Modular Hardware Architecture for
Somewhat Homomorphic Function Evaluation

CHES 2015

Sujoy Sinha Roy?, Kimmo Jarvinent, Frederik Vercauteren,
Vassil Dimitrov?, and Ingrid Verbauwhede!

IESAT/COSIC and iMinds, KU Leuven
°The University of Calgary, Canada and Computer Modelling Group

Outsourcing Computation

Outsourcing Computation
ST =

X fun()

Outsourcing Computation

Outsourcing Computation

Outsourcing Computation

Homomorphic Eval

Outsourcing Computation

"_

Enc[fin(x)]

Homomorphic Eval

Outsourcing Computation
_8

Enc(x)

4_

Enc[fin(x)]

Homomorphic Eval

Some Facts about Homomorphic Encryption
_ 9

Any fun() can be represented as a sequence of {+, x} over GF(2)

+ IS XOr gate

X 1s and gate

{xor, and} gates together give us universal gate

Homomorphic encryption scheme allows us to homomorphically
compute GF(2) addition and multiplication on encrypted data.

Some Facts about Homomorphic Encryption

A S

Multiplicative Depth

« Multiplicative depth of fun is number of and gate in critical path
« Fully Homomorphic Encryption (FHE) = unlimited depth

» Thus any fun
« Somewhat Homomorphic Encryption (SHE) = limited depth

» Less complicated fun

e

Performances of FHE and SHE

Performance of FHE

Batch Fully Homomorphic Encryption over Integers, by Coron, Lepoint,
and Tibouchi. Eurocrypt 2013

« Encryption 61 seconds, Decryption 9.8 seconds
« Multiplication 0.72 seconds
* Recrypt 172 seconds

« AES evaluation takes 113 hours on Intel Core 17-2600 at 3.4 GHz
« 5120 Multiplications and 2448 Recrypt

FHE is Very Slow

Performance of SHE

A Comparison of the Homomorphic Encryption Schemes FV and YASHE,
by Lepoint, Naehrig. Africacrypt 2014

« Evaluate SIMON -64/128 using YASHE in 70 minutes
« No recrypt

« Using 4-cores of Intel Core 17-2600 at 3.4 GHz

SHE is > faster than FHE

Motivation: Can we accelerate using FPGASs?

Why do we need to Evaluate SIMON in Cloud?

EncHE(x)

—_—

Enc, .| fun(x)]

 User encrypts message bits using Enc ()
» Ciphertext size is huge (can be in GBs)
« Heavy load on the communication network

Why do we need to Evaluate SIMON in Cloud?

BlkCiph(X)

e

« Ciphertext size Is message size
« SIMON has small multiplicative depth

fun [

Enc HE (BlkCiph(x)

BlkCiph i

Enc. (X)

e. 0

The YASHE Scheme

The YASHE Scheme

» Definedoveraring R,= Z[x|/(f(x))
> We use 1228 bit g
> f () is 65535-th cyclotomic polynomial, degree n= 2%

« YASHE.KeyGen()=> (pk, sk, evk), pk,skc I, evk € Rf

q’]

The YASHE Scheme

 YASHE.Enc (m, pk)=> ¢

» Gaussian sampling from narrow distribution

» One polynomial multiplication and two additions
* YASHE.Dec(c, sk)=> m

» One polynomial multiplication and a decoding

The YASHE Scheme

« YASHE.Mult (Cq, C,)
» Compute polynomial multiplication C;-C, in F¢

> Q~N-g% [Inourcase|Q| = 2,517 bits]
> Division and rounding ¢/ = | Zcicg]
> Return ¢ = YASHE.KeySwitch(d/, evk) € R,

> YASHE.KeySwitch() performs 22 poly mult and 21 poly add

e

Implementation

Operations in the Cloud

YASHE .Enc
YASHE.Add
YASHE . Mult

« Discrete Gaussian sampling (from narrow distribution)
« Polynomial addition
« Polynomial multiplication

L : Costly Computation
« Division and rounding I / g

Polynomial Multiplication

« FFT based multiplication has low complexity (n log n)

* Number Theoretic Transform (NTT) is a generalization of FFT
» n-th primitive root of 1 in z, (an integer)

» Only integer arithmetic modulo g

Polynomial Multiplication using NTT

Expand input polynomials from n coefficientsto N = 28 > 2p — 2
Compute N-point NTTs
Multiply them coefficient wise

Compute INTT

Finally reduce the result modulo f(X) [deg(f)=n]

Our f(X) is 65535-th cyclotomic polynomial [it supports SIMD]

» Not a sparse polynomial

» \We use polynomial Barrett reduction

Handling of Long Integer Arithmetic
224 45
« Coefficients are modulo q where |g| = 1,228 bits
[and sometimes modulo Q where |Q| = 2,517 bits]

 Difficult to implement

I—1
« WeuseCRTandtake ¢ = | 1o i
Anthmetic mod g,
_ _ ' Result
Arithmetic mod g =) : | CRT == 04 q
Anthmetic mod q,

/Small and Parallel computations

use DSP multipliers of the FPGA

e

Architecture

Overview of the HE Architecture

Ciphertext Polynomials

External Memory

FPGA

HE-Coprocessor

Polynomial Arithmetic

NTT/INTT
Coeff wise Add/Sub/Mult

CRT

Division and Rounding

T

Computer]

codesign

Polynomial Arithmetic Unit Core

Sl Polynomial Arithmetic Core
ROM
L
Integer Multiplier

=
= >
m il o - é
£ . o
£ g

Input

Register Bank Cutput
Register Bank
Cache
Registers

The core is based on our CHES2014 paper “Compact ring-LWE Cryptoprocessor”

Polynomial Arithmetic Unit Core

Sl Polynomial Arithmetic Core
ROM
(t —it-w Jmod q,
. Integer Multiplier ¢
% - =
% t uo modq, o - %
£ i - 2
Input
Register Bank Cutput
Register Bank
Cache
Registers | @
!

(t+ - Jmod q,

Computing

T butterfly during an NTT

Multi-Core Polynomial Arithmetic Unit

| g . NTT is parallelizable
] Eﬁ Nl IS paralleliz
| 5% =g - Speedup using many cores
: - : i has 1
s 1| %E Pl OQur architecture has 16 cores
= 1 1
o : cores
'+ Processor /
i —— : « Routing friendly NTT
1E Eﬁl'&g ! > Local data access
HE — [details in the paper]
L E{E'EEE :

Division and Rounding Unit (DRU)

Divides by g and then rounds to nearest integer (¢ is fixed)

Precomputed reciprocal » = 1/¢

Multiplies input by

din
| 118 lllﬂ
control ROM _
for r 118 x 118-bit
> b multiplier
1
contro Jﬁlgnals >
or additions 4_,236
Y59 T) 5o k50
B | b | b |
B | b |
— -

{fﬂ

b | | B 1] B 1] b |
'_ﬁ T S— T 59 £ 59
b | b I
A 59 & 59
doutb douta

e

Implementation of CRT

Small-CRT
Large-CRT

CRT Computation

« Small CRT is required to map coefficients ¢ from]?q to g
« Computation involves
» Sum of long and short products

» Division in parallel

Sum of Product during CRT

Residues

RAM

Multiplier

A

Constants

ROM

e """

coming back to the overall architecture

HE Architecture
o35

FPGA HE-Coprocessor

External Memory

_,l

Computer

HE Architecture

FPGA HE-Coprocessor

Processor

External Memory

_,l

Computer]

pr——

HE Architecture

FPGA HE-Coprocessor

Processor

iy

External Memory

_,l

Computer]

pr——

HE Architecture

FPGA HE-Coprocessor

Processor

iy

DRU 1

CRT

External Memory

DRU 0

CRT 0

_,l

Computer]

(
\

HE Architecture

FPGA HE-Coprocessor

Processor () Processor 7

=
DRU 1 i

-

~|I]RL' 1
DRU 0 H ~| DRU 0

Independent parallel processors

l. Computer]

1

CRT
CRT1

External Memory

CRTO

CRT 0

_,l

s

Results

Area Results

» \We use the largest Virtex 7 FPGA XCV1140TFLG1930
« Resource consumption

> FFs 22.6%

» LUTs53%

» BRAMSs 37.8%

» DSPs 53%

« With more processors routing problem

Timing Results

« Does not include external memory--FPGA communication cost
« QOperating frequency is 143 MHz after P&R
 YASHE.Mult requires 121.678 milliseconds
« SIMON-64/128 performs 32x44 YASHE.Mult operations
» 171.3 seconds
« Relative time is per slot (2048 slots using SIMD)
» 83.65 milliseconds

Future Works

« Implement interface between FPGA and external RAM
» Serial data transfer is slow

> Parallel 64-bit comm. between FPGA and external DDR3 RAM

- FMC HPC DOR2 SODIMM
USB-ta-UART Carrmetor {103 GTH) 23 84-bit each Usar LEDs

BF Pacallal
NOR Flazh

& vm:e';(" T
FO0UNK
US3 ITAG
Irvteelacs
12V Power
SFRISFP+ .
Cages (4e GTH) Usar Pushbultons

PCle ¥ Gen 2
(Bx GTH)

SMA GTH
Refarence Clock Inpuat

Virtex-7 XC7VX680T- SMA
2FFG17610 FPGA Usar Clock

Source: Xilinx Virtex-7 FPGA VC709 Connectivity Kit,

http://www.xilinx.com/

Future Works

« Architectural low-level optimization
» Reduce pipeline bubbles [reduce cycles]
» Increase frequency of sub blocks
» Area optimization [more processors in FPGA]
« Higher level parallel processing
» We have independent processors working in parallel

» Hence more processors in several FPGASs

e

Thank You

s

Backup Slides

Homomorphic Encryption

Enc(-,-) is homomorphic for an operation o on message space M iff
Enc(m, o m,, kg) = Enc(my, kg) o Enc(m,, Kg)
with o operation on ciphertext space C
Enc(-,-) i1s additively homomorphiciso =+
« eg. Caesar cipher

Enc(-,-) is multiplicatively homomorphic is o = X
* eg. Unpadded RSA

e 0

The YASHE Scheme

The YASHE Scheme

.
« Defined overaring R, = Z,[x]|/(f)

* YASHE.KeyGen()

» (pk, sk, evk) where pkand sk € Fjand evke RYT!
* YASHE.Enc (m, pk)

e m e Ry

.+ S, €4 Xerr

. c=[q/t]l-m+e+s-pk e Ry
* YASHE.Dec(c, sk)

m = Lg [sk-clqy] € Ry

The YASHE Scheme

« YASHE.Add (c;, c,)
> Return ¢ = ¢1 +c2 € Ry
» Requires one polynomial addition
 YASHE.Mult (c,, c,)
» Compute normal polynomial multiplication c;-c,
» Coefficients could be larger than g2

> Division and rounding ¢’ = L%f‘lfﬁ'ﬂ

» Return ¢ = YASHE.KeySwitch(d/, evk) € R,
> YASHE .KeySwitch() is u+1 poly mult and u poly add

Small-CRT Computation

* Required to map polynomial coefficients ¢ from Rq to g
> Remember ¢ = Hé_l q; and (Q = Hé’_l q;
« Compute [c]q; for I-1< j <L
« First compute ¢ =([c]qq-byt. ..+ [c]q.1-by) [sum of long products]
« Nextk="floor(c/q) [divisionbyq]
* Next[c’]g;= ([clap[bolaj+...+ [c]a,4-[by4]g;) [sum of short products |

« Finally [c]q; = [¢]q; — [K]g; - [a]q;

Area Results

» \We use the largest Virtex 7 FPGA XCV1140TFLG1930

Table 1. The area results on Xilinx Virtex-7 XCV1140TFLG1930-2 FPGA

Resource Used Avail. Percentage
Slice Registers 323.120 1.424.000 22.6 %
Slice LUTs 377.368 712,000 53 %
BlockRAM 640 BRAM36, 144 BRAMI1S 1,880 37.8%
DSP48 1,792 3,360 53 %

« With more processors routing problem

