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Introduction 

• PUF-based key generation 

 

 

 

 

 

• Reliability: 
If Response ≈ Noisy Response then Key = Key’ 

• Security: 
If Response is sufficiently unpredictable (w.r.t. its length) then Key is fully 

unpredictable,  even though Helper Data is known 

 

• What if PUF response is not full-entropy? 
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Setting: PUF-based Key Generation 

• Code-offset construction 
• Helper data = offset between PUF response and random code word 

• Key   = derived from random seed which determines code word 

• Security? 
• KDF(.)  = cryptographically secure key derivation function 

• S    = input with sufficient entropy to derive a key from 

• H(S | W) = ? 
• H(S | W) = H(S) – I(S ; W) = |S| – I(S ; W) = |S| – I(S ; X + Encode(S)) = ? 
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Leakage Problem: General 

• H(S | W) = |S| – I(S ; W)   = Entropy left for key derivation 

 

 

• Entropy leakage? 
• I(S ; W) = I(S ; X + S*G)    (G = generator matrix of block code) 

   = |S| – [H(X) – H(X*HT)]  (H = parity-check matrix) 

• If X fully random (H(X) = |X|), then I(S ; W) = 0 

→ no entropy leakage! and H(S | W) = |S| 

• If X not fully random, then I(S ; W) ≥ 0 

→ possible entropy leakage and H(S | W) = H(X) – H(X*HT) 

• H(X*HT) = ? 
• Depends on distribution of X and on code structure HT 

• Difficult to compute exactly for the general case 

• Upper bound: H(X*HT) ≤ |X*HT| = (n – k) (for an (n, k) block code) 

→ results in upper bound on leakage, or lower bound on remaining entropy 

 

Initial Seed Entropy Entropy Leakage 
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Leakage Problem: Bias Only 

• X in {0,1}n not fully random 

because of bias only 
• Most common and obvious 

cause of PUF non-randomness 

• p-biased PUF → for an unseen 

response bit Pr(Xi = 1) = p 

• H(X) = n*h(p)      

(h(.) = binary entropy function) 

• H(X*HT) = ? 
1. For simple codes (e.g. repetition)  

→ closed expression 

2. For short codes (e.g. n < 32)  

→ exhaustively determine 

distribution of X*HT 

3. Otherwise  

→ use upper bound (n – k) 

p = 73% 
h(p) = 84% 

p = 41% 
h(p) = 98% 

p = 27% 

p = 73% 

p = 27% 

p = 73% 

p = 50% 
h(p) = 100% 

h(p) = 84% 



• For full key generator (ex.): 

 

 

 

 

 

 

 
• Based on concatenated 

Repetion(8,1) o Golay(24,12) code 
(van der Leest et al., CHES-2012) 

• Generates 128-bit key with >1-10-6 

reliability in presence of <15% noise 

• Secure for 41.8% < bias < 58.2% 
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Leakage Problem: Effect of Bias 

• For repetition codes: 

 

 

 

 

 

 

 
• Lower bound very pessimistic for 

bias not close to 50% 
(cf. “repetition code pitfall”, Koeberl et al., HOST-2014) 

• But still significant entropy loss due 

to bias 

bias 
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n=3 

n=9 

Entropy buffer of 52 bits 

tolerates bias 50% ± 8.2% 

But does 

not scale! 
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Solution: Debiasing 

Entropy Buffer (bits) 
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• Bias tolerance does 

not scale with entropy 

buffer 
• PUF size does scale with 

entropy buffer! 

• Bias tolerance limited 

even when buffer → ∞ 

• Other solution needed 
• For bias levels above 

limit 

• For PUF size efficiency 

• Debiasing prior to 

code-offset 
• Debiasing (helper) data 
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Solution: Criteria 

1. Reliability 
Debiasing cannot compromise reliability of key generation  

(e.g. hash(X) removes bias but blows up bit error rate of PUF response) 

2. Efficiency 
If |Y| < |X| then debiasing induces overhead 

→ debiasing overhead should be limited and as small as possible 

3. Leakage 
a) Debiasing should take care of leakage due to bias, also for large bias 

b) Debiasing data should not induce additional leakage: I(S ; W) = I(S ; (W, D)) 

4. Reusability 
Classic code-offset construction is reusable (cf. Boyen, ACM-CCS-2004): 

one enrollment leaks the same as many enrollments: I(S ; W) = I(Si ; (W1, W2, …)) 

It would be nice to keep this property: I(S ; (W, D)) = I(Si ; (W1, D1, W2, D2, …)) 
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Debiasing Variant 1: “Classic” Von Neumann 

1. Reliability: Bit error rate is hardly affected 
Main advantage of Von Neumann-like methods! 

2. Efficiency: debiasing overhead factor > 4 
Function of bias and reliability, e.g.: bias = 30% and |Y| = 1000 bits are needed with 

reliability > 1 – 10-6, then |X| needs to be ≥ 5334 → overhead factor 5.3 

3. Leakage: I(S ; (W, D)) = 0 
No more leakage, regardless of level of bias! (proof in full version) 

4. Reusability: Not reusable! Due to stochastic nature caused by bit errors 

Consider consecutive pairs: 

• Discard (0, 0) and (1, 1) 

• Retain first bit of (0, 1) and (1, 0) 

• Discard/retain choice is stored in  

debiasing data 
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Debiasing Variant 2: Pair-Output Von Neumann 

• Same as classic V.N., but : 
• Retain full pairs instead of only first bit 

• Inner code is even-length repetition code 
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Debiasing Variant 2: Pair-Output Von Neumann 

1. Reliability: Hardly affected (same as classic V.N.) 

2. Efficiency: Improvement w.r.t classic V.N. with factor ~2: 
debiasing overhead factor > 2 
Function of bias and reliability, e.g.: bias = 30% and |Y| = 1000 bits are needed with 
reliability > 1 – 10-6, then |X| needs to be ≥ 2794 → overhead factor 2.8 

3. Leakage: I(S ; (W, D)) = 0 
No leakage! Regardless of level of bias! (proof in full version) 

Surprising given that Y has bit dependencies… 

Trick: Entropy loss due to bit dependencies coincides exactly with entropy loss of 
repetition code → no additional loss! 

4. Reusability: Not reusable! (same as classic V.N.) 
 

Variant 2+: Multi-pass Tuple-Output Von Neumann 
• Reconsider discarded bits in a new pass, now considering quadruplets… 

• Same properties, but further improved efficiency: overhead factor 1.5 
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Debiasing Variant 3: Erasure Von Neumann 

• Same as pair-output V.N., but erase pairs i.s.o. discarding 
• Requires errors-and-erasures decoding at reconstruction 
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Debiasing Variant 3: Erasure Von Neumann 

1. Reliability: Affected by introduction of erasures! 
Better code needed 

2. Efficiency: No bits are discarded, but code rate is affected to 

deal with additional erasures 
Reliability and efficiency need to be considered together…  

3. Leakage: I(S ; (W, D)) = I(S ; W) = 0 
No leakage! Regardless of level of bias! (proof in full version) 

4. Reusability: Reusable! (proof in full version) 

Debiasing is no longer stochastic (not affected by eventual bit errors) 

 

Variant 3+? No! 
• As this will compromise reusability again 
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Comparison of Solutions 

• Fair comparison: 
• Channel model: 0-bits and 1-bits have a different error rate 

• Error-rate and bias are related: e.g. 100% biased PUF must have error rate 0% 

• Comparison based on repetition-Golay key generator: 
(128-bit key, 15% noise, 1-10-6 reliability) 
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Concluding Remarks 

 

 

• PUF error rate and bias (unpredictability) are equally 

important and closely related metrics 

• PUF bias might cause entropy leakage and affect security of 

key generator: 
• Earlier constructions are not always secure for biased  PUFs 

• Entropy buffer solution works for small bias (close to 50%), but does not scale 

• We proposed debiasing solutions based on Von Neumann: 
• No more entropy leakage, regardless of bias level! 

• Overhead cost can be reduced by clever optimizations (pair output, multi-pass) 

• Bias outside [40%-60%]: debiasing is better than entropy buffer 

• Maintaining reusability comes at a cost 

• Future work: 
• Improve efficiency, in particular combined with reusability 

• Other leakage models (bit correlations, …) 



Full version of the paper: https://eprint.iacr.org/2015/583.pdf 

https://eprint.iacr.org/2015/583.pdf

