
Who watches the watchmen?: Utilizing
Performance Monitors for Compromising keys of

RSA on Intel Platforms

Sarani Bhattacharya and Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur

CHES 2015
September 15, 2015

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 1 / 34

Overview of the talk

Introduction

Motivation of the problem

Exponentiation primitives for Public key cryptography

Modelling branch misses as side-channel

Formally modeling success probability

Experimental validation

Conclusion

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 2 / 34

Introduction

Hardware performance counters (HPCs) are a set of special-purpose
registers to store the counts of hardware-related activities within the
microprocessor.

Hence HPCs can be utilized for both attacks and their
countermeasures.

Asymmetric-key cryptographic algorithms when implemented on
systems with branch predictors, are subjected to side-channel attacks
exploiting the deterministic branch predictor behaviour due to their
key-dependent input sequences.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 3 / 34

Introduction

Hardware performance counters (HPCs) are a set of special-purpose
registers to store the counts of hardware-related activities within the
microprocessor.

Hence HPCs can be utilized for both attacks and their
countermeasures.

Asymmetric-key cryptographic algorithms when implemented on
systems with branch predictors, are subjected to side-channel attacks
exploiting the deterministic branch predictor behaviour due to their
key-dependent input sequences.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 3 / 34

Introduction

Hardware performance counters (HPCs) are a set of special-purpose
registers to store the counts of hardware-related activities within the
microprocessor.

Hence HPCs can be utilized for both attacks and their
countermeasures.

Asymmetric-key cryptographic algorithms when implemented on
systems with branch predictors, are subjected to side-channel attacks
exploiting the deterministic branch predictor behaviour due to their
key-dependent input sequences.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 3 / 34

Objective of the work

This work shows that HPCs, which are used as performance monitors
(watchmen) in modern computer systems can be utilized to retrieve
the secret keys by reasonably modelled adversaries.

The attack exploits the characteristics of branch predictor and shows
formally that the leakage of the key increases with the ability of the
attacker to model the predictor more accurately.

We claim that branch misses from HPCs are indeed more significant
side-channels compared to timing.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 4 / 34

Objective of the work

This work shows that HPCs, which are used as performance monitors
(watchmen) in modern computer systems can be utilized to retrieve
the secret keys by reasonably modelled adversaries.

The attack exploits the characteristics of branch predictor and shows
formally that the leakage of the key increases with the ability of the
attacker to model the predictor more accurately.

We claim that branch misses from HPCs are indeed more significant
side-channels compared to timing.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 4 / 34

Objective of the work

This work shows that HPCs, which are used as performance monitors
(watchmen) in modern computer systems can be utilized to retrieve
the secret keys by reasonably modelled adversaries.

The attack exploits the characteristics of branch predictor and shows
formally that the leakage of the key increases with the ability of the
attacker to model the predictor more accurately.

We claim that branch misses from HPCs are indeed more significant
side-channels compared to timing.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 4 / 34

Why should we consider HPCs for security analysis?

Results from HPCs are treated as an accurate representations of
events occurring in hardware [1], [2].

This occurs when the overhead introduced by performance counter
interfaces does not dominate the event counts.

The accuracy depends upon the interface used, the application and
the event being measured [1].

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 5 / 34

Why should we consider HPCs for security analysis?

Results from HPCs are treated as an accurate representations of
events occurring in hardware [1], [2].

This occurs when the overhead introduced by performance counter
interfaces does not dominate the event counts.

The accuracy depends upon the interface used, the application and
the event being measured [1].

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 5 / 34

Why should we consider HPCs for security analysis?

Results from HPCs are treated as an accurate representations of
events occurring in hardware [1], [2].

This occurs when the overhead introduced by performance counter
interfaces does not dominate the event counts.

The accuracy depends upon the interface used, the application and
the event being measured [1].

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 5 / 34

Exploiting Hardware Performance Counters

HPC L1 and L2 D-cache miss counters have been exploited as
side-channels in [3] for performing timing based cache attacks on
symmetric-key algorithms, like AES.

On the other hand, in [4] data from performance counters are used to
develop a malware detector in hardware using machine learning
techniques.

While in [5], a new Virtual Machine Monitor (VMM) named
NumChecker is proposed, which exploits HPCs to detect kernel root-
kits in a guest Virtual Machine.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 6 / 34

Exploiting Hardware Performance Counters

HPC L1 and L2 D-cache miss counters have been exploited as
side-channels in [3] for performing timing based cache attacks on
symmetric-key algorithms, like AES.

On the other hand, in [4] data from performance counters are used to
develop a malware detector in hardware using machine learning
techniques.

While in [5], a new Virtual Machine Monitor (VMM) named
NumChecker is proposed, which exploits HPCs to detect kernel root-
kits in a guest Virtual Machine.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 6 / 34

Exploiting Hardware Performance Counters

HPC L1 and L2 D-cache miss counters have been exploited as
side-channels in [3] for performing timing based cache attacks on
symmetric-key algorithms, like AES.

On the other hand, in [4] data from performance counters are used to
develop a malware detector in hardware using machine learning
techniques.

While in [5], a new Virtual Machine Monitor (VMM) named
NumChecker is proposed, which exploits HPCs to detect kernel root-
kits in a guest Virtual Machine.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 6 / 34

Performance Monitoring over the years

In [6], profiling HPCs are referred to be accessible in high-privilege modes.
But since the advent of Linux-Perf for userspace Program Analysis [7], [8]
this highly accurate performance monitoring information are available to
Linux users from supercomputers to embedded systems.

Oprofile- a system-wide sampling profiler by Levon which was included into
Linux 2.5.43 in 2002.

PAPI implementation for Linux uses the perfctr Linux patch an
event-monitoring device driver to enable access to the counters.

In 2009, event named ‘perf’ subsystem was added to the Linux kernel, and
makes user access to performance counters less clumsy, without kernel
patches or recompiles [9].

Greatest advantage of Perf event [9] is the subsystem has been already
included in the Linux kernel 2.6.31 as “Performance Counters for Linux”.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 7 / 34

Performance Monitoring over the years

In [6], profiling HPCs are referred to be accessible in high-privilege modes.
But since the advent of Linux-Perf for userspace Program Analysis [7], [8]
this highly accurate performance monitoring information are available to
Linux users from supercomputers to embedded systems.

Oprofile- a system-wide sampling profiler by Levon which was included into
Linux 2.5.43 in 2002.

PAPI implementation for Linux uses the perfctr Linux patch an
event-monitoring device driver to enable access to the counters.

In 2009, event named ‘perf’ subsystem was added to the Linux kernel, and
makes user access to performance counters less clumsy, without kernel
patches or recompiles [9].

Greatest advantage of Perf event [9] is the subsystem has been already
included in the Linux kernel 2.6.31 as “Performance Counters for Linux”.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 7 / 34

Performance Monitoring over the years

In [6], profiling HPCs are referred to be accessible in high-privilege modes.
But since the advent of Linux-Perf for userspace Program Analysis [7], [8]
this highly accurate performance monitoring information are available to
Linux users from supercomputers to embedded systems.

Oprofile- a system-wide sampling profiler by Levon which was included into
Linux 2.5.43 in 2002.

PAPI implementation for Linux uses the perfctr Linux patch an
event-monitoring device driver to enable access to the counters.

In 2009, event named ‘perf’ subsystem was added to the Linux kernel, and
makes user access to performance counters less clumsy, without kernel
patches or recompiles [9].

Greatest advantage of Perf event [9] is the subsystem has been already
included in the Linux kernel 2.6.31 as “Performance Counters for Linux”.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 7 / 34

Performance Monitoring over the years

In [6], profiling HPCs are referred to be accessible in high-privilege modes.
But since the advent of Linux-Perf for userspace Program Analysis [7], [8]
this highly accurate performance monitoring information are available to
Linux users from supercomputers to embedded systems.

Oprofile- a system-wide sampling profiler by Levon which was included into
Linux 2.5.43 in 2002.

PAPI implementation for Linux uses the perfctr Linux patch an
event-monitoring device driver to enable access to the counters.

In 2009, event named ‘perf’ subsystem was added to the Linux kernel, and
makes user access to performance counters less clumsy, without kernel
patches or recompiles [9].

Greatest advantage of Perf event [9] is the subsystem has been already
included in the Linux kernel 2.6.31 as “Performance Counters for Linux”.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 7 / 34

Performance Monitoring over the years

In [6], profiling HPCs are referred to be accessible in high-privilege modes.
But since the advent of Linux-Perf for userspace Program Analysis [7], [8]
this highly accurate performance monitoring information are available to
Linux users from supercomputers to embedded systems.

Oprofile- a system-wide sampling profiler by Levon which was included into
Linux 2.5.43 in 2002.

PAPI implementation for Linux uses the perfctr Linux patch an
event-monitoring device driver to enable access to the counters.

In 2009, event named ‘perf’ subsystem was added to the Linux kernel, and
makes user access to performance counters less clumsy, without kernel
patches or recompiles [9].

Greatest advantage of Perf event [9] is the subsystem has been already
included in the Linux kernel 2.6.31 as “Performance Counters for Linux”.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 7 / 34

Public key Cryptography

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 8 / 34

Exponentiation and Underlying Multiplication Primitive

Inputs(M) are encrypted and decrypted by performing modular
exponentiation with modulus N on public or private keys represented as n
bit binary string.

Square and Multiply Exponentiation

Algorithm 1: Binary version of Square and Multiply Exponentiation Algorithm

S ← M ;
for i from 1 to n − 1 do

S ← S ∗ S mod N ;
if di = 1 then

S ← S ∗ M mod N ;
end

end
return S ;

Conditional execution of instruction and their dependence on secret
exponent is exploited by the simple power and timing side-channels [10].

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 9 / 34

Montgomery Ladder Exponentiation Algorithm

A näıve modification is to have a balanced ladder structure having equal
number of squarings and multiplications.

Most popular exponentiation primitive for Asymmetric-key cryptographic
implementations.

Algorithm 2: Montgomery Ladder Algorithm

R0 ← 1 ;
R1 ← M ;
for i from 0 to n − 1 do

if di = 0 then
R1 ← (R0 ∗ R1) mod N ;
R0 ← (R0 ∗ R0) mod N ;

end
else

R0 ← (R0 ∗ R1) mod N ;
R1 ← (R1 ∗ R1) mod N ;

end

end
return R0 ;

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 10 / 34

Montgomery Multiplication Algorithm

Highly efficient algorithm for performing modular squaring and modular
multiplication operation [11].

Avoids time consuming integer division operation.

R is assumed to be 2k , when N is k-bit number.

Calculates Z = A ∗ B ∗ R−1(modN), A = a ∗ R(modN), B = b ∗ R(modN)
and R−1 ∗ R = 1(modN).

Algorithm 3: Montgomery Multiplication Algorithm
S ← A ∗ B ;
S ← (S + (S ∗ N−1 mod R) ∗ N)/R ;
if S > N then

S ← S − N ;
end
return S ;

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 11 / 34

Branch Predictor State Machines

Predict Taken

Predict Not Taken

Predict Taken

Predict Not Taken

Taken

Not Taken

Not Taken

Not Taken

Taken

Taken

Taken

Not Taken Dynamic 2-bit predictor State Machine
The predictor must miss twice before the prediction
changes.

Conditional branching in regular recurring fashion
goes undetected.

Two Level Adaptive Branch Prediction [12]

Pattern History
bits

1

1111...11

1111...10

0000...10

0000...01

0000...00

1 1 0 prediction of B

index

Pattern History Table

State

logic
transition

Branch History Register

Sc

Sc+1 = d(Sc, Rc)

. . .
Sc

λ(Sc)

Branch result of B(Rc)

Figure: Two Level Adaptive Branch Prediction

[12]

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 12 / 34

Modelling Branch Miss as Side-Channel from HPC

We monitor the branch misses on the square and multiply and
Montgomery Ladder algorithm using Montgomery multiplication as
subroutine for operations like squaring and multiplication.

Branch miss rely on the ability of branch predictor to correctly predict
future branches to be taken.

Profiling of HPCs using performance monitoring tools provides simple
user interface to different hardware event counts and are considered
as side-channel.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 13 / 34

Approximating the System predictor with 2-bit branch
predictor

 4290

 4300

 4310

 4320

 4330

 4340

 4350

 4360

 470 480 490 500 510 520 530 540 550 560

O
bs

er
ve

d
br

an
ch

 m
is

se
s

fro
m

 P
er

f

Predicted branch misses from 2-bit dynamic predictor

Figure: Variation of branch-misses from performance counters with increase in branch miss
from 2-bit predictor algorithm

Direct correlation observed for the branch misses from HPCs and from the
simulated 2-bit dynamic predictor over a sample of exponent bitstream.

This confirms assumption of 2-bit dynamic predictor being an approximation
to the underlying system branch predictor.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 14 / 34

Idea of the Attack

In [13], timing attack exploiting branch mispredictions are
demonstrated which requires the knowledge of actual structure of
branch prediction hardware of the target system.

Advantage of this attack lies in the fact that adversary, inspite of
having no knowledge of the underlying architecture, can actually
target real systems and reveal secret exponent bits, exploiting the
branch miss as side-channel from HPCs.

This is an iterative attack, targeting i th bit assuming previous bits to
be known.

The attack separates a sample input set based on mispredictions for
conditional reduction of Montgomery multiplication at the (i + 1)th

squaring step of exponentiation assuming secret i th bit.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 15 / 34

Threat Model for the attack

The attacker knows first i bits of the private key and wants to
determine next unknown bit di of the key (d0, d1, · · · , di , · · · , dn−1).

Generate a trace of branches as (tm,1, tm,2, · · · , tm,i) for conditional
reduction of Montgomery multiplication at every squaring step.

Under the assumption of di having value j , where j ∈ {0, 1},
appropriate value of t jm,i+1 is simulated.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 16 / 34

Offline Phase of the Attack

0

1

Trace of taken or not taken branches

assume

Prediction Oracle

d0 d1 · · · di−1

di

ti

t0i+1

t2t1

t1i+1

· · · ti−1

di = 0

di = 1

t1

t1

t2

t2

· · ·

· · ·

ti

ti

t0i+1

t1i+1

if T(t1, t2, · · · , ti) = t1i+1

then add m to M1
else add m to M2

if T(t1, t2, · · · , ti) = t0i+1

then add m to M3

else add m to M4

for an input plaintext m

Figure: Partitioning randomly generated Ciphertexts set based on simulated
Branch miss Modelling

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 17 / 34

Separation of Random Inputs

1 M1 = {m|m does not cause a miss during MM of (i + 1)th squaring if
di = 1}

2 M2 = {m|m causes a misprediction during MM of (i + 1)th squaring if
di = 1}

3 M3 = {m|m does not cause a miss during MM of (i + 1)th squaring if
di = 0}

4 M4 = {m|m causes a misprediction during MM of (i + 1)th squaring if
di = 0}

We ensure that there must be no common ciphertexts in sets (M1,M3)
and (M2,M4) and the sets should be disjoint.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 18 / 34

Online Phase

The probable next bit is decided following the Algorithm 4.

If(avg(MM2) > avg(MM1)) and (avg(MM4) < avg(MM3)), then the next
bit (nbi) = 1

Otherwise, if (avg(MM4) > avg(MM3)) and (avg(MM2) < avg(MM1))
then, next bit (nbi) = 0

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 19 / 34

Algorithm 4: Adversary Attack Algorithm
Input: (d0, d1, · · · , di−1),M
Output: Probable next bit nbi
begin

Offline Phase;
for ∀m ∈ M do

Generate taken/ not-taken trace for input m as tm,1, tm,2, · · · , tm,i ;

Assume di = 0 and 1, generate t0
m,i+1, t1

m,i+1 respectively;

pm,i+1 = T (tm,1, tm,2, · · · , tm,i) ;

if pm,i+1 = t1
m,i+1 then

Add m to M1 ;
end
else

Add m to M2 ;
end

if pm,i+1 = t0
m,i+1 then

Add m to M3 ;
end
else

Add m to M4 ;
end

end
Remove Duplicate Ciphertexts in the sets M1,M3 and M2,M4;
Online Phase;
Observe distribution of branch misses from performance counters asMM1

,MM2
,MM3

,MM4
;

if (avg(MM2
) > avg(MM1

)) and (avg(MM4
) < avg(MM3

)) then
nbi = 1 ;

end
if (avg(MM4

) > avg(MM3
)) and (avg(MM2

) < avg(MM1
)) then

nbi = 0 ;
end
return nbi ;

end

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 20 / 34

Formally Modelling the Success Probability

In the offline phase

Assuming di = 1
Pr[m1 ∈ M1] = Pr[pm1,i+1 = t1

m1,i+1]

Pr[m2 ∈ M2] = Pr[pm2,i+1 6= t1
m2,i+1]

Assuming di = 0
Pr[m3 ∈ M3] = Pr[pm3,i+1 = t0

m3,i+1]

Pr[m4 ∈ M4] = Pr[pm4,i+1 6= t0
m4,i+1]

After removing duplicates, t0
m,i+1 6= t1

m,i+1.

In the online phase

Let nbi be the bit which the attacker concludes to be the next secret bit.
Let the expectation of the distribution of branch misses (MM , ∀m ∈ M)
be MM . Thus,
Pr[nbi = 0] = Pr[(MM4

−MM3
) > 0 ∧ (MM2

−MM1
) < 0]

Pr[nbi = 1] = Pr[(MM2
−MM1

) > 0 ∧ (MM4
−MM3

) < 0].

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 21 / 34

Formally Modelling the Success Probability

Let (i + 1)th branch predicted by the real predictor for input m is
rm,i+1.

Let i + 1th branch instruction has trace Bm,i+1 for unknown bit di .

If di = 0, then Bm,i+1 = t0
m,i+1, otherwise if di = 1, Bm,i+1 = t1

m,i+1.

Thus we can rewrite the previous equation as

Pr[nbi = 0] = Pr[(MM4
−MM3

) > 0 ∧ (MM2
−MM1

) < 0]

= Pr[(rm4,i+1 6= Bm4,i+1) ∧ (rm3,i+1 = Bm3,i+1) ∧ (rm2,i+1 = Bm2,i+1) ∧ (rm1,i+1 6= Bm1,i+1)]

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 22 / 34

Formally Modelling the Success Probability

Pr(Success) = Pr[nbi = di]

= Pr[nbi = 0 ∧ di = 0] + Pr[nbi = 1 ∧ di = 1]

= Pr[nbi = 0 | di = 0] · Pr[di = 0] + Pr[nbi = 1 | di = 1] · Pr[di = 1]

If di = 0, we replace Bm,i+1 = t0
m,i+1 in Equation 1 as,

Pr[nbi = 0 | di = 0] = Pr[(rm4,i+1 6= t0
m4,i+1) ∧ (rm3,i+1 = t0

m3,i+1) ∧ (rm2,i+1 = t0
m2,i+1) ∧ (rm1,i+1 6= t0

m1,i+1)]

= Pr[(rm4,i+1 6= t0
m4,i+1) ∧ (rm3,i+1 = t0

m3,i+1) ∧ (rm2,i+1 6= t1
m2,i+1) ∧ (rm1,i+1 = t1

m1,i+1)]

(since t0
m2,i+1 6= t1

m2,i+1 and t1
m1,i+1 6= t0

m1,i+1)

Substituting the events from Offline Phase,

Pr[nbi = 0 | di = 0] = Pr[(rm4,i+1 = pm4,i+1) ∧ (rm3,i+1 = pm3,i+1) ∧ (rm2,i+1 = pm2,i+1) ∧ (rm1,i+1 = pm1,i+1)]

= Pr[(rm,i+1 = pm,i+1)]

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 23 / 34

Formally Modelling the Success Probability

Similar calculations reveal,

Pr[nbi = 1 | di = 1] = Pr[(rm,i+1 = pm,i+1)]

Combining equations we get,

Pr(Success) = Pr[rm,i+1 = pm,i+1] · [Pr(di = 0) + Pr(di = 1)]

= Pr[rm,i+1 = pm,i+1]

Thus the probability of success is equal to the probability that the
theoretical predictor closely models the real predictor.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 24 / 34

Experimental Validation for the Online Phase of the Attack

A large input set is separated by simulations over bimodal and
two-level adaptive predictor.

Average branch misses are observed from HPCs for each elements in
set M1 , M2 , M3 and M4.

Each set has L = 1000 elements.

Experiment is repeated over I = 1000 iterations.

Experiments are performed on various platforms as Core-2 Duo
E7400, Intel Core i3 M350 and Intel Core i5-3470.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 25 / 34

Experiments on Square and Multiply Algorithm

 4630

 4632

 4634

 4636

 4638

 4640

 4642

 4644

 4646

 4648

 0 100 200 300 400 500 600 700

A
v
g
.
B

ra
n
c
h
 m

is
s
e
s
 f
ro

m
 P

e
rf

o
rm

a
n
c
e
 C

o
u
n
te

rs

Iterations

M1 -no simulated miss
M2 -misprediction

(a) Correct Assumption di = 1

 4630

 4632

 4634

 4636

 4638

 4640

 4642

 4644

 4646

 4648

 0 100 200 300 400 500 600 700

A
v
g
.
B

ra
n
c
h
 m

is
s
e
s
 f
ro

m
 P

e
rf

o
rm

a
n
c
e
 C

o
u
n
te

rs

Iterations

M3 -no simulated miss
M4 -misprediction

(b) Incorrect Assumption di = 0

Figure: Branch misses from HPCs on square and multiply correctly identifies secret bit di = 1,
ciphertext set partitioned by simulated misses of two-level adaptive predictor

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 26 / 34

Experiments on Montgomery Ladder

 4760

 4765

 4770

 4775

 4780

 4785

 4790

 4795

 4800

 4805

 0 50 100 150 200 250 300 350 400 450

A
v
g
.
B

ra
n
c
h
 m

is
s
e
s
 f
ro

m
 P

e
rf

o
rm

a
n
c
e
 C

o
u
n
te

rs

Iterations

M1 -no simulated miss
M2 -misprediction

(a) Correct Assumption di = 1

 4760

 4765

 4770

 4775

 4780

 4785

 4790

 4795

 0 50 100 150 200 250 300 350 400 450

A
v
g
.
B

ra
n
c
h
 m

is
s
e
s
 f
ro

m
 P

e
rf

o
rm

a
n
c
e
 C

o
u
n
te

rs

Iterations

M3 -no simulated miss
M4 -misprediction

(b) Incorrect Assumption di = 0

Figure: Branch misses from HPCs on Montgomery Ladder correctly identifies secret bit di = 1,
ciphertext set partitioned by simulated misses of two-level adaptive predictor

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 27 / 34

Comparison with timing as side-channel

 4.1e+06

 4.2e+06

 4.3e+06

 4.4e+06

 4.5e+06

 4.6e+06

 4.7e+06

 4.8e+06

 4.9e+06

 0 100 200 300 400 500 600 700 800 900 1000

E
x
e
c
u
ti
o
n
 T

im
e

Iterations

M1 -no simulated misprediction
M2 - misprediction

(a) Correct Assumption di = 1

 3.9e+06

 4e+06

 4.1e+06

 4.2e+06

 4.3e+06

 4.4e+06

 4.5e+06

 4.6e+06

 4.7e+06

 4.8e+06

 4.9e+06

 0 100 200 300 400 500 600 700 800 900 1000

E
x
e
c
u
ti
o
n
 T

im
e

Iterations

M3 -no simulated misprediction
M4 - misprediction

(b) Incorrect Assumption di = 0

Figure: No identification of secret bit is possible using timing as side-channel with L = 1000
and I = 1000

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 28 / 34

Variation of parameters such as Number of Inputs (L) and
Iteration (I)

Variation in separation with increase of Ciphertexts

 3980

 4000

 4020

 4040

 4060

 4080

 4100

 4120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e
ra

g
e
 B

ra
n
c
h
 m

is
s
e
s
 f
ro

m
 P

e
rf

o
rm

a
n
c
e
 C

o
u
n
te

rs

Number of Inputs (L)

M1 -no simulated miss
M2 -misprediction

(a) Correct Assumption di = 1

 4000

 4010

 4020

 4030

 4040

 4050

 4060

 4070

 4080

 4090

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e
ra

g
e
 B

ra
n
c
h
 m

is
s
e
s
 f
ro

m
 P

e
rf

o
rm

a
n
c
e
 C

o
u
n
te

rs

Number of Inputs (L)

M3 -no simulated miss
M4 -misprediction

(b) Incorrect Assumption di = 0

Figure: Variation in the separation of branch misses for correct secret bit = 1 showing positive
difference for M1 and M2 with the increase in number of ciphertexts(L), I = 100

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 29 / 34

Variation in separation with increase of Iterations

 4000

 4005

 4010

 4015

 4020

 4025

 4030

 4035

 4040

 4045

 4050

 0 200 400 600 800 1000

A
v
e
ra

g
e
 B

ra
n
c
h
 m

is
s
e
s
 f
ro

m
 P

e
rf

o
rm

a
n
c
e
 C

o
u
n
te

rs

Number of Iteration (I)

M1 -no simulated miss
M2 -misprediction

(a) Incorrect Assumption di = 1

 3990

 4000

 4010

 4020

 4030

 4040

 4050

 4060

 0 200 400 600 800 1000

A
v
e
ra

g
e
 B

ra
n
c
h
 m

is
s
e
s
 f
ro

m
 P

e
rf

o
rm

a
n
c
e
 C

o
u
n
te

rs

Number of Iteration (I)

M3 -no simulated miss
M4 -misprediction

(b) Correct Assumption di = 0

Figure: Variation in the separation of branch misses for correct secret bit = 0 showing positive
difference for M3,M4 with the increase in number of iteration(I), L = 1000

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 30 / 34

RSA-OAEP Randomized Padding Scheme

MGF

MGF

H’ Padding Message

Hash

RSA Ciphertext

RSA Plaintextxx

=00?

Parameters

Correct

seed

form?

H=H’?

Figure: Decryption in RSA-OAEP procedure [14]

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 31 / 34

RSA-OAEP

Separation for RSA-OAEP scheme

 9075

 9080

 9085

 9090

 9095

 9100

 9105

 9110

 9115

 9120

 0 100 200 300 400 500 600

E
x
e

c
u

ti
o

n
 T

im
e

Iterations

M1 -no simulated misprediction
M2 - misprediction

(a) Correct Assumption di = 1

 9070

 9080

 9090

 9100

 9110

 9120

 9130

 9140

 0 100 200 300 400 500 600

E
x
e

c
u

ti
o

n
 T

im
e

Iterations

M3 -no simulated misprediction
M4 - misprediction

(b) Incorrect Assumption di = 0

Figure: Branch misses from HPCs on RSA-OAEP implementation, correctly
identifies secret bit di = 1, ciphertext set partitioned by simulated misses of
bimodal predictor

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 32 / 34

Probable Countermeasures

If input to MM algorithm is masked such that 2 random numbers r1, r2
generated at runtime and inputs are modified as (ar = a + r1) and
(br = b + r2), the branch predictor observes branches which depend on
r1, r2. This masking strategy will prevent the adversary from simulating
branch miss, since r1, r2 are randomly generated at run time.

The effect of r1, r2 can be nullified by adding correction terms.

There are other implementations of RSA, like CRT-RSA, can be more
resistant, since the adversary cannot perform the necessary subsimulations
(without knowing the prime factors of the RSA modulus).

However, in presence of stronger fault models performance counters pose to
be a threatening side channel.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 33 / 34

Conclusion

Experiments show that HPCs form threatening side-channel for
existing implementations of RSA-like ciphers and similar
implementations.

The information provided by Performance Counters should be
computed to access the performance, without providing a mechanism
to extract secret information.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 34 / 34

Conclusion

Experiments show that HPCs form threatening side-channel for
existing implementations of RSA-like ciphers and similar
implementations.

The information provided by Performance Counters should be
computed to access the performance, without providing a mechanism
to extract secret information.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 34 / 34

Conclusion

Experiments show that HPCs form threatening side-channel for
existing implementations of RSA-like ciphers and similar
implementations.

The information provided by Performance Counters should be
computed to access the performance, without providing a mechanism
to extract secret information.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 34 / 34

Conclusion

Experiments show that HPCs form threatening side-channel for
existing implementations of RSA-like ciphers and similar
implementations.

The information provided by Performance Counters should be
computed to access the performance, without providing a mechanism
to extract secret information.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 34 / 34

W. Korn, P. J. Teller, and G. Castillo.

Just how accurate are performance counters?, pages 303–310.
2001.

Vincent M. Weaver and Sally A. McKee.

Can hardware performance counters be trusted?
In David Christie, Alan Lee, Onur Mutlu, and Benjamin G. Zorn, editors, 4th International Symposium on Workload
Characterization (IISWC 2008), Seattle, Washington, USA, September 14-16, 2008, pages 141–150. IEEE, 2008.

Leif Uhsadel, Andy Georges, and Ingrid Verbauwhede.

Exploiting hardware performance counters.
In Luca Breveglieri, Shay Gueron, Israel Koren, David Naccache, and Jean-Pierre Seifert, editors, FDTC, pages 59–67.
IEEE Computer Society, 2008.

John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman, Simha Sethumadhavan, and

Salvatore J. Stolfo.
On the feasibility of online malware detection with performance counters.
In Avi Mendelson, editor, ISCA, pages 559–570. ACM, 2013.

Xueyang Wang and Ramesh Karri.

Numchecker: detecting kernel control-flow modifying rootkits by using hardware performance counters.
In DAC, page 79. ACM, 2013.

Kris Tiri, Onur Aciiçmez, Michael Neve, and Flemming Andersen.

An Analytical Model for Time-Driven Cache Attacks.
In Alex Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science, pages 399–413. Springer, 2007.

System Platforms Sector NTT DATA CORPORATION Tetsuo Takata, Platform Solutions Business Unit.

Perf for User Space Program Analysis.
[Online]. Available: http://events.linuxfoundation.org/sites/events/files/lcjp13_takata.

pdfhttp://events.linuxfoundation.org/sites/events/files/lcjp13 takata.pdf, 2013.

September 2010 Arnaldo Carvalho de Melo, Linux Kongress.

The New Linux ‘perf’ tools.
[Online]. Available: http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.

pdfhttp://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf, 2010.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 34 / 34

http://events.linuxfoundation.org/sites/events/files/lcjp13_takata.pdf
http://events.linuxfoundation.org/sites/events/files/lcjp13_takata.pdf
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf

Vincent M. Weaver and University of Maine.

Linux perf event features and overhead.
In 2013 FastPath Workshop, pages –, 2013.

Paul C. Kocher.

Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems.
In Neal Koblitz, editor, CRYPTO ’96: Proceedings of the 16th Annual International Cryptology Conference on Advances
in Cryptology, volume 1109 of Lecture Notes in Computer Science, pages 104–113, London, UK, 1996. Springer-Verlag.

Peter L. Montgomery.

Modular Multiplication without Trial Division.
Mathematics of Computation, 44(170):519–521, 1985.

Tse-Yu Yeh and Yale N. Patt.

Two-level adaptive training branch prediction.
In MICRO, pages 51–61, 1991.

Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.

Predicting Secret Keys Via Branch Prediction.
In Masayuki Abe, editor, CT-RSA, volume 4377 of Lecture Notes in Computer Science, pages 225–242. Springer, 2007.

James Manger.

A chosen ciphertext attack on rsa optimal asymmetric encryption padding (oaep) as standardized in pkcs 1 v2.0.
In CRYPTO, pages 230–238, 2001.

CHES 2015 Sarani Bhattacharya Who watches the watchmen? 34 / 34

	Introduction
	HPCs
	Modular Exponentiation
	Conclusion

