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Short Overview

Lattice-based Cryptography

@ RSA and ECC: Integer Factorization and ECDLP

o Hard problems can be solved by Shor’s algorithm

o Lattice-based Cryptography: Hard for quantum computers

o Ring-LWE Encryption schemes: proposed [EUROCRYPT'10]
— optimized [CHES'14] (reducing the polynomial arithmetic)
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Short Overview

Implementation Platform

e 8-bit XMEGA128 Microcontroller

Wireless Sensor Networks; Internet of Things
Operating Frequency: 32 MHz

128KB Flash, 8KB RAM, 32 registers

Core instruction: 8-bit mul/add (2/1 cycles)
AES/DES Crypto Engine (for PRNG)
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Short Overview

Previous Works

Hardware Implementations

o Gottert et al. [CHES'12]: First hardware of Ring-LWE
e Poppelmann et al. [Latincrypt'12] — Roy et al. [CHES'14]
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Short Overview

Motivation & Contributions

@ Motivation

e Few 8-bit AVR implementation
o "Cryptosystem of the Future” for “Internet of the Future”
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Short Overview

Motivation & Contributions

@ Motivation

e Few 8-bit AVR implementation
o "Cryptosystem of the Future” for “Internet of the Future”

@ Contributions: Efficient implementation of Ring-LWE

e Fast NTT computation: “MOV-and-ADD" + "SAMS2"
o Reducing the RAM consumption for coefficient
o Efficient techniques for Knuth-Yao sampler: “Byte-Scanning”
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Ring-LWE Encryption Scheme

Ring-LWE Encryption Scheme

e Key generation stage: Gen(3)

e Two error polynomials ri, r» € R, from the discrete Gaussian
distribution X, by the Knuth-Yao sampler twice:

A =NTT(n), 5 =NTT(n), f=Ff—5-% € R,

Public key (3, p), Private key (/) are obtained
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Ring-LWE Encryption Scheme

Ring-LWE Encryption Scheme

e Encryption stage: Enc(3, g, M)
o Message M € {0,1}" is encoded into a polynomial in the ring;
Three error polynomials e, &, e3 € R, are sampled

(G, 6)=(53-6+6,p-é +NTT(es + M'))
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Ring-LWE Encryption Scheme

Ring-LWE Encryption Scheme

e Encryption stage: Enc(3, g, M)
o Message M € {0,1}" is encoded into a polynomial in the ring;
Three error polynomials e, &, e3 € R, are sampled

(G, 6)=(53-6+6,p-é +NTT(es + M'))

o Decryption stage: Dec(C;, G, /)
o Inverse NTT has to be performed to recover M':

M =INTT(% - G + &)

and a decoder is to recover the original message M from M’
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Ring-LWE Encryption Scheme

Ring-LWE Encryption Scheme

@ Number Theoretic Transform
o Polynomial multiplication a(x) = 27;01 aix' € Zgq in the n-th
roots of unity wy,

Algorithm 1: Iterative Number Theoretic Transform

Require: Polynomial a(x), n-th root of unity w
Ensure: Polynomial a(x) = NTT(a)

1: 2 « BitReverse(a)

2: for i from 2 by 2i to n do

3 w,-<—w;,7//.,w<—1

4 for j from O by 1 to i/2 — 1 do

5 for k from 0 by i to n — 1 do

6: O U<+ alk+]], @V —w-ak+j+i/2]
7: @alk+j]« U+V, ®alk+j+i/2+ U-V
8: end for

9 W W wi

10: end for

11: end for

12: return a
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Ring-LWE Encryption Scheme

Ring-LWE Encryption Scheme

o Gaussian Sampler
e Random walk by Discrete Distribution Generating tree

Algorithm 2: Low-level implementation of Knuth-Yao sampling

Require: Probability matrix P,,:, random number r, modulus g
Ensure: Sample value s
d<«0
for col from 0 by 1 to MAXCOL do
d<2d+ (r&l); r<r>1
for row from MAXROW by —1 to 0 do

d + d — Ppat[row][col]

if d = —1 then
if (r&1) =1 then
return g — row
else
return row
end if
end if
end for
end for
return 0
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Optimization Techniques for NTT Computation

ir Implementation R
Ou plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

e Parameter Selection (n, g, o) for Ring-LWE

o 128-bit security level: (256,7681,11.31/v/27)
o 256-bit security level: (512,12289,12.18/+/27)
e Discrete Gaussian sampler: 120
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Optimization Techniques for NTT Computation

Parameter Selection (n, g, o) for Ring-LWE

o 128-bit security level: (256,7681,11.31/v/27)
o 256-bit security level: (512,12289,12.18/+/27)
e Discrete Gaussian sampler: 120

LUT based Twiddle Factor: w, and w - w; [LATINCRYPT'12]
Negative wrapped convolution: Reduce coefficient [CHES'14]
Changing of the j and k-loops in the NTT [HOST'13]
Merging of the scaling operation by n=! in INTT [CHES'14]
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Optimization Techniques for NTT Computation

ir Implementation R
Ou plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

MOV-and-ADD Coefficient Multiplication (Stepl): 1 mul, 1 movw

| aH | aL |
x| br | b |
| aL x br |

I o
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Optimization Techniques for NTT Computation

ir Implementation R
Ou plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

MOV-and-ADD Coefficient Multiplication (Step2): 1 mul, 1 movw

| aH [ aL |
x| bn [ bL |
| aL x b |
an X bu |
N ———— = _____
I3 2 I o
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Optimization Techniques for NTT Computation

Impl i L
Our Implementation Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

MOV-and-ADD Coefficient Multiplication (Step3): 1 mul, 3 add

| an | aL |
x| bu | bL |
I aL x b |
aH X by |
+| an X bu
s 2 ri o




Optimization Techniques for NTT Computation

ir Implementation R
Ou plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

MOV-and-ADD Coefficient Multiplication (Step4): 1 mul, 3 add

| a | aL |
x| bu | b |
I aL x bi |
an X bu |
| an x b |
+| aL x bu |
rs | r2 | r | ro




Optimization Techniques for NTT Computation

ir Implementation R
Ou plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

MOV-and-ADD Coefficient Multiplication
(Total): 4 mul, 2 movw, 6 add instructions (16 cycles)

| an | aL |
X | bu | bL |
I aL x b |
ad X bu |
| aH x b |
| aL x by |
rs | r2 | r | ro
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Optimization Techniques for NTT Computation

Approximation based reduction [ACM TEC'15]
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Optimization Techniques for NTT Computation

Our Implementation R
plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

Approximation based reduction [ACM TEC'15]
@ Position of 1'sin (2% x 1/q) — p1, ..., pi

° [z/q] = Yii(z> (w—p))
@ zmodg=z—qgx|z/q]
o |z/7681] = (z > 13) + (z > 17) + (z > 21)
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Optimization Techniques for NTT Computation

Our Implementation R
plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

SAMS2 (Stepl-1): shifting (z > 17)

r3 r2 rl r0
[TITTITTT I T I T T I T T T T T I T I T T T ]
32, D»1l—[TTTTTTTTTTTTTTT] (s1,s0)
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Optimization Techniques for NTT Computation

Our Implementation R
plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

SAMS2 (Stepl-2): shifting (z > 13)

r3 | r2 rl ro |
IIIIIIII!IIIIIIIIIIIIIIIIIIIII!
| |
y @32, )»1—= [T TTTTTTTTTTTTTT] (s1,50)
| |
1 (s1,s0,s)»4— [ T T T TTTTTTTTTTTT] (t1,t0)
|
|
|
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Optimization Techniques for NTT Computation

Our Implementation R
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Optimization Techniques for NTT Computation

SAMS2 (Stepl-3): shifting (z > 21)

r3 | r2 | rl | r0 |
IIIIIIII!IIIIIII!IIIIIII!IIIIIII!
| | |

y @Br2)»1—[ T T TTTTTTTTTTTTT] (s1,50)
| | |

1 (s180,sx)»4—[ T T TTTTTTTTTTTTT] (t1,t0)
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Optimization Techniques for NTT Computation
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plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

SAMS2 (Step2): addition (z > 13) + (z > 17) + (z > 21)

r3 | r2 | rl ro
LTI T T T T T T T T
|
y (32 )»1—+ [T TTTTT]

|
| (s1,50,5%) » 4 —

s1,s0)

(

(t1,10)

L— e w 1
|

I
[
I
[
|
|
|
[TTTTTTTTTTTTTTT] (s1,s0)+(t1,t0)+u0
|
|
|
|
|
|
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Our Implementation

Optimization Techniques for NTT Computation
Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

SAMS2 (Step3): multiplication

r3

| r2 | rl ro

L (r3.r2r)» 1~ [T T T T T T T T
| (51,505 »4 — [ TT T T T T
l ‘—»I:|:|:|:|:|:|:|:I
|||||||||||||||||
D:l:D]:Dijle

s1,s0)

t1,10) —l

(s1,s0) + (t1,t0) +u0

(
(

[TTTTTI I [TTTTTI I Oxlex [(s1,s0)+(t1,t0) +u0]
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Our Implementation

Optimization Techniques for NTT Computation
Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

SAMS2 method, (D: shifting; ): addition; 3): multiplication

r3

| r2 | rl r0

| I
p(r3r2,r)»1— [ TTTTTTT
| |
|(sl,SO,sx)»4—>| [TTTTTT

@I—'IZEEEEEEIj

(s1,s0)
(

t1,10) _l@

(s1,s0) + (t1,t0) +u0

[TTTTTI ! [TTTTTI ! Oxlex [(s1,s0) +(t1, t0) +u0]

: I
i ©l:!:|:|:|:|:|:|:|:||0x1e
i
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@ Incomplete modular arithmetic

e Complete: s=a+ b mod g
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@ Taking g = 7681 as an example

Perform a normal coefficient addition
Compare the results with 213
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Optimization Techniques for NTT Computation

@ Incomplete modular arithmetic

e Complete: s=a+ b mod g
o Incomplete: s = a+ b mod 2™ where m = [log, q]|

@ Taking g = 7681 as an example

Perform a normal coefficient addition

Compare the results with 213

Conduct a subtraction of g where r > 213

The operands are kept in [0,2%3 — 1]

In the last iteration, the result back into the range [0, g — 1]
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Optimization Techniques for NTT Computation
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Optimization Techniques for NTT Computation

Reducing the RAM for coefficients (Step 1): Initialized registers
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Optimization Techniques for NTT Computation

Our Implementation PP
P Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

(Step 2): 13-bit coefficient (ap) is stored

do

30 /60



Optimization Techniques for NTT Computation

Our Implementation R
P tatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

(Step 3): Other coefficients (ai~12) are stored

ain
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Optimization Techniques for NTT Computation
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Optimization Techniques for NTT Computation

(Step 4): Coefficient (a13) is stored

O as
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Optimization Techniques for NTT Computation

ir Implementation R
Ou plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

(Step 5): Remaining coefficients (a14~15) are stored

an
a1

O a: O aw O ass
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Optimization Techniques for NTT Computation

ir Implementation R
Ou plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

Updating coefficient (a12)

an —{ I TTTTTTICTTTTTTT]

O as O ae O ass
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Optimization Techniques for NTT Computation

Impl i L
Our Implementation Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

(Step 1): Clear the lower 13-bit

an —{ T T T TTTICTTTTTTT]
A A
aio LTI T I T I T I

O as O aw O as

35 /60



Optimization Techniques for NTT Computation

Impl i L
Our Implementation Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

(Step 2): Add with target register

an - T T[T T[T
a IO I T OO oy
T T

2 Y Y I I A

as Y T Y

O as O aw O as
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Optimization Techniques for NTT Computation

Updating coefficient (a;3)
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Optimization Techniques for NTT Computation

(Step 1): Divide the coefficient into 5 limbs

AL T T T TTTIITITITIT I 0]
[TTTTTTIIETTITITI1]
LTI T T T TIEI T T TTId [TTTTTTICT I T TITIT11]
[TTTTTTICTITITITITITIT]
T T T I I I IT
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Our Implementation R
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Optimization Techniques for NTT Computation

(Step 2): Shift the coefficient

I TP T O I
CEC T P4 I T O (LT T
OO OO T I
P T I I T O (I
O P TI T II T O (I LT e
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Optimization Techniques for NTT Computation

(Step 3): Select the memory

an —{ T T TTTTTITTTTTTT]

O a: O aw O as
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Optimization Techniques for NTT Computation

Impl i L
Our Implementation Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

(Step 4): Clear the 14th bit

an — T T T T TTTICTTTITTTT
a Y Y
aio [ITTTTTTTICI T I I

O as O aw O ass
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Our Implementation

Optimization Techniques for NTT Computation
Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

(Step 5): Add with target register

arn
ag

—{ T 11

A
[TTT

A.
[T TICTT

y
[ 11

- -
LITTTTT I TTITTIT ]

O as O aw O ass

42 /60



Optimization Techniques for NTT Computation
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Optimization Techniques for NTT Computation

(Step 6): Select the memory

ao — T T T T TTTICTT T T
O as O as O as
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Optimization Techniques for NTT Computation

(Step 7): Clear the higher 3-bit

a, IIII‘IIIIIIIIIIII
ag — [T T T TTTICT T T T
O as O as O as

44 /60



Optimization Techniques for NTT Computation

ir Implementation R
Ou plementatio Optimization of the Knuth-Yao Sampler

Optimization Techniques for NTT Computation

(Step 8): Add with target register

az N T I I I I I
a
> N A A I B

a, IIII‘IIIIIIIIIIII
ag — T T T T T TTICT T T T
O as O as O as
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Optimization Techniques for NTT Computation

Optimized Storages: 16 13-bit elements in 26 bytes

a2

O as O aw O as
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@ Optimization of the Knuth-Yao Sampler
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Optimization Techniques for NTT Computation

Our Implementation Optimization of the Knuth-Yao Sampler

Optimization of the Knuth-Yao Sampler

Algorithm 3: Bit Scanning

1: for row from MAXROW by —1 to 0 do
2:  d <« d— Ppa[row][col] {Bit wise computations}

. ...omit ...
4: end for

Algorithm 4: Byte Scanning

1: for row from MAXROW by —8 to 0 do

2: if (Pmat[row][col] || ... || Pmat[row — 7][col]) > 0 then

3: sum = Y12 T (Poaeli][col])

4: d <+ d—sum {Byte wise computations}
5: .. omit . ..

6: end if

7: end for

Byte scanning saves 7 branch operations at the expense of 1 sub
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Optimization of the Knuth-Yao Sampler

Comparison between BitScanning and ByteScanning

Bit Scanning Byte Scanning
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Optimization of the Knuth-Yao Sampler

(Step 1):BitScanning (1-bit), ByteScanning (1-byte)

Bit Scanning Byte Scanning
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Optimization Techniques for NTT Computation

Our Implementation Optimization of the Knuth-Yao Sampler

Optimization of the Knuth-Yao Sampler

(Step 2):BitScanning (2-bit), ByteScanning (2-byte)

Bit Scanning Byte Scanning
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@ Pseudo Random Number Generation
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@ Pseudo Random Number Generation
o AES block cipher with counter mode
o ATxmegal28A1 supports AES engine (375 cycles)
e SW requires 1.9K cycles and 2KB ROM

@ Parallel Computations

e AES engine and processor are executed simultaneously
e PRNG and KY sampling in same time
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@ High speed (HS) is 2.3x faster than memory efficient (ME)
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e Compared to HS, ME version reduces the RAM by 21 %
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e Poppelmann et al.: 2x and 1.25x faster (ENC, 256/512)
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| Liu et al. | RSA-1024 |  n/a | 75680K |
Dill et al. (HS) ECC-255 27,800K 13,900K
Dill et al. (ME) ECC-255 28,293K 14,146K
Aranha et al. ECC-233 11,796K 5,898K
This work (HS) LWE-256 671K 275K
This work (ME) LWE-256 1,532K 673K

e RSA: 278x faster (DEC, 1024)
e ECC: 41x faster (ENC, 255)
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e Fast NTT computation: “MOV-and-ADD" + "SAMS2"
e Reducing the RAM consumption for coefficient
o Efficient techniques for Knuth-Yao sampler: “Byte-Scanning”

o Faster than RSA (278x) and ECC (41x)

More information:

e Software is available (contacting the authors)

Thank you for your attention
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