

Leakage Assessment Methodology

- a clear roadmap for side-channel evaluations -

Tobias Schneider and Amir Moradi

Goal: Establish testing methodology capable of robustly assessing the physical vulnerability of cryptographic devices.

Motivation Attack-based Testing

Perform state-of-the-art attacks on the device under test (DUT)

Attacks Intermediate Leakage Values: **Models: Types:** Sbox In DPA HW X CPA Sbox Out HD Sbox In/Out MIA Bit

Motivation Attack-based Testing

Perform state-of-the-art attacks on the device under test (DUT)

Attacks Types:

- DPA
- CPA
- MIA
- ...

Intermediate Values:

- Sbox In
- Sbox Out
- Sbox In/Out
- ...

Leakage Models:

- HW
- HD
- Bit
- ...

Problems:

- High computational complexity
- Requires lot of expertise
- Does not cover all possible attack vectors

Motivation Testing based on *t*-Test

Tries to detect any type of leakage at a certain order

Proposed by CRI at NIST workshop

Advantages:

- Independent of architecture
- Independent of attack model
- Fast & simple
- Versatile

Motivation Testing based on *t*-Test

Tries to detect any type of leakage at a certain order

Proposed by CRI at NIST workshop

Advantages:

- Independent of architecture
- Independent of attack model
- Fast & simple
- Versatile

Problems:

- No information about hardness of attack
- Possible false positives if no care about evaluation setup

Contribution

- 1. Explain statistical background in a (hopefully) more understandable way
- 2. More detailed discussion of higher-order testing
- 3. Hints how to design fast & correct measurement setup
- 4. Optimization of analysis phase

Statistical Background

• *t*-Test

Null Hypothesis: Two population means are equal.

Compute:
$$p = 2 \int_{|t|}^{\infty} f(t, v) dt$$

Compute:
$$p = 2 \int_{|t|}^{\infty} f(t, v) dt$$

Small p values give evidence to reject the null hypothesis

- For testing usually only the t-value is estimated
- Compared to a threshold of |t| > 4.5
 - p = 2F(-4.5, v > 1000) < 0.00001
 - Confidence of > 0.99999 to reject the null hypothesis

Testing Methodology

- Specific *t*-Test
- Non-Specific t-Test

Testing Methodology Specific t-Test

Measurements T_i With Associated Data D_i

Specific *t*-Test:

- Key is known to enable correct partitioning
- Test is conducted at each sample point separately (univariate)
- If corresponding t-test exceeds threshold \Rightarrow DPA probable

Testing Methodology Specific t-Test

Specific *t*-Test:

- Key is known to enable correct partitioning
- Test is conducted at each sample point separately (univariate)
- If corresponding t-test exceeds threshold \Rightarrow DPA probable

Testing Methodology Specific t-Test

Specific *t*-Test:

- Key is known to enable correct partitioning
- Test is conducted at each sample point separately (univariate)
- If corresponding t-test exceeds threshold \Rightarrow DPA probable

Testing Methodology Non-Specific t-Test

Non-Specific *t*-Test:

- fixed vs. random t-test
- Avoids being dependent on any intermediate value/model
- Detected leakage of single test is not always exploitable
- Semi-fixed vs. random t-test useful in certain cases

Testing Methodology Non-Specific t-Test

Non-Specific *t*-Test:

- fixed vs. random t-test
- Avoids being dependent on any intermediate value/model
- Detected leakage of single test is not always exploitable
- Semi-fixed vs. random t-test useful in certain cases

Testing Methodology Non-Specific t-Test

Non-Specific t-Test:

- fixed vs. random t-test
- Avoids being dependent on any intermediate value/model
- Detected leakage of single test is not always exploitable
- Semi-fixed vs. random t-test useful in certain cases

Higher-Order Testing

- Multivariate
- Univariate

Multivariate:

- Sensitive variable is shared: $S = S_1 \circ S_2$
- Shares are processed at different time instances (SW)
- Leakages at different time instances need to be combined first

- Sensitive variable is shared: $S = S_1 \circ S_2$
- Shares are processed at different time instances (SW)
- Leakages at different time instances need to be combined first

Multivariate:

- Sensitive variable is shared: $S = S_1 \circ S_2$
- Shares are processed at different time instances (SW)
- Leakages at different time instances need to be combined first

- Multivariate:
- Sensitive variable is shared: $S = S_1 \circ S_2$
- Shares are processed at different time instances (SW)
- Leakages at different time instances need to be combined first

Centered Product:
$$x' = (x_1 - \mu_1) \cdot (x_2 - \mu_2)$$

Shares are processed in parallel (HW)

Univariate:

Leakages at the same time instance need to be combined first

Shares are processed in parallel (HW)

Univariate:

Leakages at the same time instance need to be combined first

Correct Measurement

- Setup
- Case Study: Microcontroller
- Case Study: FPGA

Correct Measurement Setup

Communication between Control and
 Target should be masked (if possible)

Correct Measurement Setup

Communication between Control and
 Target should be masked (if possible)

Correct Measurement CS: Microcontroller

- AES with masking & shuffling (DPA contest v4.2)
- No shared communication
- First-order test

Correct Measurement CS: Microcontroller

Correct Measurement CS: Microcontroller

Detectable first order leakage

Correct Measurement CS: FPGA

A note on the security of Higher-Order Threshold Implementations Oscar Reparaz, ePrint Report 2015/001

Correct Measurement CS: FPGA

A note on the security of Higher-Order Threshold Implementations Oscar Reparaz, ePrint Report 2015/001

Correct Measurement CS: FPGA

Time [µs]

0

A note on the security of Higher-Order Threshold Implementations Oscar Reparaz, ePrint Report 2015/001

12

Efficient Computation

- Classical Approach
- Incremental
- Multivariate
- Parallelization

Time

Measurement Phase

 T_0

Time

Measurement Phase

 T_{0}

 T_1

Requires estimation of:

$$(\mu_0, s_0^2)$$

$$(\mu_1, s_1^2)$$

$$- \mu = E(T)$$

$$s^2 = E((T-\mu)^2)$$

Requires estimation of:

$$(\mu_0, s_0^2)$$

$$(\mu_1, s_1^2)$$

Reminder:

$$\bullet \quad \mu = E(T)$$

 T_0

 T_1

...

 T_{n-1}

Requires estimation of:

$$(\mu_0, s_0^2)$$

$$(\mu_1, s_1^2)$$

$$\bullet \quad \mu = E(T)$$

$$s^2 = E((T-\mu)^2)$$

Pass 1

Requires estimation of:

$$(\mu_0, s_0^2)$$

$$(\mu_1, s_1^2)$$

$$\bullet \quad \mu = E(T)$$

•
$$s^2 = E((T - \mu)^2)$$

Requires estimation of:

$$(\mu_0, s_0^2)$$

$$(\mu_1, s_1^2)$$

$$\bullet \quad \mu = E(T)$$

$$s^2 = E((T-\mu)^2)$$

Problems:

- 1) Measurement phase need to be completed
- All measurements need to be stored
- 3) Traces need to be loaded multiple times

Solution: *Incremental Computation*

Idea: Update intermediate values for each new trace

 T_0

Idea: Update intermediate values for each new trace

Idea: Update intermediate values for each new trace

Idea: Update intermediate values for each new trace

Higher-order tests require the computation of additional values

Idea: Update intermediate values for each new trace

Higher-order tests require the computation of additional values

Advantages:

- 1) Can be run in parallel to measurement phase
- 2) Does not require that all measurements are stored
- 3) Loads each trace only once

Problem: Computation of intermediate values

Problem: Computation of intermediate values

Approach 1: Use raw moments

dth-order raw moment:
$$M_d = E(T^d)$$

Given:

$$M_1$$

$$M_2$$

Compute:
$$\mu = M_1$$
 $s^2 = M_2 - (M_1)^2$

$$s^2 = M_2 - (M_1)^2$$

Problem: Computation of intermediate values

Approach 1: Use raw moments

dth-order raw moment:
$$M_d = E(T^d)$$

Given:

 M_2

Compute: $\mu = M_1$ $s^2 = M_2 - (M_1)^2$

Higher-order test require additional moments

Example: Univariate 1st-5th order tests require $M_1 - M_{10}$

$$M_d = \sum_{i=0}^{n-1} \frac{(T_i)^d}{n}$$

Problem: Numerical unstable for large number of traces

Example: Computation of variance based on simulations (100M traces) with $\mathcal{N}(100,25)$

Method	Order 1	Order 2	Order 3	Order 4	Order 5
3-Pass	25.08399	1258.18874	15.00039	96.08342	947.25523
Raw	25.08399	1258.14132	14.49282	-1160.83799	-1939218.83401

t-Test

Result

Approach 2: Use *central* moments (and M_1)

dth-order central moment: $CM_d = E((T - \mu)^d)$

Given:

Compute: $\mu = M_1$ $s^2 = CM_2$

Approach 2: Use *central* moments (and M_1)

dth-order central moment:
$$CM_d = E\left((T - \mu)^d\right)$$

Given: M_1 CM_2

Compute: $\mu = M_1$ $s^2 = CM_2$

Not that easy to find update formulas for:

$$CM_d = \sum_{i=0}^{n-1} \frac{(T_i - \mu)^d}{n}$$

Multivariate tests require adjusted formulas

Incremental formulas for tests at arbitrary orders can be found in the paper.

Comparison to the raw moments approach:

- Slightly higher computational effort
- Less numerical problems, higher accuracy

Method	Order 1	Order 2	Order 3	Order 4	Order 5
3-Pass	25.08399	1258.18874	15.00039	96.08342	947.25523
Raw	25.08399	1258.14132	14.49282	-1160.83799	-1939218.83401
Ours	25.08399	1258.18874	15.00039	96.08342	947.25523

Trace *n*

Trace *n+1*

$$t_{n+1,0}$$
 $t_{n+1,1}$ $t_{n+1,2}$ $t_{n+1,3}$ $t_{n+1,4}$

Example:

- 1st-5th order *t*-test
- 100,000,000 traces (each with 3,000 sample points)
- 9h on 2 x Intel Xeon X5670 CPUs @ 2.93 GHz (24 hyper-threading cores)

Conclusion

- Recommendations
- Summary
- Future Work

Conclusion Recommendations

Fixed vs. random:

- DUT with masking countermeasure
- With masked communication

Semi-fixed vs. random:

- DUT with *hiding* countermeasure
- Without masked communication

Specific t-test:

- DUT with no countermeasures
- Failed in former non-specific tests
- Identify suitable intermediate values for key recovery

Conclusion Summary

- Testing based on the t-test is simple and fast
- Has become popular in recent years

Things to consider:

- Correct measurement phase is critical
- Analysis phase can be strongly optimized
- Higher-order testing easily possible

Additional important aspects:

- Alignment and signal processing is necessary
- Finding of points of interest

Conclusion Future Work

Incremental computing for other attacks/evaluation techniques

Robust and One-Pass Parallel Computation of Correlation-Based Attacks at Arbitrary Order

Tobias Schneider, Amir Moradi, Tim Güneysu, ePrint Report 2015/571

Thanks for Listening!

Any Questions?