

Lightweight Coprocessor for Koblitz Curves: 283-bit ECC Including Scalar Conversion with only 4300 Gates

S. Sinha Roy, **K. Järvinen**, I. Verbauwhede KU Leuven ESAT/COSIC Leuven, Belgium

We present a lightweight coprocessor for the 283-bit Koblitz curve

- The first lightweight implementation of a high security curve
- The first to include on-the-fly lightweight conversion
- One of the smallest ECC coprocessors
- A large set of side-channel countermeasures

Point multiplication Q = kP:

KU LEUVEN

Point multiplication Q = kP:

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

Point multiplication Q = kP:

• Binary curves which are included in many standards (e.g., NIST)

Example (Point multiplication Q = kP**)**

add	dbl	dbl	add	dbl	add	dbl	dbl	•••	add	dbl	add
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

- Binary curves which are included in many standards (e.g., NIST)
- \bullet Point doublings can be replaced with cheap Frobenius maps: $\phi:(x,y)\mapsto (x^2,y^2)$

Example (Point multiplication Q = kP)

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEU

Koblitz Curves

- Binary curves which are included in many standards (e.g., NIST)
- \bullet Point doublings can be replaced with cheap Frobenius maps: $\phi:(x,y)\mapsto (x^2,y^2)$
- ... but first the integer k needs to be converted to a τ -adic expansion $k = \sum_{i=0}^{\ell-1} k_i \tau^i$ where $\tau = (\mu + \sqrt{-7})/2 \in \mathbb{C}$

Example (Point multiplication Q = kP)

Koblitz Curves

- Binary curves which are included in many standards (e.g., NIST)
- \bullet Point doublings can be replaced with cheap Frobenius maps: $\phi:(x,y)\mapsto (x^2,y^2)$
- ... but first the integer k needs to be converted to a τ -adic expansion $k = \sum_{i=0}^{\ell-1} k_i \tau^i$ where $\tau = (\mu + \sqrt{-7})/2 \in \mathbb{C}$

Example (Point multiplication Q = kP)

K. Järvinen, CHES 2015, Sept. 14, 2015

Secure Lightweight Conversion

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

- Our conversion algorithms are based on:
 - (1) the lazy reduction by Brumley and Järvinen
 - (2) the zero-free expansion by Okeya, Takagi, and Vuillaume

- Our conversion algorithms are based on:
 - (1) the lazy reduction by Brumley and Järvinen
 - (2) the zero-free expansion by Okeya, Takagi, and Vuillaume
 - \Rightarrow Only (multiprecision) additions and subtractions

(1): Integer k to $ ho=b_0+b_1 au$
$(a_0, a_1) \leftarrow (1, 0), (b_0, b_1) \leftarrow (0, 0),$
$(a_0, a_1) \leftarrow (k, 0)$ for $i = 0$ to $m - 1$ do
$u \leftarrow d_0 \mod 2$
$d_0 \leftarrow d_0 - u$
$(b_0, b_1) \leftarrow (b_0 + u \cdot a_0, b_1 + u \cdot a_1)$
$(d_0, d_1) \leftarrow (d_1 - d_0/2, -d_0/2)$
$\left[(a_0, a_1) \leftarrow (-2a_1, a_0 - a_1) \right]$
$\rho = (b_0, b_1) \leftarrow (b_0 + d_0, b_1 + d_1)$

(2): ρ to τ -adic exp.

$$i \leftarrow 0$$

while $|b_0| \neq 1$ or $b_1 \neq 0$ do

$$\begin{bmatrix} u \leftarrow \Psi(b_0 + b_1 \tau) \\ b_0 \leftarrow b_0 - u \\ (b_0, b_1) \leftarrow (b_1 - b_0/2, -b_0/2) \\ t_i \leftarrow u \\ i \leftarrow i + 1 \end{bmatrix}$$

$$t_i \leftarrow b_0$$

KULE

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

• Negations (e.g., $-d_0/2$) take about 1/3 of cycles

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

• Negations (e.g., $-d_0/2$) take about 1/3 of cycles \Rightarrow We use the modification $(d_0/2 - d_1, d_0/2)$ instead of $(d_1 - d_0/2, -d_0/2)$

 $\Rightarrow\,$ The signs will be incorrect but can be corrected

K. Järvinen, CHES 2015, Sept. 14, 2015

KUI

 $b_i + u \cdot a_i$, where $u = d_0 \mod 2 \in \{0, 1\}$

$$d_0$$

$$b_i + u \cdot a_i$$
, where $u = d_0 \mod 2 \in \{0, 1\}$

KU LEU

KU LEL

$$b_i + u \cdot a_i$$
, where $u = d_0 \mod 2 \in \{0, 1\}$

KULE

• We select $u \in \{-1, 1\}$ by using $\Psi(d_0 + d_1\tau)$

$$b_i + u \cdot a_i$$
, where $u = d_0 \mod 2 \in \{0, 1\}$

KUI

• We select $u \in \{-1, 1\}$ by using $\Psi(d_0 + d_1\tau)$ • $u = +1 \Rightarrow b_0 + a_0$ and $b_1 + a_1$ • $u = -1 \Rightarrow b_0 - a_0$ and $b_1 - a_1$

$$b_i + u \cdot a_i$$
, where $u = d_0 \mod 2 \in \{0, 1\}$

 $\textbf{ We select } u \in \{-1,1\} \text{ by using } \Psi(d_0+d_1\tau)$

•
$$u = +1 \Rightarrow b_0 + a_0$$
 and $b_1 + a_1$

•
$$u = -1 \Rightarrow b_0 - a_0$$
 and $b_1 - a_1$

■ Similar operations ⇒ Improved SPA resistance!

KULE

Point Multiplication

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

Example

$1\bar{1}\bar{1}1111\bar{1}111\bar{1}\bar{1}\bar{1}$... $1\bar{1}11$

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- \bullet Combined with $w\mbox{-bit}$ windows and precomputations
 - $\Rightarrow\,$ Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations

Example

 $1\bar{1}\bar{1}1111\bar{1}111\bar{1}\bar{1}\bar{1}\dots 1\bar{1}11$

$$\begin{split} w &= 2 \text{:} \\ P_{+1} &= \phi(P) + P \\ P_{-1} &= \phi(P) - P \end{split}$$

KULE

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- $\bullet\$ Combined with w-bit windows and precomputations
 - $\Rightarrow\,$ Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations

Example

$$1\overline{1}\overline{1}1111\overline{1}111\overline{1}\overline{1}\overline{1}\overline{1}\dots 1\overline{1}111$$

$$w = 2:$$

$$P_{+1} = \phi(P) + P$$

$$P_{-1} = \phi(P) - P$$

K. Järvinen, CHES 2015, Sept. 14, 2015

KU LEUVEN

KULEL

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- \bullet Combined with $w\mbox{-bit}$ windows and precomputations
 - $\Rightarrow\,$ Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations
- Example

$$\begin{array}{c} \phi^2 \\ 1\overline{1}\overline{1}1111\overline{1}111\overline{1}1\overline{1}\overline{1}\overline{1}1 \\ & \psi = 2; \\ P_{+1} = \phi(P) + P \\ P_{-1} = \phi(P) - P \\ P_{-1} = \phi(P) - P \end{array}$$

KULEL

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- \bullet Combined with $w\mbox{-bit}$ windows and precomputations
 - $\Rightarrow\,$ Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations
- Example

KULEL

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- $\bullet\$ Combined with w-bit windows and precomputations
 - $\Rightarrow\,$ Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations

Example

KU LEU

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- $\bullet\$ Combined with w-bit windows and precomputations
 - $\Rightarrow\,$ Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations

Example

Zero-free τ -adic expansion [Okeya et al, 2005]

A τ -adic representation that represents k with $k_i \in \{-1, 1\}$

- $\bullet\$ Combined with w-bit windows and precomputations
 - $\Rightarrow\,$ Fast point multiplication of only ℓ/w point additions
 - \Rightarrow Constant pattern of point operations
- Example

$$w = 2:$$

$$P_{+1} = \phi(P) + P$$

$$P_{-1} = \phi(P) - P$$

KU LEUVEN

Point additions and subtractions are computed in two phases:
(1) To add (x, y) set (x_p, y_p, y_m) ← (x, y, x + y), to subtract (x, y) set (x_p, y_m, y_p) ← (x, y, x + y)
(2) Add (x_p, y_p, y_m)

KU LEUVEN

- Point additions and subtractions are computed in two phases:
 - (1) To add (x, y) set $(x_p, y_p, y_m) \leftarrow (x, y, x + y)$, to subtract (x, y) set $(x_p, y_m, y_p) \leftarrow (x, y, x + y)$ (2) Add (x_p, y_p, y_m)
- The accumulator point is randomized as shown by Coron: $(X,Y,Z) = (xr,yr^2,r)$, where r is random

- Point additions and subtractions are computed in two phases:
 - (1) To add (x, y) set $(x_p, y_p, y_m) \leftarrow (x, y, x + y)$, to subtract (x, y) set $(x_p, y_m, y_p) \leftarrow (x, y, x + y)$ (2) Add (x_p, y_p, y_m)
- The accumulator point is randomized as shown by Coron: $(X,Y,Z) = (xr,yr^2,r)$, where r is random
- The expansion is expanded up to (almost) constant length

- Point additions and subtractions are computed in two phases:
 - (1) To add (x, y) set $(x_p, y_p, y_m) \leftarrow (x, y, x + y)$, to subtract (x, y) set $(x_p, y_m, y_p) \leftarrow (x, y, x + y)$ (2) Add (x_p, y_p, y_m)
- The accumulator point is randomized as shown by Coron: $(X,Y,Z) = (xr,yr^2,r)$, where r is random
- The expansion is expanded up to (almost) constant length
- The attacker can obtain only a single trace from the conversion

Architecture and Results

KU LEUVEN

Architecture of the ALU

We synthesized the design (coprocessor, not RAM) for UMC 130 nm CMOS with Synopsys Design Compiler

- 4,323 GE
- 1,566,000 clock cycles (incl. conversion)
- 97.89 ms (@16 MHz)
- 97.70 µW (@16 MHz)
- 9.56 µJ (@16 MHz)

K. Järvinen, CHES 2015, Sept. 14, 2015

Results and Comparisons (Cont.)

15/17

	Currie	RAM	Area	Latency	Latency	Power
VVORK	Curve		(GE)	(cycles)	(ms)	(μW)
Batina'06	B-163	no	9,926	95,159	190.32	<60
Bock'08	B-163	yes	12,876	-	95	93
Hein'08	B-163	yes	13,250	296,299	2,792	80.85
Kumar'06	B-163	yes	16,207	376,864	27.90	n/a
Lee'08	B-163	yes	12,506	275,816	244.08	32.42
Wegner'11	B-163	yes	8,958	286,000	2,860	32.34
Wegner'13	B-163	no	4,114	467,370	467.37	66.1
Pessl'14	P-160	yes	12,448	139,930	139.93	42.42
Azarderakhsh'14	K-163	yes	11,571	106,700	7.87	5.7
Our, est.	B-163	no	≈3,773	≈485,000	\approx 30.31	\approx 6.11
Our, est.	K-163	no	≈4,323	pprox420,900	≈ 26.30	\approx 6.11
Our, est.	B-283	no	≈3,773	\approx 1,934,000	≈ 120.89	\approx 6.11
Our, est.	K-283	yes*	10,204*	1,566,000	97.89	>6.11
Our	K-283	no	4,323	1,566,000	97.89	6.11

 \star Estimate for a 256 \times 16-bit RAM, space needed for 252 16-bit words (4032 bits)

KU LEUVEN

We showed that

- 283-bit curves are feasible for lightweight implementations
 - \Rightarrow The price to pay comes mainly in latency and memory requirements

We showed that

- 283-bit curves are feasible for lightweight implementations
 ⇒ The price to pay comes mainly in latency and memory requirements
- Koblitz curves are feasible for lightweight implementations
 ⇒ Lead to savings in latency and energy consumption

We showed that

- 283-bit curves are feasible for lightweight implementations
 ⇒ The price to pay comes mainly in latency and memory requirements
- Koblitz curves are feasible for lightweight implementations
 ⇒ Lead to savings in latency and energy consumption
- The drop-in concept is very efficient for high security curves \Rightarrow Area of the memory becomes less of an issue

We showed that

- 283-bit curves are feasible for lightweight implementations
 ⇒ The price to pay comes mainly in latency and memory requirements
- Koblitz curves are feasible for lightweight implementations
 - \Rightarrow Lead to savings in latency and energy consumption
- The drop-in concept is very efficient for high security curves \Rightarrow Area of the memory becomes less of an issue

Future work

• Careful validation of resistance against side-channel attacks

Thank you! Questions?

KU LEUVEN