\pi})$
 - 256-bit security level: $(512, 12289, 12.18/\sqrt{2\pi})$
 - ullet Discrete Gaussian sampler: 12σ
- LUT based Twiddle Factor: ω_n and $\omega \cdot \omega_i$ [LATINCRYPT'12]
- Negative wrapped convolution: Reduce coefficient [CHES'14]
- Changing of the j and k-loops in the NTT [HOST'13]
- Merging of the scaling operation by n^{-1} in INTT [CHES'14]

MOV-and-ADD Coefficient Multiplication (Step1): 1 mul, 1 movw



MOV-and-ADD Coefficient Multiplication (Step2): 1 mul, 1 movw



MOV-and-ADD Coefficient Multiplication (Step3): 1 mul, 3 add

		ан	aL
	×	bн	bL
		aL>	 ⟨ <i>b</i> ∟
ан :	× <i>b</i> н]	-
+		× <i>b</i> l]
r 3	r_2	r_1	r 0

MOV-and-ADD Coefficient Multiplication (Step4): 1 mul, 3 add

		ан	aL
	×	bH	$b_{ m L}$
		aL :	× bl
ан >	< <i>b</i> н		
			-
	<i>а</i> н 2	× <i>b</i> l	
			•
+	$a_{\rm L}$	× <i>b</i> н	
r 3	r 2	<i>r</i> 1	r 0

MOV-and-ADD Coefficient Multiplication (Total): 4 mul, 2 movw, 6 add instructions (16 cycles)

		ан	aL	
	×	bн	$b_{ m L}$	
		<i>a</i> L >	< <i>b</i> l	
<i>а</i> н 2	× <i>b</i> н]		
	ан	× <i>b</i> l	1	
$a_{\rm L} \times b_{\rm H}$				
		-		
r 3	r_2	r_1	r 0	

Approximation based reduction [ACM TEC'15]

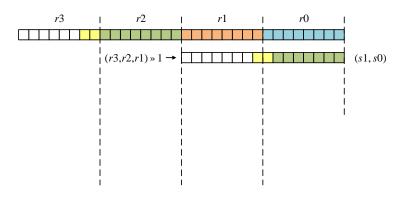
• Position of 1's in $(2^w \times 1/q) \rightarrow p_1,...,p_l$

- Position of 1's in $(2^w \times 1/q) \rightarrow p_1,...,p_l$
- $\lfloor z/q \rfloor \cong \sum_{i=1}^{l} (z \gg (w p_i))$

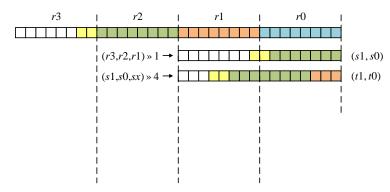
- Position of 1's in $(2^w \times 1/q) \rightarrow p_1,...,p_l$
- $\lfloor z/q \rfloor \cong \sum_{i=1}^{l} (z \gg (w p_i))$
- $z \mod q \cong z q \times \lfloor z/q \rfloor$

- Position of 1's in $(2^w \times 1/q) \rightarrow p_1,...,p_l$
- $\lfloor z/q \rfloor \cong \sum_{i=1}^{I} (z \gg (w p_i))$
- $z \mod q \cong z q \times \lfloor z/q \rfloor$
- $\lfloor z/7681 \rfloor \cong (z \gg 13) + (z \gg 17) + (z \gg 21)$

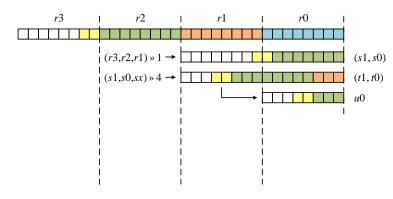
SAMS2 (Step1-1): shifting ($z \gg 17$)



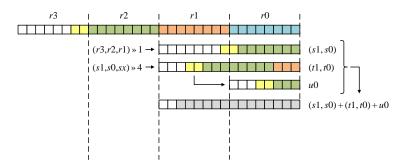
SAMS2 (Step1-2): shifting ($z \gg 13$)



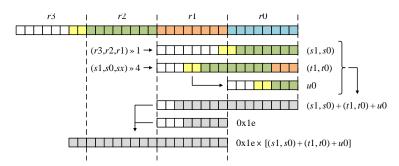
SAMS2 (Step1-3): shifting ($z \gg 21$)



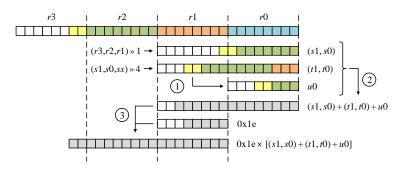
SAMS2 (Step2): addition
$$(z \gg 13) + (z \gg 17) + (z \gg 21)$$



SAMS2 (Step3): multiplication



SAMS2 method, ①: shifting; ②: addition; ③: multiplication



Incomplete modular arithmetic

- Incomplete modular arithmetic
 - Complete: $s = a + b \mod q$

- Incomplete modular arithmetic
 - Complete: $s = a + b \mod q$
 - Incomplete: $s = a + b \mod 2^m$ where $m = \lceil \log_2 q \rceil$

- Incomplete modular arithmetic
 - Complete: $s = a + b \mod q$
 - Incomplete: $s = a + b \mod 2^m$ where $m = \lceil \log_2 q \rceil$
- Taking q = 7681 as an example

- Incomplete modular arithmetic
 - Complete: $s = a + b \mod q$
 - Incomplete: $s = a + b \mod 2^m$ where $m = \lceil \log_2 q \rceil$
- Taking q = 7681 as an example
 - Perform a normal coefficient addition

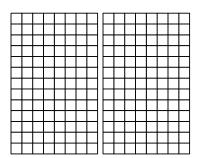
- Incomplete modular arithmetic
 - Complete: $s = a + b \mod q$
 - Incomplete: $s = a + b \mod 2^m$ where $m = \lceil \log_2 q \rceil$
- Taking q = 7681 as an example
 - Perform a normal coefficient addition
 - Compare the results with 2¹³

- Incomplete modular arithmetic
 - Complete: $s = a + b \mod q$
 - Incomplete: $s = a + b \mod 2^m$ where $m = \lceil \log_2 q \rceil$
- Taking q = 7681 as an example
 - Perform a normal coefficient addition
 - Compare the results with 2¹³
 - Conduct a subtraction of q where $r > 2^{13}$

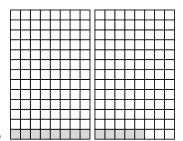
- Incomplete modular arithmetic
 - Complete: $s = a + b \mod q$
 - Incomplete: $s = a + b \mod 2^m$ where $m = \lceil \log_2 q \rceil$
- Taking q = 7681 as an example
 - Perform a normal coefficient addition
 - Compare the results with 2¹³
 - Conduct a subtraction of q where $r > 2^{13}$
 - The operands are kept in $[0, 2^{13} 1]$

- Incomplete modular arithmetic
 - Complete: $s = a + b \mod q$
 - Incomplete: $s = a + b \mod 2^m$ where $m = \lceil \log_2 q \rceil$
- Taking q = 7681 as an example
 - Perform a normal coefficient addition
 - Compare the results with 2¹³
 - Conduct a subtraction of q where $r > 2^{13}$
 - The operands are kept in $[0, 2^{13} 1]$
 - ullet In the last iteration, the result back into the range [0,q-1]

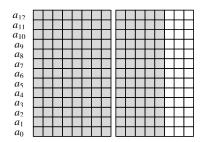
Reducing the RAM for coefficients (Step 1): Initialized registers



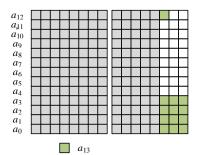
(Step 2): 13-bit coefficient (a_0) is stored



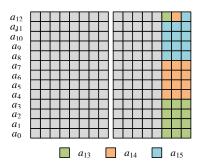
(Step 3): Other coefficients $(a_{1\sim 12})$ are stored



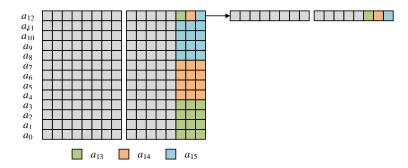
(Step 4): Coefficient (a_{13}) is stored



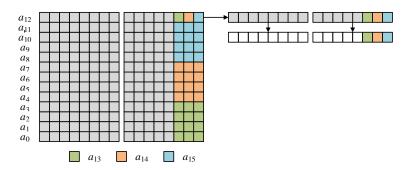
(Step 5): Remaining coefficients $(a_{14\sim15})$ are stored



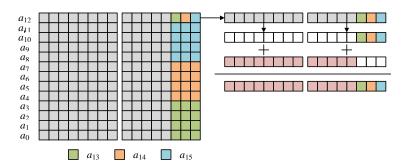
Updating coefficient (a_{12})



(Step 1): Clear the lower 13-bit

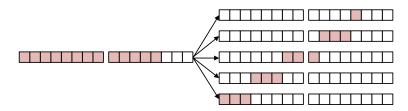


(Step 2): Add with target register



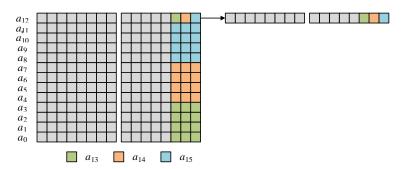
Updating coefficient (a_{13})

(Step 1): Divide the coefficient into 5 limbs

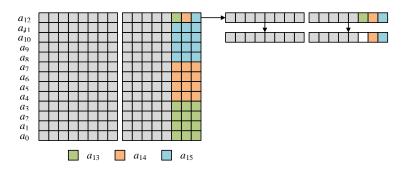


(Step 2): Shift the coefficient

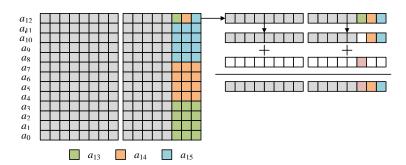
(Step 3): Select the memory



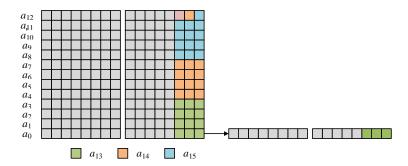
(Step 4): Clear the 14th bit



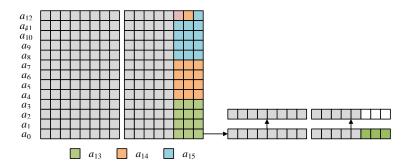
(Step 5): Add with target register



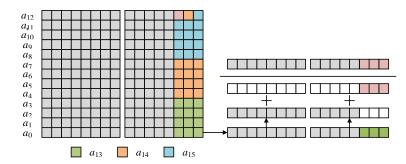
(Step 6): Select the memory



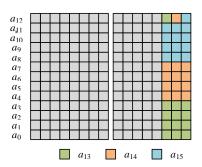
(Step 7): Clear the higher 3-bit



(Step 8): Add with target register



Optimized Storages: 16 13-bit elements in 26 bytes



Outline

- Short Overview
- 2 Ring-LWE Encryption Scheme
- Our Implementation
 - Optimization Techniques for NTT Computation
 - Optimization of the Knuth-Yao Sampler
- 4 Implementation Results
 - Comparison with Related Work
- Conclusion

Algorithm 3: Bit Scanning

```
1: for row from MAXROW by -1 to 0 do

2: d \leftarrow d - P_{mat}[row][col] {Bit wise computations}

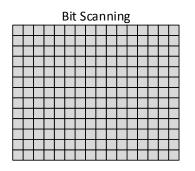
3: ... omit ...
```

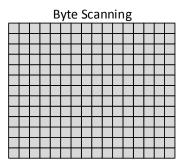
Algorithm 4: Byte Scanning

```
1: for row from MAXROW by -8 to 0 do
2: if (P_{mat}[row][col] \parallel \dots \parallel P_{mat}[row - 7][col]) > 0 then
3: sum = \sum_{i=row}^{row -7} (P_{mat}[i][col])
4: d \leftarrow d - sum {Byte wise computations}
5: ... omit ...
6: end if
7: end for
```

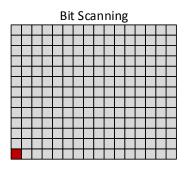
Byte scanning saves 7 branch operations at the expense of 1 sub

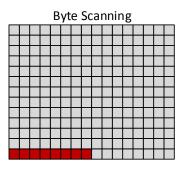
Comparison between BitScanning and ByteScanning



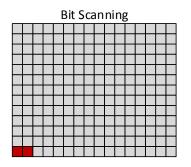


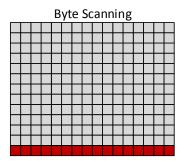
(Step 1):BitScanning (1-bit), ByteScanning (1-byte)





(Step 2):BitScanning (2-bit), ByteScanning (2-byte)





Pseudo Random Number Generation

- Pseudo Random Number Generation
 - AES block cipher with counter mode

- Pseudo Random Number Generation
 - AES block cipher with counter mode
 - ATxmega128A1 supports AES engine (375 cycles)

- Pseudo Random Number Generation
 - AES block cipher with counter mode
 - ATxmega128A1 supports AES engine (375 cycles)
 - SW requires 1.9K cycles and 2KB ROM

- Pseudo Random Number Generation
 - AES block cipher with counter mode
 - ATxmega128A1 supports AES engine (375 cycles)
 - SW requires 1.9K cycles and 2KB ROM
- Parallel Computations

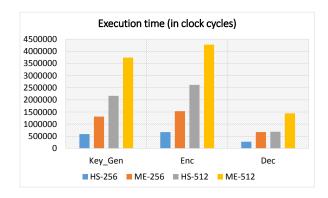
- Pseudo Random Number Generation
 - AES block cipher with counter mode
 - ATxmega128A1 supports AES engine (375 cycles)
 - SW requires 1.9K cycles and 2KB ROM
- Parallel Computations
 - AES engine and processor are executed simultaneously

- Pseudo Random Number Generation
 - AES block cipher with counter mode
 - ATxmega128A1 supports AES engine (375 cycles)
 - SW requires 1.9K cycles and 2KB ROM
- Parallel Computations
 - AES engine and processor are executed simultaneously
 - PRNG and KY sampling in same time

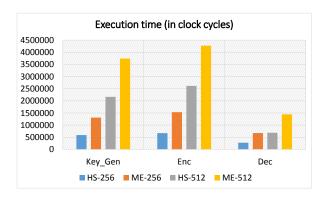
Outline

- Short Overview
- 2 Ring-LWE Encryption Scheme
- Our Implementation
 - Optimization Techniques for NTT Computation
 - Optimization of the Knuth-Yao Sampler
- 4 Implementation Results
 - Comparison with Related Work
- Conclusion

Performance Evaluation

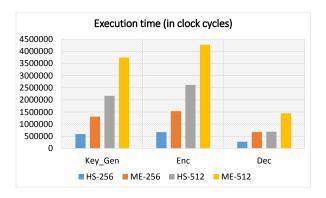


Performance Evaluation



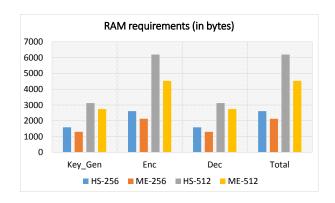
• High speed (HS) is 2.3x faster than memory efficient (ME)

Performance Evaluation

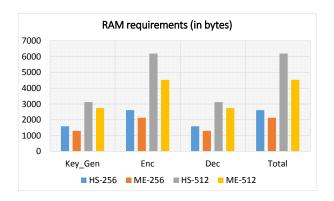


- High speed (HS) is 2.3x faster than memory efficient (ME)
- ME version requires sophisticated memory alignments

Memory Evaluation

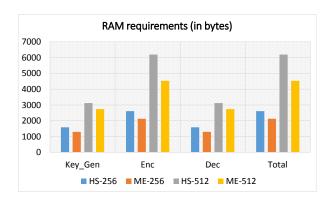


Memory Evaluation



ullet Compared to HS, ME version reduces the RAM by 21 %

Memory Evaluation



- ullet Compared to HS, ME version reduces the RAM by 21 %
- \bullet HS and ME consume the 8K RAM by 77 % and 56 %

Outline

- Short Overview
- 2 Ring-LWE Encryption Scheme
- Our Implementation
 - Optimization Techniques for NTT Computation
 - Optimization of the Knuth-Yao Sampler
- 4 Implementation Results
 - Comparison with Related Work
- Conclusion

Implementation	Key-Gen	Enc	Dec
Boorghany (256)	2,770K	3,042K	1,368K
Pöppelmann (256)	n/a	1,314K	381K
This work (HS-256)	589K	671K	275K
Pöppelmann (512)	n/a	3,279K	1,019K
This work (HS-512)	2,165K	2,617K	686K

Implementation	Key-Gen	Enc	Dec
Boorghany (256)	2,770K	3,042K	1,368K
Pöppelmann (256)	n/a	1,314K	381K
This work (HS-256)	589K	671K	275K
Pöppelmann (512)	n/a	3,279K	1,019K
This work (HS-512)	2,165K	2,617K	686K

• Boorghany et al.: 4.5x faster (ENC, 256)

Implementation	Key-Gen	Enc	Dec
Boorghany (256)	2,770K	3,042K	1,368K
Pöppelmann (256)	n/a	1,314K	381K
This work (HS-256)	589K	671K	275K
Pöppelmann (512)	n/a	3,279K	1,019K
This work (HS-512)	2,165K	2,617K	686K

- Boorghany et al.: 4.5x faster (ENC, 256)
- Pöppelmann et al.: 2x and 1.25x faster (ENC, 256/512)

Implementation	Scheme	Enc	Dec
Liu et al.	RSA-1024	n/a	75,680K
Düll et al. (HS)	ECC-255	27,800K	13,900K
Düll et al. (ME)	ECC-255	28,293K	14,146K
Aranha et al.	ECC-233	11,796K	5,898K
This work (HS)	LWE-256	671K	275K
This work (ME)	LWE-256	1,532K	673K

Implementation	Scheme	Enc	Dec
Liu et al.	RSA-1024	n/a	75,680K
Düll et al. (HS)	ECC-255	27,800K	13,900K
Düll et al. (ME)	ECC-255	28,293K	14,146K
Aranha et al.	ECC-233	11,796K	5,898K
This work (HS)	LWE-256	671K	275K
This work (ME)	LWE-256	1,532K	673K

• RSA: 278x faster (DEC, 1024)

Implementation	Scheme	Enc	Dec
Liu et al.	RSA-1024	n/a	75,680K
Düll et al. (HS)	ECC-255	27,800K	13,900K
Düll et al. (ME)	ECC-255	28,293K	14,146K
Aranha et al.	ECC-233	11,796K	5,898K
This work (HS)	LWE-256	671K	275K
This work (ME)	LWE-256	1,532K	673K

• RSA: 278x faster (DEC, 1024)

• ECC: 41x faster (ENC, 255)

Outline

- Short Overview
- 2 Ring-LWE Encryption Scheme
- Our Implementation
 - Optimization Techniques for NTT Computation
 - Optimization of the Knuth-Yao Sampler
- 4 Implementation Results
 - Comparison with Related Work
- Conclusion

• Compact Ring-LWE encryption for 8-bit platform

- Compact Ring-LWE encryption for 8-bit platform
 - Fast NTT computation: "MOV-and-ADD" + "SAMS2"

- Compact Ring-LWE encryption for 8-bit platform
 - Fast NTT computation: "MOV-and-ADD" + "SAMS2"
 - Reducing the RAM consumption for coefficient

- Compact Ring-LWE encryption for 8-bit platform
 - Fast NTT computation: "MOV-and-ADD" + "SAMS2"
 - Reducing the RAM consumption for coefficient
 - Efficient techniques for Knuth-Yao sampler: "Byte-Scanning"

- Compact Ring-LWE encryption for 8-bit platform
 - Fast NTT computation: "MOV-and-ADD" + "SAMS2"
 - Reducing the RAM consumption for coefficient
 - Efficient techniques for Knuth-Yao sampler: "Byte-Scanning"
- Faster than RSA (278x) and ECC (41x)

- Compact Ring-LWE encryption for 8-bit platform
 - Fast NTT computation: "MOV-and-ADD" + "SAMS2"
 - Reducing the RAM consumption for coefficient
 - Efficient techniques for Knuth-Yao sampler: "Byte-Scanning"
- Faster than RSA (278x) and ECC (41x)

More information:

- Compact Ring-LWE encryption for 8-bit platform
 - Fast NTT computation: "MOV-and-ADD" + "SAMS2"
 - Reducing the RAM consumption for coefficient
 - Efficient techniques for Knuth-Yao sampler: "Byte-Scanning"
- Faster than RSA (278x) and ECC (41x)

More information:

Software is available (contacting the authors)

- Compact Ring-LWE encryption for 8-bit platform
 - Fast NTT computation: "MOV-and-ADD" + "SAMS2"
 - Reducing the RAM consumption for coefficient
 - Efficient techniques for Knuth-Yao sampler: "Byte-Scanning"
- Faster than RSA (278x) and ECC (41x)

More information:

Software is available (contacting the authors)

Thank you for your attention