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1.1 Differential Power Analysis (DPA)

+2* Problems of DPA:

= Choice of power model
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1.2 Generic DPA

“» Generic DPA use the
nominal mapping as power

model. "
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1.3 The Power Model using Algebra Normal Form

» Fact: any real valued leakage function can be
represented in algebra normal form (ANF).

“» For Example:
Let z=(z,,2,,2,) in GF(2)’

For any leakage function L(:), we have:

__________________________________________________________________________________________________

L(z) = o, ta,z, +a,z, + a2, +a,2,2, + 2,2, + 02,2, g+§a7zlzzz3§,

where ¢, to «, alle the real numberéxéfficients /

terms of degree 1 terms of degree 2 terms of degree 3



1.3 The Power Model using Algebra Normal Form

» Fact: any real valued leakage function can be
represented in algebra normal form (ANF).

“» For Example:
Let z=(z,,2,,2,) in GF(2)’

For any leakage function L(:), we have:

__________________________________________________________________________________________________

Lz)=a, ta,z, +a,z, + oz, +i0,2,2, + 2,7, + 2,2, +,2,2,2,
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where ¢, to «, alle the real numberéxéfficients /

terms of degree 1 terms of degree 2 terms of degree 3

*» Therefore, we can construct the nominal mapping
power model using ANF



1.4 Liner Regression(LR)-based DPA

Goodness-of-fit
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1.4 Liner Regression(LR)-based DPA
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1.5 Generic-emulating DPA

S > Goodness-of-fit
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1.5 Generic-emulating DPA

Goodness-of-fit

Power model:ANF
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1.5 Generic-emulating DPA

Goodness-of-fit
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1.6 Stepwise Linear Regression (SLR)-based DPA

Goodness-of-fit
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1.6 SLR-based DPA

“» The coefficients in the leakage function are sparse
» Formal description:

N
&R € aromin Z(Tz — My(Z; 1))
Y i=1

subject to Z Isign(a, )| < s
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+»» Two drawbacks in SLR-based DPA

= Unstable outcomes in the high-noise regime

* the insignificant coefficients are discarded, which
makes the unstable outcomes

= |ess-satisfactory performance especially on real smart
cards



2.1 Ridge-based Distinguishers

Goodness-of-fit
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2.1 Ridge-based Distinguishers

“» Ridge-based distinguisher shrinks coefficients by
explicitly imposing an overall constraint on their size:
N 2
~ ridae def .
o ge — argIni (TZ — Mk(Zi,k))
Y =1
subject to Z Ozi < s
uelU



2.1 Ridge-based Distinguishers

“» Ridge-based distinguisher shrinks coefficients by
explicitly imposing an overall constraint on their size:

N 2
Gidge def argmin (T@- — Mk(Zi,k))

« 1—=1

subject to Z o < s
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“* An equivalent formulation:

N
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2.1 Ridge-based Distinguishers

» The optimal solution is given by:
a"'%¢ = (UMU, + 1)Ul T

where U, = (ngk)ie{l,Q,...,N},uEF'S‘\{O}
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2.2 How The Coefficients Shrink in

Ridge-based Distinguishers

Amount of Proportional to
shrinkage of terms’ € —> Degrees of the terms

coefficients

Consistent with leakage functions in practice



2.3 Lasso-based Distinguishers
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2.3 Lasso-based Distinguishers

“* The lasso-based distinguisher is similar to the ridge-based
one excepted for a different constraint:

N 2
Glasso 4t argmin Z (T@- — Z\/Ik(Zi)k))
< 1=1

subject to Z | < s
uelU

* Finding the optimal solution for lasso-based
distinguishers is essentially a quadratic programming
problem
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Improvement using cross-validation
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4.1.1 SLR-based Distinguisher is Not Stable
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4.1.2 A Comparison of Various Attacks

» Leakage with
degree 8

» Ridge-based
DPA with C-V
and lasso-based
DPA are best

» New generic-
emulating DPAs
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One
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4.1.2 A Comparison of Various Attacks

» Leakage with
degree 4

» The Best DoM
becomes better
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4.1.3 Attacks Against Some Artificial Leakage Function

» All low degree terms
(<4) are discarded.

» Best DoM attack
behaves poorly

» The generic-
emulating DPAs are
not affected.
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4.2 Experiments on Smart Cards

» Microscale ASIC
Implementation

» 1st order success
rates

» C-V significantly
Improves the
performance of
generic-emulating
DPAs
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4.2 Experiments on Smart Cards

Real card
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Conclusion

“* Making generic-emulating DPA practicable

= Ridge-based and lasso-based distinguishers = more
stable

= Cross-validation =>generic-emulating DPAS can be
significantly improved
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