
Sujoy Sinha Roy1, Kimmo Järvinen1, Frederik Vercauteren1,

Vassil Dimitrov2, and Ingrid Verbauwhede1

1ESAT/COSIC and iMinds, KU Leuven

2The University of Calgary, Canada and Computer Modelling Group

Modular Hardware Architecture for

Somewhat Homomorphic Function Evaluation

1

CHES 2015

Outsourcing Computation

2

Outsourcing Computation

3

Outsourcing Computation

4

Outsourcing Computation

5

Outsourcing Computation

6

Outsourcing Computation

7

Outsourcing Computation

8

Some Facts about Homomorphic Encryption

9

• Any fun() can be represented as a sequence of {+, ×} over GF(2)

• + is xor gate

• × is and gate

• {xor, and} gates together give us universal gate

Homomorphic encryption scheme allows us to homomorphically

compute GF(2) addition and multiplication on encrypted data.

Some Facts about Homomorphic Encryption

10

• Multiplicative depth of fun is number of and gate in critical path

• Fully Homomorphic Encryption (FHE) ≡ unlimited depth

 Thus any fun

• Somewhat Homomorphic Encryption (SHE) ≡ limited depth

 Less complicated fun

Performances of FHE and SHE

11

Performance of FHE

Batch Fully Homomorphic Encryption over Integers, by Coron, Lepoint,

and Tibouchi. Eurocrypt 2013

• Encryption 61 seconds, Decryption 9.8 seconds

• Multiplication 0.72 seconds

• Recrypt 172 seconds

• AES evaluation takes 113 hours on Intel Core i7-2600 at 3.4 GHz

• 5120 Multiplications and 2448 Recrypt

12

FHE is Very Slow

Performance of SHE

A Comparison of the Homomorphic Encryption Schemes FV and YASHE,

by Lepoint, Naehrig. Africacrypt 2014

• Evaluate SIMON -64/128 using YASHE in 70 minutes

• No recrypt

• Using 4-cores of Intel Core i7-2600 at 3.4 GHz

13

SHE is > faster than FHE

Motivation: Can we accelerate using FPGAs?

Why do we need to Evaluate SIMON in Cloud?

• User encrypts message bits using EncHE()

• Ciphertext size is huge (can be in GBs)

• Heavy load on the communication network

14

Why do we need to Evaluate SIMON in Cloud?

• Ciphertext size is message size

• SIMON has small multiplicative depth

15

The YASHE Scheme

16

The YASHE Scheme

• Defined over a ring

 We use 1228 bit q

 f () is 65535-th cyclotomic polynomial, degree n= 215

• YASHE.KeyGen() (pk, sk, evk), pk, sk , evk

17

The YASHE Scheme

• YASHE.Enc (m, pk) c

 Gaussian sampling from narrow distribution

 One polynomial multiplication and two additions

• YASHE.Dec(c, sk) m

 One polynomial multiplication and a decoding

18

The YASHE Scheme

• YASHE.Add (c1, c2) c = c1 + c2

• YASHE.Mult (c1, c2)

 Compute polynomial multiplication c1·c2 in

 Q ~ n·q2 [In our case |Q| = 2,517 bits]

 Division and rounding

 Return

 performs 22 poly mult and 21 poly add

19

Implementation

20

Operations in the Cloud

21

• Discrete Gaussian sampling (from narrow distribution)

• Polynomial addition

• Polynomial multiplication

• Division and rounding
Costly Computation

Polynomial Multiplication

• FFT based multiplication has low complexity (n log n)

• Number Theoretic Transform (NTT) is a generalization of FFT

 n-th primitive root of 1 in (an integer)

 Only integer arithmetic modulo q

22

Polynomial Multiplication using NTT

23

• Expand input polynomials from n coefficients to

• Compute N-point NTTs

• Multiply them coefficient wise

• Compute INTT

• Finally reduce the result modulo f(x) [deg(f) = n]

• Our f(x) is 65535-th cyclotomic polynomial [it supports SIMD]

 Not a sparse polynomial

 We use polynomial Barrett reduction

Handling of Long Integer Arithmetic

24

• Coefficients are modulo q where |q| = 1,228 bits

[and sometimes modulo Q where |Q| = 2,517 bits]

• Difficult to implement

• We use CRT and take

Small and Parallel computations

use DSP multipliers of the FPGA

Architecture

25

Overview of the HE Architecture

26

C
ip

h
e

rt
e

x
t

P
o

ly
n

o
m

ia
ls

codesign

Polynomial Arithmetic Unit Core

27

The core is based on our CHES2014 paper “Compact ring-LWE Cryptoprocessor”

Polynomial Arithmetic Unit Core

28

Computing … butterfly during an NTT
t + u ·ω

t - u ·ω

Multi-Core Polynomial Arithmetic Unit

29

• NTT is parallelizable

• Speedup using many cores

• Routing friendly NTT

 Local data access

[details in the paper]

Processor
cores

Our architecture has 16 cores

Division and Rounding Unit (DRU)

30

• Divides by and then rounds to nearest integer (is fixed)

• Precomputed reciprocal

• Multiplies input by

Implementation of CRT

Small-CRT

Large-CRT

31

CRT Computation

32

• Small CRT is required to map coefficients c from to

• Computation involves

 Sum of long and short products

 Division in parallel

Sum of Product during CRT

33

coming back to the overall architecture ….

34

HE Architecture

35

HE Architecture

36

HE Architecture

37

HE Architecture

38

HE Architecture

39

Independent parallel processors

Results

40

Area Results

41

• We use the largest Virtex 7 FPGA XCV1140TFLG1930

• Resource consumption

 FFs 22.6%

 LUTs 53%

 BRAMs 37.8%

 DSPs 53%

• With more processors routing problem

Timing Results

42

• Does not include external memory--FPGA communication cost

• Operating frequency is 143 MHz after P&R

• YASHE.Mult requires 121.678 milliseconds

• SIMON-64/128 performs 32×44 YASHE.Mult operations

 171.3 seconds

• Relative time is per slot (2048 slots using SIMD)

 83.65 milliseconds

Future Works

43

• Implement interface between FPGA and external RAM

 Serial data transfer is slow

 Parallel 64-bit comm. between FPGA and external DDR3 RAM

Source: Xilinx Virtex-7 FPGA VC709 Connectivity Kit, www.xilinx.com

http://www.xilinx.com/

Future Works

44

• Architectural low-level optimization

 Reduce pipeline bubbles [reduce cycles]

 Increase frequency of sub blocks

 Area optimization [more processors in FPGA]

• Higher level parallel processing

 We have independent processors working in parallel

 Hence more processors in several FPGAs

Thank You

45

46

Backup Slides

47

Homomorphic Encryption

• Enc(·,·) is homomorphic for an operation □ on message space M iff

Enc(m1 □ m2, kE) = Enc(m1, kE) ○ Enc(m2, kE)

with ○ operation on ciphertext space C

• Enc(·,·) is additively homomorphic is □ = +

• eg. Caesar cipher

• Enc(·,·) is multiplicatively homomorphic is □ = ×

• eg. Unpadded RSA

48

The YASHE Scheme

49

The YASHE Scheme

• Defined over a ring

• YASHE.KeyGen()

• where pk and sk and evk

• YASHE.Enc (m, pk)

•

•

•

• YASHE.Dec(c, sk)

•

50

The YASHE Scheme

• YASHE.Add (c1, c2)

 Return

 Requires one polynomial addition

• YASHE.Mult (c1, c2)

 Compute normal polynomial multiplication c1·c2

 Coefficients could be larger than q2

 Division and rounding

 Return

 Requires is u+1 poly mult and u poly add

51

Small-CRT Computation

52

• Required to map polynomial coefficients c from to

 Remember and

• Compute [c]qj for l-1 < j < L

• First compute c =([c]q0·b0+…+ [c]ql-1·bl-1) [sum of long products]

• Next k = floor(c/q) [division by q]

• Next [c’]qj = ([c]q0·[b0]qj+…+ [c]ql-1·[bl-1]qj) [sum of short products]

• Finally [c]qj = [c’]qj – [k]qi · [q]qj

Area Results

53

• We use the largest Virtex 7 FPGA XCV1140TFLG1930

• With more processors routing problem

