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Some Facts about Homomorphic Encryption
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• Any fun( ) can be represented as a sequence of {+, ×} over GF(2)

• +  is  xor gate

• × is  and gate 

• {xor, and} gates together give us universal gate

Homomorphic encryption scheme allows us to homomorphically

compute GF(2) addition and multiplication on encrypted data.



Some Facts about Homomorphic Encryption
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• Multiplicative depth of fun is number of and gate in critical path

• Fully Homomorphic Encryption (FHE) ≡ unlimited depth

 Thus any fun

• Somewhat Homomorphic Encryption (SHE) ≡ limited depth

 Less complicated fun



Performances of FHE and SHE
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Performance of FHE

Batch Fully Homomorphic Encryption over Integers, by Coron, Lepoint, 

and Tibouchi. Eurocrypt 2013

• Encryption 61 seconds, Decryption 9.8 seconds

• Multiplication 0.72 seconds

• Recrypt 172 seconds

• AES evaluation takes 113 hours on Intel Core i7-2600 at 3.4 GHz

• 5120 Multiplications and 2448 Recrypt
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FHE is Very Slow



Performance of SHE

A Comparison of the Homomorphic Encryption Schemes FV and YASHE, 

by Lepoint, Naehrig. Africacrypt 2014 

• Evaluate SIMON -64/128 using YASHE in 70 minutes

• No recrypt

• Using 4-cores of Intel Core i7-2600 at 3.4 GHz
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SHE is > faster than FHE

Motivation: Can we accelerate using FPGAs?



Why do we need to Evaluate SIMON in Cloud?

• User encrypts message bits using EncHE( )

• Ciphertext size is huge (can be in GBs)

• Heavy load on the communication network 
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Why do we need to Evaluate SIMON in Cloud?

• Ciphertext size is message size

• SIMON has small multiplicative depth
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The YASHE Scheme
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The YASHE Scheme

• Defined over a ring

 We use 1228 bit q

 f ( ) is 65535-th cyclotomic polynomial, degree n= 215

• YASHE.KeyGen( ) (pk, sk, evk),    pk, sk ,  evk
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The YASHE Scheme

• YASHE.Enc (m, pk) c

 Gaussian sampling from narrow distribution

 One polynomial multiplication and two additions

• YASHE.Dec(c, sk) m

 One polynomial multiplication and a decoding
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The YASHE Scheme

• YASHE.Add (c1, c2 )  c = c1 + c2

• YASHE.Mult (c1, c2 ) 

 Compute polynomial multiplication c1·c2 in

 Q ~ n·q2 [In our case |Q| = 2,517 bits]

 Division and rounding  

 Return

 performs 22 poly mult and 21 poly add
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Implementation
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Operations in the Cloud
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• Discrete Gaussian sampling (from narrow distribution)

• Polynomial addition 

• Polynomial multiplication 

• Division and rounding
Costly Computation



Polynomial Multiplication

• FFT based multiplication has low complexity (n log n)

• Number Theoretic Transform (NTT) is a generalization of FFT

 n-th primitive root of 1 in       (an integer)      

 Only integer arithmetic modulo q
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Polynomial Multiplication using NTT
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• Expand input polynomials from n coefficients to  

• Compute N-point  NTTs

• Multiply them coefficient wise  

• Compute INTT

• Finally reduce the result modulo f(x) [ deg(f) = n ]

• Our f(x) is 65535-th cyclotomic polynomial     [  it supports SIMD ]

 Not a sparse polynomial

 We use polynomial Barrett reduction



Handling of Long Integer Arithmetic
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• Coefficients are modulo q where |q| = 1,228 bits

[ and sometimes modulo Q where |Q| = 2,517 bits ]

• Difficult to implement 

• We use CRT and take   

Small and Parallel computations

use DSP multipliers of the FPGA



Architecture 

25



Overview of the HE Architecture 
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Polynomial Arithmetic Unit Core
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The core is based on our CHES2014 paper “Compact ring-LWE Cryptoprocessor”



Polynomial Arithmetic Unit Core
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Computing               … butterfly during an NTT
t + u ·ω

t - u ·ω



Multi-Core Polynomial Arithmetic Unit
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• NTT is parallelizable  

• Speedup using many cores

• Routing friendly NTT

 Local data access

[ details in the paper ] 

Processor 
cores

Our architecture has 16 cores



Division and Rounding Unit (DRU)
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• Divides by    and then rounds to nearest integer  (    is fixed )

• Precomputed reciprocal                

• Multiplies input by 



Implementation of CRT

Small-CRT

Large-CRT
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CRT Computation
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• Small CRT is required to map coefficients c from        to

• Computation involves 

 Sum of long and short products

 Division in parallel



Sum of Product during CRT

33



coming back to the overall architecture ….  
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HE Architecture 
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HE Architecture 
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HE Architecture 
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HE Architecture 
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HE Architecture 
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Independent parallel processors



Results
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Area Results
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• We use the largest Virtex 7 FPGA  XCV1140TFLG1930

• Resource consumption

 FFs 22.6%

 LUTs 53%

 BRAMs 37.8%

 DSPs 53%

• With more processors routing problem



Timing Results
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• Does not include external memory--FPGA communication cost  

• Operating frequency is 143 MHz after P&R

• YASHE.Mult requires 121.678 milliseconds

• SIMON-64/128 performs 32×44 YASHE.Mult operations

 171.3 seconds

• Relative time is per slot (2048 slots using SIMD)

 83.65 milliseconds



Future Works
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• Implement interface between FPGA and external RAM

 Serial data transfer is slow

 Parallel 64-bit comm. between FPGA and external DDR3 RAM

Source:  Xilinx Virtex-7 FPGA VC709 Connectivity Kit, www.xilinx.com

http://www.xilinx.com/


Future Works
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• Architectural low-level optimization

 Reduce pipeline bubbles [reduce cycles]

 Increase frequency of sub blocks

 Area optimization [more processors in FPGA]

• Higher level parallel processing

 We have independent processors working in parallel

 Hence more processors in several FPGAs 



Thank You
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Backup Slides
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Homomorphic Encryption

• Enc(·,·) is homomorphic for an operation □ on message space M iff

Enc(m1 □ m2, kE) = Enc(m1, kE) ○ Enc(m2, kE)

with ○ operation on ciphertext space C

• Enc(·,·) is additively homomorphic is □ = +

• eg. Caesar cipher 

• Enc(·,·) is multiplicatively homomorphic is □ = ×

• eg. Unpadded RSA
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The YASHE Scheme
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The YASHE Scheme

• Defined over a ring                            

• YASHE.KeyGen( )  

• where pk and sk and evk 

• YASHE.Enc (m, pk) 

•

•

•

• YASHE.Dec(c, sk)

•
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The YASHE Scheme

• YASHE.Add (c1, c2 )  

 Return  

 Requires one polynomial addition                      

• YASHE.Mult (c1, c2 ) 

 Compute normal polynomial multiplication c1·c2    

 Coefficients could be larger than q2

 Division and rounding  

 Return

 Requires            is u+1 poly mult and u poly add
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Small-CRT Computation
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• Required to map polynomial coefficients c from        to 

 Remember                            and 

• Compute [c]qj for  l-1 <  j < L

• First compute c =( [c]q0·b0+…+ [c]ql-1·bl-1 )   [ sum of long products ]

• Next k = floor(c/q)      [ division by q ]

• Next [c’ ]qj =  ([c]q0·[b0]qj+…+ [c]ql-1·[bl-1]qj )   [sum of short products ]

• Finally [c]qj = [c’]qj – [k]qi · [q]qj



Area Results

53

• We use the largest Virtex 7 FPGA  XCV1140TFLG1930

• With more processors routing problem


