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Introduction 2/17

We present a lightweight coprocessor for the 283-bit Koblitz curve
e The first lightweight implementation of a high security curve
e The first to include on-the-fly lightweight conversion
@ One of the smallest ECC coprocessors
e A large set of side-channel countermeasures
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Point multiplication ) = kP:
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e Binary curves which are included in many standards (e.g., NIST)

Example (Point multiplication Q) = kP)

add dbl dbl add dbl add dbl dbl s add dbl add
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e Binary curves which are included in many standards (e.g., NIST)

e Point doublings can be replaced with cheap Frobenius maps:
¢ (z,y) = (2%, 9%)

@ ...but first the integer k needs to be converted to a 7-adic
expansion k = >\ k;7 where 7 = (4 /—7)/2 € C

Example (Point multiplication Q) = kP)

add dbl dbl add dbl add dbl dbl e add dbl add
conversion add add add e “

z Fym
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e Our conversion algorithms are based on:

(1) the lazy reduction by Brumley and Jarvinen
(2) the zero-free expansion by Okeya, Takagi, and Vuillaume
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Conversions Algorithms 6/17

e Our conversion algorithms are based on:
(1) the lazy reduction by Brumley and Jarvinen
(2) the zero-free expansion by Okeya, Takagi, and Vuillaume
= Only (multiprecision) additions and subtractions

(1): Integer k to p = by + by 7 (2): p to T-adic exp.
ag,a1) = (1,0), (bo,b1) < (0,0), i 0

(
(do, dy)  (,0) while |by| # 1 or b; # 0 do

fori=0tom —1 do w + U(bo + by7)
u < dog mod 2 bo — by —

do ¢ do —u Bo, b1) < (b1 — bo/2, —bo /2
(bo,bl)(_(b0_|_u.a0,b1_|_u.al) glO(’_lu) (1 0/? 0/)
(do,d1) < (d1 — do/2,—do/2) Fa g
(ao,al) <— (—2@1,0,0 = al)

ti(—bo

p = (bo, b1) = (bo + do, b1 + d1)
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@ Negations (e.g., —dy/2) take about 1/3 of cycles
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Modifications for Efficiency and Improved Security 7/17
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@ Negations (e.g., —dy/2) take about 1/3 of cycles
= We use the modification (dy/2 — dy,dy/2)

instead of (d; — dy/2, —dy/2)
= The signs will be incorrect but can be corrected
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Modifications for Efficiency and Improved Security (cont.) 8/17

b; +u - a;, where u = dy mod 2 € {0,1}

d - ]
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Modifications for Efficiency and Improved Security (cont.) 8/17

b; +u - a;, where u = dy mod 2 € {0,1}
do

u=1= by+agand by + a;
u = 0 = do nothing
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b; +u - a;, where u = dy mod 2 € {0,1}
do
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b; +u - a;, where u = dy mod 2 € {0,1}
do
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Modifications for Efficiency and Improved Security (cont.) 8/17

b; +u - a;, where u = dy mod 2 € {0,1}
do

u=1= by+agand by + a;
u = 0 = do nothing

Bad SPA leakage!

@ We select u € {—1,1} by using U(dy + dy7)
° UI+1:>b0+a0 and b1 + ay
° u:—1:>b0—a0 and by —aq
o Similar operations = Improved SPA resistance!
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Point Multiplication with Zero-free Expansions 10/17

Zero-free T-adic expansion [Okeya et al, 2005]

A 7-adic representation that represents k with k; € {—1,1}

Example

11111111111111... 1111
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Zero-free T-adic expansion [Okeya et al, 2005]

A 7-adic representation that represents k with k; € {—1,1}

e Combined with w-bit windows and precomputations
= Fast point multiplication of only ¢/w point additions
= Constant pattern of point operations

Example
w = 4.
11111111111111... 1111 Pra=e@)+P
Py =¢(P)-P
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Zero-free T-adic expansion [Okeya et al, 2005]

A 7-adic representation that represents k with k; € {—1,1}

e Combined with w-bit windows and precomputations
= Fast point multiplication of only ¢/w point additions
= Constant pattern of point operations

Example

62 ¢2 ¢2 ¢2 §2 ¢ $2 w—
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Additional Side-channel Countermeasures 11/17

e Point additions and subtractions are computed in two phases:

(1) To add (x,y) set (2, Yp, Ym) < (z,y, 2 +y),
to subtract (z,y) set (2, Ym, yp) < (2,4, + y)
(2) Add (zp, Yp, Ym)
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e Point additions and subtractions are computed in two phases:

(1) To add (x,y) set (2, Yp, Ym) < (z,y, 2 +y),
to subtract (z,y) set (2, Ym, yp) < (2,4, + y)
(2) Add (zp, Yp, Ym)

e The accumulator point is randomized as shown by Coron:
(X,Y,Z) = (zr,yr? r), where r is random

e The expansion is expanded up to (almost) constant length

e The attacker can obtain only a single trace from the conversion
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Architecture of the ALU

din | Single Port
RAM

ADDRESS
RdOffset  WtOffset

Offset

Base
Address

RAM Address

Scalar C

CONTROL

Point Arith
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Results and Comparisons 14/17

We synthesized the design (coprocessor, not RAM) for UMC 130 nm
CMOS with Synopsys Design Compiler

e 4,323 GE

e 1,566,000 clock cycles (incl. conversion)
o 97.89 ms (@16 MHz)

e 97.70 uW (@16 MHz)

® 9.56 4J (@16 MHz)
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Results and Comparisons (Cont.) 15/17
Area Latency Latency Power
Work Curve RAM (GE) (cycles) (ms) (W)
Batina'06 B-163 no 9,926 95,159 190.32 <60
Bock'08 B-163 yes 12,876 - 95 93
Hein'08 B-163 yes 13,250 296,299 2,792 80.85
Kumar'06 B-163 yes 16,207 376,864 27.90 n/a
Lee'08 B-163 yes 12,506 275,816 244.08 32.42
Wegner'11 B-163 yes 8,958 286,000 2,860 32.34
Wegner'13 B-163 no 4,114 467,370 467.37 66.1
Pessl'14 P-160 yes 12,448 139,930 139.93 42.42
Azarderakhsh'14  K-163 yes 11,571 106,700 7.87 5.7
Our, est. B-163 no ~3,773 ~485,000 ~30.31 ~6.11
Our, est. K-163 no ~4,323 ~420,900 ~26.30 ~6.11
Our, est. B-283 no ~3,773 ~1,934,000 ~120.89 ~6.11
Our, est. K-283  yes*  10,204* 1,566,000 97.89 >6.11
Our K-283 no 4,323 1,566,000 97.89 6.11

* Estimate for a 256 x 16-bit RAM, space needed for 252 16-bit words (4032 bits)
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We showed that
@ 283-bit curves are feasible for lightweight implementations

= The price to pay comes mainly in latency and memory
requirements
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We showed that
@ 283-bit curves are feasible for lightweight implementations

= The price to pay comes mainly in latency and memory
requirements

e Koblitz curves are feasible for lightweight implementations
= Lead to savings in latency and energy consumption
e The drop-in concept is very efficient for high security curves
= Area of the memory becomes less of an issue
Future work
e Careful validation of resistance against side-channel attacks
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