
TERO P-TRNG TERO analysis P-TRNG model Conclusions

A Physical Approach for Stochastic Modeling
of TERO-based TRNG

Patrick Haddad1,2, Viktor FISCHER1, Florent BERNARD1,
and Jean NICOLAI2

1: Jean Monnet University Saint-Etienne, France

2: ST Microelectronics Rousset, France

CHES 2015 – Saint-Malo, France

September 2015

1/18 P. HADDAD, V.FISCHER, F. BERNARD, J. NICOLAI Stochastic Model of TERO-based TRNG



TERO P-TRNG TERO analysis P-TRNG model Conclusions

Random numbers in cryptography

I Random number generators constitute an essential part of
(hardware) cryptographic modules

I The generated random numbers are used as:
Cryptographic keys (high security requirements)
Masks in countermeasures against side channel attacks
Initialization vectors, nonces, padding values, ...
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Random numbers in logic devices

RANDOM NUMBER GENERATORS
(RNG)

DETERMINISTIC
RNGs (DRNGs)

PHYSICAL TRUE 
RNGs  (P-TRNGs)

DRNG + P-TRNG = Hybrid RNG 
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Classical versus modern TRNG evaluation approach

I Two main security requirements on RNGs:
R1: Good statistical properties of the output bitstream
R2: Output unpredictability

I Classical approach:
Assess both requirements using statistical tests – often impossible

I Modern ways of assessing security:
Evaluate statistical parameters using statistical tests
Evaluate entropy using entropy estimator (stochastic model)
Test online the source of entropy using dedicated statistical tests

Our objectives

Propose a stochastic model of TERO-based TRNG a

Based on physical parameters quantifiable inside the device
Can be used for online entropy assessment

a M. Varchola and M. Drutarovsky, New high entropy element for FPGA based
true random number generators, CHES 2010
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Transition effect ring oscillator (TERO)

Principle:
I Even number of inverters and two control gates in a loop
I Oscillates temporarily because of the difference in two branches
I Number of oscillations varies because of the intrinsic noise

. . .

. . .Vctr Vout1

Vctr

Vout1
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TERO-based P-TRNG

Implementation:

cnt[0]

Counter of rising edges

clk

nreset

cnt[7:0]
8 Random

bit outputRequest of 
a random bit

. . .

. . .

TERO

I An asynchronous 8-bit counter counts random number of
oscillations

I We use the counter to characterize the TERO

I The LSB of the counter (cnt(0)) is used also as the random bit
(TRNG output)
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Outlines of the modeling

Since the P-TRNG is periodically restarted, the counter values are
mutually independent, therefore:

Entropy =−p1 · log2(p1)− (1−p1) · log2(1−p1),

where p1 = Pr{cnt(0) = 1}.

We want to determine p1, therefore, we need to analyze and
characterize the distribution of counter values.
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A noiseless inverter

Behavior of a noiseless inverter:
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Analyzed by Reyneri et al., 2 they determined Pout = f (Pin)

2 Reyneri et al., Oscillatory metastability in homogeneous and inhomogeneous
flip-flops, IEEE SSC, 1990
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A noisy inverter

Behavior of a noisy inverter:
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Low level assumptions
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In the paper, using the model of Reyneri et al., we determine
Pout ∼N (f (Pin),σ

2) (see Lemma 1)
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An chain of M inverters

Impact of the noise on a chain of inverters:

M inverters
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We apply Lemma 1 to each inverter of the chain

We obtain Pout ∼N (F(Pin,M),G(σ2,M))
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A loop of inverters

Impact of the noise on the duty cycle:

Vctr Vout1
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Stochastic model of TERO P-TRNG

The model characterizes distribution of counter values
I Objective: We want to get Pr{cnt = s}
I We just know the distribution of X(s)

We can use the equivalence cnt > s ⇐⇒ X(s)> 0
Then

Pr{cnt > s}= 1
2

[
1−erf

(
K · 1−Rs−s0

√
R2s+1−1

)]
R is the ratio of the geometric series
K reflects the jitter σ2

s0 reflects the difference τ1− τ2

and
Pr{cnt = s}= Pr{cnt ≤ s}−Pr{cnt ≤ s+1}
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Experimental validation

Validation of the modeled distribution using a χ2 test

Experiment: TERO 1 in an ST Microelectronics 28 nm ASIC

0,04

0,06

0,02

80 90

Modeled distribution

Gaussian law

Experimental data

100 110

K=35,680
s0=94,152
R=1,0153Pr

{c
nt
=
s}

For a significance level α = 0.05 and 38 degrees of freedom, the test
statistic has to be lower than 53.384

Our model: the test statistic is 40.35
Gaussian law: the test statistic is 149.3
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Experimental validation

Validation of the modeled distribution using a χ2 test

Experiment: TERO 2 in an ST Microelectronics 28 nm ASIC
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For a significance level α = 0.05 and 76 degrees of freedom, the test
statistic has to be lower than 97.351

Our model: the test statistic is 33.97
Gaussian law: the test statistic is > 106
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Entropy estimation

From our physical analysis we know Pr{cnt = s}
From Pr{cnt = s} we compute p1 = Pr{cnt(0) = 1}

Recall: Since the TERO is periodically restarted, the subsequent
counter values are mutually independent and thus

Hsample =−∑
s∈N

ps log2(ps)

Hlsb =−p1 · log2(p1)− (1−p1) · log2(1−p1)

The second term represents the entropy of our TERO P-TRNG
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Estimated entropy

Application of the model to TERO 1 and TERO 2
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I In the two cases the entropy of the raw binary signal exceeds
the value 0.997 required by AIS31

I All generated bit streams passed tests T0 to T8 of AIS 31
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Conclusions

I We presented a stochastic model of the TERO P-TRNG

I The model is based on transistor-level assumptions

I The model was validated in an ASIC implemented using 28 nm
ST Microelectronics technology

I We derived the entropy from this model

I The entropy and the output bit rate can be easily managed using
the model
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