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INTRODUCTION

Top line: Extracting ‘portable’ power models for DPA attacks.

ML key recovery 
with fully profiled 

templates

‘Standard’ DPA
with ‘standard’ 

models (e.g. HW)

‘Standard’ DPA with 
approximated leakage 

models

Outline:
I Preliminaries: ‘Standard’ DPA; different ‘types’ of power model;

unsupervised (k-means) clustering.
I Proposed methodology: unsupervised clustering for building nominal

power models.
I Experimental results.
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‘STANDARD DPA ATTACK’

0 20 40 60
−0.4
−0.2

0
0.2
0.4
0.6

Key hypothesis

D
is

tin
gu

is
he

r v
al

ue

 

 

0 20 40 60
−2
−1
0
1
2
3

# 
st

d 
de

vi
at

io
ns

True key Nearest rival

C. WHITNALL (UNIVERSITY OF BRISTOL) CLUSTERING FOR DPA CHES 2015 3 / 19



DIFFERENT TYPES OF POWER MODEL

The power model M can approximate the deterministic part of the leakage L

at different ‘levels’ . . .

LEVEL CORRESPONDENCE ASSOCIATED ATTACKS

Direct M ⇡ L

Bayesian templates,
stochastic profiling

Proportional M ⇡ ↵L

Pearson’s correlation
coefficient

Ordinal {z|M(z) < M(z0)} ⇡
{z|L(z) < L(z0)} 8z

0 2 Z
Spearman’s rank
correlation coefficient

Nominal {z|M(z) = M(z0)} ⇡
{z|L(z) = L(z0)} 8z

0 2 Z

‘Partition’-based:
mutual information,
variance ratio, etc.
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UNSUPERVISED CLUSTERING

Task: Arrange objects s.t. those inside a given group are similar whilst those
in different groups are dissimilar.

Assumption: Number or characteristics of the underlying classes are a

priori unknown (unlike supervised classification).

Method: Large selection of iterative trial-and-error solutions:
I Cluster models vary: hierarchical, centroid-based, density- or

distribution-based, graph-based . . .
I ‘Similarity’ measures vary: Euclidean distance, correlation, Hamming,

Manhattan . . .

N.B.: Notoriously difficult to match the best-suited learning algorithm to a
given problem.
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PROPOSED METHODOLOGY

GENERAL STRATEGY

1 Partition the profiling traces according to the intermediate values and
compute the means {̄t

z

}
z2Z .

2 Obtain a mapping M : Z �! M by clustering the mean traces.
Values in Z not represented in the profiling dataset are mapped to cluster
C + 1 (i.e. an ‘other’ category).

3 Use M as the (nominal) power model in ‘partition-based’ DPA against
the target traces.

EXAMPLE INSTANTIATION

Clustering algorithm: Principal component analysis followed by k-means
clustering.

DPA distinguisher: Univariate and multivariate variance ratio.
Benchmark: Correlation DPA using the first principal component to

approximate a ‘proportional’ power model.
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PRINCIPAL COMPONENT ANALYSIS

Transforms a large number of cor-
related variables into uncorrelated
components (eigenvectors of covari-
ance matrix). These are sorted in de-
scending order of variance (eigenval-
ues of covariance matrix).

I Existing applications to side-channel analysis:
Preliminary step to Gaussian template building (avoids inversion
problems caused by collinear ‘points of interest’).
Pre-processing to increase non-profiled DPA efficiency.

I Frequently used in unsupervised clustering to mitigate for sparseness
(product space so large that no observations are ‘close’).

I Natural role in our clustering procedure: PCA on the mean traces finds
the directions along which data-dependent variation is largest.
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K-MEANS CLUSTERING

Step 1 Step 2 Step 3 Step 4

Generate k initial
“means” within
the data domain.

Associate every
observation with
the nearest mean.

Compute the new
means from the
resulting clusters.

Repeat 2. and 3.
until convergence
is reached.

[Images are CC licensed (Attribution-Share Alike) https://commons.wikimedia.org/wiki/File:K-means_steg_1.svg].
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CHOOSING THE BEST CONFIGURATION

Problem: Quality of clustering depends on user-specified factors; ‘best’
choices a priori unknown.

Optimal number of principal components to keep?
‘Correct’ number of clusters?

Silhouette index for i

th object. . .

S

i

=
b

i

� a

i

max(a
i

, b

i

)

I a

i

: mean distance from i

th object to other objects in its cluster;
I b

i

: mean distance from i

th object to objects in nearest other cluster.
Strategy: Trial different combinations of settings and choose the one which
produces the highest average silhouette index.
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THE VARIANCE RATIO

DVR(k) =

P
t2⌧ 0

var({P

t,i}N

i=1)
2

1
N

P
m2M

n

m

P
t2⌧ 0

var({P

t,i|M � F

k

(x
i

) = m})2

I ⌧ 0: attacker’s best knowledge about ⌧ (want ⌧ 0 \ ⌧ 6= ;);
I M: nominal approximation (values in M) for the leakage;
I n

m

= #{x

i

|M � F

k

(x
i

) = m}, i.e. the number of observations in the
trace set for which the predicted cluster label is m.

[See L. Batina, B. Gierlichs, and K. Lemke-Rust, Differential Cluster

Analysis, CHES 2009, vol.5747 of LNCS, pp.112–127, Springer]
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THE VARIANCE RATIO

Sample variance of global trace distribution at time point t

DVR(k) =

P
t2⌧ 0

var({P

t,i}N

i=1)
2

1
N

P
m2M

n

m

P
t2⌧ 0

var({P

t,i|M � F

k

(x
i

) = m})2

Sample variance of conditional trace distribution associated with a given
model prediction

I ⌧ 0: attacker’s best knowledge about ⌧ (want ⌧ 0 \ ⌧ 6= ;);
I M: nominal approximation (values in M) for the leakage;
I n

m

= #{x

i

|M � F

k

(x
i

) = m}, i.e. the number of observations in the
trace set for which the predicted cluster label is m.
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EXPERIMENTAL RESULTS

DATA

Software: 10,000 traces from an unprotected AES implementation on an
ARM microcontroller.

Hardware: 5,000 traces from an unprotected AES implementation on an
RFID-type system.

EXPERIMENTAL APPROACH

1 Randomly draw (disjoint) profiling and attack samples from the full
dataset.

2 Derive nominal and proportional power models from the profiling
subsample.

3 Modify the attack subsample to simulate a variety of discrepancies.
4 Perform correlation- and univariate/multivariate VR-based DPA.
5 Repeat to estimate guessing entropies (average rank of correct subkey).
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‘STRAIGHTFORWARD’ SOFTWARE SCENARIO
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DCA(MKM)

VR(MKM)

Corr(MP1)

Guessing entropy of partially profiled DPA attacks against an unprotected

software implementation of AES. Window width: 20; reps: 500.

Clustering strategy ‘works’: uncertainty about the subkey is reduced.
Multivariate distinguisher outperforms the univariate one.
Correlation DPA with our estimated proportional model is more
efficient in terms of number of attack and number of profiling traces
needed.

C. WHITNALL (UNIVERSITY OF BRISTOL) CLUSTERING FOR DPA CHES 2015 12 / 19



‘PROBLEMATIC’ HARDWARE SCENARIO
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DCA(MKM)

VR(MKM)

Corr(MP1)

Guessing entropy of partially profiled DPA attacks against an unprotected

hardware implementation of AES. Window width: 10; reps: 500.

Implementation: two 32-bit registers; byte substitutions occur in
parallel with MixColumns operation in previous column.
Considerable variation in the exploitability of the S-boxes (we report
for the most vulnerable one).
Multivariate distinguisher now outperforms correlation DPA.
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DISCREPANCY IN WINDOW WIDTH AND LOCATION

Scenario: Attacker roughly knows
the interesting ‘windows’ but cannot
match them precisely.
Simulated distortion: Pick different
window sizes and offsets in the at-
tack subsample.

Attack Software Hardware
sample DCA(MKM ) VR(MKM ) Corr(MP1) DCA(MKM ) VR(MKM ) Corr(MP1)
size �! 50 400 50 400 50 400 50 400 50 400 50 400

O
ffs

et

�bw/2c 53 1 87 1 15 1 121 65 68 1 22 1
�bw/4c 37 1 65 1 3 1 51 1 66 1 20 1

0 34 1 72 1 1 1 15 1 65 1 21 1
bw/4c 27 1 83 1 1 1 25 1 76 1 24 1
bw/2c 74 4 109 1 22 1 66 1 113 3 90 1

1I Software attacks vulnerable to this; larger samples help to compensate.
I Hardware attacks vulnerable to the most extreme shifts.
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DISCREPANCY IN MEASUREMENT RESOLUTION

Scenario: Training and target traces
are collected at different resolutions
(e.g. due to different equipment).
Simulated distortion: Discretise the
attack subsample into fewer num-
bers of equally-sized bins.

Attack Software Hardware
sample DCA(MKM ) VR(MKM ) Corr(MP1) DCA(MKM ) VR(MKM ) Corr(MP1)
size �! 50 400 50 400 50 400 50 400 50 400 50 400

N
um

be
r

of
bi

ns

256 30 1 86 1 5 1 16 1 68 1 23 1
128 28 1 83 1 5 1 16 1 66 1 21 1
64 38 1 81 1 9 1 17 1 62 1 29 1
32 68 1 107 1 29 1 20 1 65 1 32 1
16 70 1 135 133 26 1 33 1 71 1 55 1

1
I Some evidence of eventual decline in attack effectiveness as

measurements reach their most granular.
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DISCREPANCY IN MEASUREMENT ERROR

Scenario: Target traces are noisier
than training traces (e.g. due to in-
ferior measurement set-up).
Simulated distortion: Add a (zero
mean) Gaussian-distributed random
sample to each measurement.

Attack Software Hardware
sample DCA(MKM ) VR(MKM ) Corr(MP1) DCA(MKM ) VR(MKM ) Corr(MP1)
size �! 50 400 50 400 50 400 50 400 50 400 50 400

N
oi

se

fa
ct

or

1 31 1 93 1 9 1 22 1 86 1 29 1
2 71 1 103 1 33 1 56 1 107 1 65 1
4 100 3 118 8 78 1 71 1 100 14 80 2
8 124 14 115 38 103 1 116 7 123 50 95 9
16 115 52 133 107 129 14 112 40 113 85 114 67

1
I As expected: all three attacks remain effective, but the number of traces

required for equivalent success scales proportionally.
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DISCREPANCY IN TRACE PRE-PROCESSING

Scenario: Training traces have been
pre-processed in a manner not pre-
cisely known to the attacker.
Simulated distortion: Apply addi-
tional filtering to the attack subsam-
ple (moving averages).

Attack Software Hardware
sample DCA(MKM ) VR(MKM ) Corr(MP1) DCA(MKM ) VR(MKM ) Corr(MP1)
size �! 50 400 50 400 50 400 50 400 50 400 50 400

Sm
oo

th
in

g

w
in

do
w

1 43 1 96 1 16 1 19 1 62 1 19 1
2 44 1 75 1 5 1 24 1 59 1 17 1
4 51 1 104 1 5 1 74 1 100 4 79 1
8 77 1 106 1 16 1 111 32 121 54 100 17
16 115 5 123 3 53 1 112 82 118 94 113 64

1
I Software attacks robust; smoothing pairwise even improves outcomes.
I Hardware attacks less robust (fewer clock cycles; raw traces are already

shorter and more coarsely sampled).
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NON-FIXED SAMPLING FREQUENCY

Scenario: Misalignment caused by
varying frequency in target traces
(e.g. for ‘hiding’).
Simulated distortion: ‘Pad’ a pro-
portion of sample points with addi-
tional values in random positions.

Attack Software Hardware
sample DCA(MKM ) VR(MKM ) Corr(MP1) DCA(MKM ) VR(MKM ) Corr(MP1)
size �! 50 400 50 400 50 400 50 400 50 400 50 400

In
se

rt
io

ns

(p
ro

p.
) 0.005 133 125 131 124 139 137 122 125 122 97 117 46

0.01 126 111 134 119 128 135 135 127 123 146 139 108
0.05 120 135 133 123 131 123 125 117 126 127 125 131
0.1 141 134 131 127 129 134 131 116 138 135 126 135
0.5 130 113 138 121 116 131 143 131 128 138 134 131

1
I All attacks fail; correct key ranking does not improve, even as number

of traces increases.

C. WHITNALL (UNIVERSITY OF BRISTOL) CLUSTERING FOR DPA CHES 2015 18 / 19



IN CONCLUSION. . .

Unsupervised clustering can recover nominal power models for use in
effective ‘partition-based’ DPA.

Requirements in profiling phase are minimal relative to full profiling.
Robustness to discrepancies between profiling and attack traces is
considerably greater.

Proportional power models can recovered under the same
circumstances, for use in correlation DPA.

More efficient, in the case of software experiments; slightly less in the
case of hardware experiments.
Almost as robust.

Open question: Are there clustering algorithms which perform better?

Thank you for listening! Any questions?
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